
DigiFlow User Guide

Version 4.0, January 2017

© Dalziel Research Partners

2000 – 2017

Contents
1 Introduction ... 1

1.1 History .. 1

1.2 Key features .. 2

1.3 User guide .. 2

2 Installation ... 3

2.1 Basic installation .. 3

2.2 DigiFlow onfiguration .. 3

2.2.1 Basic configuration ... 4

2.2.2 Encapsulated PostScript configuration .. 4

2.2.3 Additional memory .. 6

2.3 Installation with framegrabber ... 7

2.3.1 Framegrabber installation .. 7

2.3.2 Camera configuration ... 7

2.3.3 Local security policy ... 7

2.3.4 Video capture configuration ... 8

3 Basics .. 9

3.1 Starting DigiFlow ... 9

3.2 Main Window... 12

3.3 Obtaining help .. 13

3.4 Image Selectors .. 14

3.5 Archive files ... 14

3.6 Sifting ... 15

3.7 DigiFlow Macros.. 15

3.8 Threads ... 15

3.9 Text output ... 15

4 Common dialogs .. 18

4.1 Open Image .. 18

4.2 Save Image As .. 22

4.3 Sifting input streams .. 23

4.3.1 Selector timing .. 23

4.3.2 Selector region .. 24

4.3.3 Matching intensities .. 26

4.4 Modifying output streams .. 28

4.4.1 Setting output stream colour ... 28

4.4.2 Full colour ... 29

4.4.3 File format ... 29

4.4.4 First index ... 29

4.4.5 Resampling .. 29

4.4.6 Save user comments .. 30

4.4.7 Encapsulated PostScript streams .. 30

4.5 dfc Help .. 31

4.6 Code library .. 32

5 Menus ... 34

5.1 File .. 34

5.1.1 Open Image ... 34

5.1.2 Run Code ... 34

5.1.3 Save As .. 34

5.1.4 Live Video ... 34

5.1.5 Edit Stream .. 44

5.1.6 Merge Streams .. 46

5.1.7 Export AVI .. 47

5.1.8 Print View ... 48

5.1.9 Print Visible View ... 49

5.1.10 Export to EPS .. 49

5.1.11 Export Visible to EPS .. 51

5.1.12 Export to simple EPS .. 52

5.1.13 Close ... 52

5.1.14 Close All .. 52

5.1.15 Exit .. 52

5.2 Edit ... 52

5.2.1 Copy .. 52

5.2.2 Copy as bitmap ... 53

5.2.3 Zoomed Copy .. 53

5.2.4 Properties .. 54

5.2.5 Coordinates ... 55

5.2.6 Region ... 60

5.2.7 Process again .. 61

5.2.8 Dialog responses ... 61

5.2.9 dfcConsole ... 62

5.3 View ... 64

5.3.1 Zoom ... 64

5.3.2 Fit Window .. 66

5.3.3 Cursor ... 66

5.3.4 Vectors .. 68

5.3.5 Appearance ... 68

5.3.6 Colour scheme .. 69

5.3.7 Toggle colour .. 71

5.3.8 Toolbar .. 71

5.3.9 Slaves .. 71

5.3.10 Threads ... 73

5.3.11 Pause all threads ... 74

5.3.12 Refresh .. 74

5.3.13 In Parallel ... 74

5.4 Create ... 75

5.5 Sequence .. 75

5.5.1 Animate ... 76

5.6 Analyse ... 80

5.6.1 Time information ... 80

5.6.2 Ensembles ... 92

5.6.3 Dye images .. 94

5.6.4 Synthetic schlieren .. 103

5.6.5 Particles .. 126

5.6.6 Particle Tracking Velocimetry .. 145

5.6.7 Optical flow ... 167

5.7 Tools... 171

5.7.1 Recipe .. 171

5.7.2 Transform intensity ... 172

5.7.3 Combine images .. 180

5.7.4 Accumulate .. 185

5.7.5 Slave process .. 186

5.7.6 To world coordinates .. 188

5.8 Window .. 189

5.9 Help .. 189

5.9.1 Help (browser) .. 189

5.9.2 dfc Help ... 189

5.9.3 Auto help ... 189

5.9.4 About DigiFlow ... 189

6 Techniques ... 191

6.1 Determining black .. 191

7 Chaining processes .. 193

8 Interpreter basics .. 196

8.1 Syntax ... 196

8.2 Variables .. 197

8.2.1 Simple variables .. 197

8.2.2 Compound variables ... 198

8.2.3 Type query functions ... 199

8.3 Assignment ... 199

8.4 Arrays ... 199

8.5 Lists .. 202

8.6 Operators .. 203

8.7 Constants .. 204

8.8 Execution control ... 205

8.9 User-defined functions ... 207

8.10 User input and ouput .. 209

8.11 Input of code from files .. 210

8.12 Debugging .. 211

8.12.1 Error handling .. 211

8.12.2 View variables ... 212

8.12.3 Messages ... 213

8.12.4 Queries .. 214

8.12.5 Break points .. 214

8.12.6 Tracing execution .. 215

8.12.7 dfcConsole ... 215

9 Functions .. 218

9.1 Basic mathematical functions... 219

9.2 String functions .. 219

9.3 Array functions ... 219

9.4 Type manipulation functions .. 220

9.5 Information functions ... 220

9.6 Variable functions .. 221

9.7 File handling ... 221

9.8 Reading and writing images ... 222

9.9 Windows and views ... 223

9.10 Timing functions .. 224

9.11 Statistical functions .. 224

9.12 Image processing functions .. 224

9.13 Flow functions .. 225

9.14 Coordinate functions .. 225

9.15 Bit-wise operations .. 226

9.16 Camera control ... 226

9.17 Array plotting functions ... 228

9.18 Numerical functions ... 228

9.19 Differential functions ... 229

9.20 Handling threads .. 229

9.21 Web browsing .. 229

9.22 ftp functions ... 230

9.23 DirectDraw functions ... 230

9.24 Data acquisition functions .. 230

9.25 Serial communications ... 231

9.26 GhostScript functions ... 231

9.27 Particle tracking functions.. 231

9.28 Logging .. 232

9.29 Registry functions .. 233

9.30 Configuration and licence functions .. 233

9.31 Miscellaneous functions ... 233

9.32 All functions ... 233

10 Macros .. 238

10.1 DigiFlow command files .. 238

10.1.1 Running processes .. 238

10.1.2 Control of input streams ... 239

10.1.3 Control of output streams ... 243

10.1.4 Chaining responses ... 245

10.1.5 Multiple output streams .. 246

10.1.6 Accessing dialogs .. 247

10.2 Recording user input .. 248

11 Plotting and drawing .. 249

11.1 Drawing commands ... 249

11.2 The DigiFlow Drawing format ... 250

11.3 Simple plot ... 252

11.4 Text .. 253

11.5 LaTeX macros .. 253

12 Image file formats ... 256

12.1 Windows bitmap files (.bmp)... 256

12.2 TIFF files (.tif) ... 256

12.3 GIF files (.gif) .. 256

12.4 Enhanced metafiles (.emf) ... 256

12.5 Windows metafiles (.wmf) ... 257

12.6 Encapsulated PostScript (.eps) ... 257

12.7 DigiFlow floating point image format (.dfi) .. 257

12.7.1 Header ... 257

12.7.2 Tag .. 258

12.7.3 8 bit image (DataType = #1001)... 258

12.7.4 8 bit multi-plane image (DataType = #11001) ... 258

12.7.5 Compressed 8 bit image (DataType = #12001) .. 258

12.7.6 32 bit image (DataType = #1004)... 259

12.7.7 32 bit multi-plane image (DataType = #11004) ... 259

12.7.8 Compressed 32 bit image (DataType = #12004) .. 260

12.7.9 64 bit image (DataType = #1008) ... 260

12.7.10 64 bit multi-plane image (DataType = #11008) ... 260

12.7.11 Compressed 64 bit image (DataType = #12008) .. 261

12.7.12 32 bit range (DataType = #1014) ... 261

12.7.13 64 bit range (DataType = #1018) ... 261

12.7.14 Rescale image (DataType = #1100) ... 262

12.7.15 Rescale image rectangle (DataType = #1101) ... 262

12.7.16 Colour scheme (DataType = #2000) ... 263

12.7.17 Colour scheme name (DataType = #2001) ... 263

12.7.18 Colour scheme name variable (DataType = #2002) 263

12.7.19 Description (DataType = #3000) .. 263

12.7.20 User comments (DataType = #3001) .. 264

12.7.21 Creating process (DataType = #3002) ... 264

12.7.22 Creator details (DataType = #3003) .. 264

12.7.23 Image time (DataType = #3018) ... 264

12.7.24 Image coordinates (DataType = #4008) ... 264

12.7.25 Image plane details (DataType = #4108) ... 265

12.8 DigiFlow Particle tracking format .. 266

12.9 DigiFlow pixel data format (.dfp) .. 266

12.10 DigiFlow drawing format (.dfd) ... 266

12.11 DigiFlow archive format (.dfa) .. 267

12.12 DigImage raw format (.pic) .. 268

12.13 DigImage compressed format (.pic) ... 269

12.14 DigImage movie format(.mov or .dfm) .. 270

13 Configuration files... 272

13.1 DigiFlow_Licence.dfc .. 272

13.2 DigiFlow_LocalData.dfc .. 272

13.3 DigiFlow_Cameras.dfc .. 274

13.4 DigiFlow_Dialogs.dfs .. 278

13.5 DigiFlow_Status.dfs ... 279

14 Extending DigiFlow ... 281

14.1 Installing extensions ... 281

15 Miscellaneous publications ... 282

References ... 284

Index .. 285

16 Licence Agreement .. 291

Licence: .. 291

Warranty: .. 292

Other Conditions: ... 292

DigiFlow Introduction

– 1 –

1 Introduction

DigiFlow provides a range of image processing features designed specifically for analysing

fluid flows. The package is designed to be easy to use, yet flexible and efficient, and includes

a powerful yet flexible macro language. Whereas most image processing systems are intended

for analysing or processing single images, DigiFlow is designed from the start for dealing with

sequences or collections of images in a straightforward manner.

Before installing or using DigiFlow, please read the Licence Agreement (see §16) and

ensure you have completed the registration requirements.

1.1 History

The origins of DigiFlow lie in an earlier system by the same author: DigImage. This earlier

system, with its origins in 1988 and first released commercially in 1992, pioneered many uses

of image processing in fluid dynamics. Utilising its own DOS-extender technology, DigImage

existed in the base 640kB of DOS memory (and later from the command prompt under

Windows 3.x and 9x), accessing around 12MB of extended memory for image storage and

interface with the framegrabber hardware.

To obtain the necessary performance in these early days of image processing on desktop

computers, DigImage required a framegrabber card to be installed to provide not only image

capture, but also image display and some of the processing. While this close coupling allowed

efficient real-time processing and frame-accurate control of a video recorder, it ultimately

restricted the development and deployment of the technology. The original ISA bus based

Data Translation DT2861 and DT2862 frame grabber cards remained available until 2001, but

by that time suitable motherboards had become difficult to source. At time of writing (2007)

and despite its reliance on outdated technology, DigImage is still used in many laboratories

around the world.

The development of DigiFlow began in 1994, although the project had a number of false

starts and development put on hold a number of times due to other commitments. The code of

this version has its origins in 1997 as part of the development of synthetic schlieren (see

§5.6.4). The computational and resolution requirements for synthetic schlieren could not be

accommodated efficiently within the framework of DigImage.

Despite sharing many approaches, algorithms and techniques, DigiFlow does not re-use

any of DigImage’s 8Mbytes Fortran 77 and 2MB Assembler source code. The design goals for

power, flexibility and efficiency in DigiFlow could only be achieved by starting again from

scratch.

DigiFlow builds on experience with DigImage from the user view point to provide a more

powerful, more flexible, but simpler interface. It also builds on the programming experience

to provide a more flexible, powerful and maintainable code base (now in excess of 15MB of

source).

A central feature of DigiFlow is a powerful macro language (dfc) and interpreter. This

provides users with an efficient and flexible environment in which to automate and customise

processing, as well as proving to be a very useful general computational and plotting tool.

Versions of DigiFlow have been in use in Cambridge since 2000, and at other selected

laboratories since 2002. Its wider dissemination began in late 2003 with a series of beta

releases. The first commercial release (version 1.0) dates from February 2005, with parallel

processing and other technologies providing substantial speed increases being introduced with

version 2.0 during 2007. Version 3.0, released in 2008, provides further performance

improvements plus a wealth of new processing features.

DigiFlow Introduction

– 2 –

1.2 Key features

DigiFlow has been designed from the outset to provide a powerful yet efficient

environment for acquiring and processing a broad range of experimental flows to obtain both

accurate quantitative and qualitative output.

Central to design philosophy is the idea that an image stream may be processed as simply

as a single image. Image streams may consist of a sequence of images (e.g. from a ‘movie’),

or a collection of images related in some other manner.

Efficiency is obtained through the use of advanced algorithms (many of them unique to

DigiFlow/DigImage) for built in processing options.

Power and flexibility are obtained through an advanced fully integrated macro interpreter

(using DigiFlow’s dfc macro language) providing a similar level of functionality to industry

standard applications such as MatLab. This interpreter is available to the user either to directly

run macros, or as part of the various DigiFlow tools to allow more flexible and creative use.

Commercial versions of DigiFlow include additional features such as partial compilation to

further improve performance.

Although not an essential component, DigiFlow retains the potential DigImage released by

the control of a framegrabber. Not only does this greatly simplify the process of running

experiments, acquiring images, processing them, extracting and plotting data, but it also

enables real-time processing of particle streaks and synthetic schlieren, for example.

1.3 User guide

This User Guide is designed to provide the primary reference for DigiFlow. The User

Guide is supplied in both .html and .pdf formats and is linked to the help system within

DigiFlow. Pressing the F1 function key within DigiFlow will start a web browser and take you

to the most appropriate point in the .html version of the User Guide.

The User Guide is not in itself complete: detailed descriptions of the many functions

provided by the macro interpreter may be found in the interactive help system (Help: dfc

Functions). The User Guide is also supplemented by a variety of scientific publications that

expand on some of the underlying technologies.

The typographical convention used in the User Guide is described below:

Typography Description

Analyse Windows elements such as prompts, menu items and

dialogs.
Expt_A.dfi File names, etc.
read_image() Interpreter commands and functions.
:= Interpreter operators and syntax.
"string" Interpreter operators and syntax.
comment Formal argument names for interpreter functions.
my_image Variables, numbers, etc., for the interpreter.

file0 Formal argument names for interpreter functions.

DigiFlow Installation

– 3 –

2 Installation

Although DigiFlow will work on any Windows XP or later machine, we recommend that

you avoid using Windows Vista if possible as the performance of Vista is significantly worse

than either Windows XP or Windows 7. There are versions of DigiFlow that can operate

under both 32-bit and 64-bit implementations, although at present it cannot control a digital

video camera under a 64-bit implementation of Windows.

2.1 Basic installation

DigiFlow is a typical Windows application with a graphical user interface, menus, dialog

boxes and toolbars. However, unlike many applications, DigiFlow does not require a special

installation procedure, but can simply be copied to the desired directory. In most cases

DigiFlow will be delivered in a .zip or self-extracting (.exe) archive file, downloaded from the

web. This should simply be unzipped into your selected directory. However, to make the best

of DigiFlow, there are some additional settings and tasks to be completed. The setup.bat file

that is copied to the installation folder will help with this process. Refer to GettingStarted.pdf

for further details.

The installed part of DigiFlow consists of DigiFlow.exe, which contains the core

functionality, and a range of DLL files that handle specific menu options. DigiFlow also

makes use of various global start-up files stored in the same directory.

During use, DigiFlow generates two status files in the directory in which it is started. These

are DigiFlow_Status.dfs (§13.5), which contains a range of information describing the settings,

and DigiFlow_Dialogs.dfs (§13.4), which records your last responses to many of the prompts, etc.

By storing this information in the directory in which DigiFlow is started, DigiFlow is able to

keep a separate set of information for each user, or for each specific task, without polluting the

registry. Additionally, these status files can be deleted or moved as the user wishes. In some

circumstances, DigiFlow_Status.dfs may become corrupted. If DigiFlow fails to start, or exhibits

unexpected behaviour, you should try removing (or renaming) DigiFlow_Status.dfs to see if this

cures the problem.

It is recommended that you use a new directory for each new set of experiments and for

each new project. In this way the DigiFlow strategy of storing localised status files will

facilitate use of DigiFlow in the various different contexts. In such an environment it is

frequently most convenient to start DigiFlow from the command prompt within the

appropriate directory structure, although other strategies such as multiple shortcuts or setting

up associations for Windows Explorer are also possible.

If you wish to run DigiFlow from a command prompt (strongly recommended), it is worth

putting this directory on the path so that DigiFlow may be started by simply typing DigiFlow

at the prompt (DigiFlow will normally add itself to the search path the first time it is run to

enable this). If you prefer to start DigiFlow from the desktop or start menu, you will need to

create a shortcut at that point and set the Start in directory appropriately. It is strongly

recommended that you do not run DigiFlow from the directory in which the program resides,

exept during the set-up procedure.

2.2 DigiFlow onfiguration

Details of the basic setup and configuration of DigiFlow under Windows is covered in

GettingStarted.pdf. This section reiterates some of the key points and highlights other

considerations that may facilitate your use of DigiFlow. Note that DigiFlow can also be

installed to run under Wine on a Linux machine, although it is not possible to control a digital

DigiFlow Installation

– 4 –

video camera and .eps (Encapsulated PostScript) files do not have access to the normal range

of fonts and appear visually less satisfying.

2.2.1 Basic configuration
Specification of the file extension for file names within DigiFlow is mandatory in most

circumstances as DigiFlow utilises this extension to determine the file type for output.

However, by default, Windows XP and later hide the extensions to files of known types, a

feature that can cause problems with DigiFlow. We recommend, therefore, that you turn off

this feature. DigiFlow will attempt to do this for itself, but this may not work on some

systems. If DigiFlow does not make all extensions visible automatically, then you may

achieve this manually through the View tab of Tools: Folder Options under Windows

Explorer. Simply remove the check mark from Hide extensions for known file types. Note that

this will need to be done for each DigiFlow user.

By default, DigiFlow will not be associated with any file types or extensions, unless you

install it using setup.bat (in which case .dfc, .dfd, .dfi, .dfm, .dfs and .dft will be associated with

DigiFlow). The easy way to make or add such associations is to right-click on a file with such

an association then select Open with (or Open if Open with is not visible) and choose the

default program from the Open With dialog and check the Always use… box. If DigiFlow is

not listed in this dialog, then locate it using the Browse button.

Figure 1: The Open With dialog for selecting the default program.

We recommend that the following extensions are associated with DigiFlow on all

installations: .dfc, .dfd, .dfi, .dft and .dfs. You may also wish to set up associations for other

standard image formats such as .bmp, .tif, .png and .jpg.

2.2.2 Encapsulated PostScript configuration
DigiFlow can create Encapsulated PostScript (.eps) files from image and graphical output

for incorporation into documents in packages such as LaTeX and Word. This can be achieved

either through DigiFlow’s inbuilt .eps facility, or using a Windows printer driver. The former

is restricted to bit images (or a rasterised version of graphics), whereas the latter can produce

both bit image and vector graphics.

DigiFlow Installation

– 5 –

By default, DigiFlow searches for a printer named EPS to use to create the .eps files.

Creation of this printer is relatively straight forwards. Start the Add Printer Wizard from the

Printers and faxes window, selecting Local printer attached to this computer and using the

File: (print to file) port. Select a PostScript printer driver (we recommend the HP C LaserJet

4500-PS if you are using Windows XP, or the Xerox Phaser 6120 PS if you are using

Windows 7) and name the printer “EPS”. (You do not want to make this the default printer,

you may, however, wish to share the printer to simplify the setting up of further machines.)

For Windows Vista, it is recommended that you download an Adobe PostScript driver from

www.adobe.com as some of the drivers distributed with Windows Vista format their

PostScript in a manner that inhibits the use of LaTeX packages such as psfrag.

Once the wizard has finished, right-click on the new EPS printer and select Printing

preferences. Click on the Advanced button expand Document Options and PostScript

Options within it. Under PostScript Output Option select Encapsulated PostScript (EPS), as

indicated in figure 2.

Figure 2: Encapsulated PostScript (.eps) printer setup.

Note: if you are using Remote Desktop to access the computer with DigiFlow installed,

you are best to disable the feature making local printers available to the remote session as this

can cause problems if the EPS printer exists on your local machine.

DigiFlow cannot itself read back in an Encapsulated PostScript file it produces. However,

if DigiFlow detects that GhostScript is installed on the machine, then DigiFlow will attempt to

use GhostScript to help it load the .eps file in an appropriate format. For this to be achieved,

then GhostScript must be on the system PATH and the GS_LIB environment variable must be

set up to point to the GhostScript libraries.

Note that GhostScript is not distributed with or required by DigiFlow. Use of GhostScript

is governed entirely by the licence of that product and not by the DigiFlow Licence.

http://www.adobe.com/

DigiFlow Installation

– 6 –

2.2.3 Additional memory
The maximum linear address range under 32 bit Windows is 32 bits or 4GB. By default

under Windows this is subdivided into two ranges for each process. The first 2GB of memory

is for the process’s own use, while the second is for the operating system. Although 2GB

superficially appears a lot, there are times when it would be useful to have more. (At the time

Windows was designed, 2GB was considered a good approximation to an unlimited memory

resource, but things have moved on…) With Windows XP and later it is possible to change

the 50:50 default split to reserve 3GB for processes, restricting the system. Not all software,

particularly some drivers, support this extension. DigiFlow, however, is able to and so if you

start running low on virtual memory, it may be worth a try.

To install the 3GB process memory option, select System Properties (right click on My

Computer and select Properties) then the Advanced tab. Click the Startup and Recovery

Settings button, then the Edit button to open NotePad to make the necessary changes. Note that

you need to have Administrative access rights to be able to do this.

Figure 3: Dialogs for setting the /3GB option to increase available virtual memory.

NotePad will allow you to edit the boot.ini file that controls the startup of Windows.

Typically, this will look like
[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

[operating systems]

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP

Professional" /noexecute=optin /fastdetect

To enable the 3GB option, you need to add the /3GB switch to the end of the line specifying

Windows startup. It is best to do this by adding an additional startup option so that you can

boot your machine in either standard 2GB or 3GB modes. The resulting boot.ini should look

something like this:
[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

[operating systems]

DigiFlow Installation

– 7 –

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP

Professional" /noexecute=optin /fastdetect

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP

Professional (3GB)" /noexecute=optin /fastdetect /3GB

Note that the order of these two lines determines whether the default boot is 2GB or 3GB. In

the above example, the standard 2GB boot is the default. Reverse the order of the two lines to

make the 3GB boot the default.

2.3 Installation with framegrabber

If you are installing DigiFlow in a machine equipped with a BitFlow R2, R3, R64 or R64e

series framegrabber then some additional steps are required. These require administrative

access to implement.

2.3.1 Framegrabber installation
The framegrabber should be installed and tested using the BitFlow installation procedure.

You will require the BitFlow drivers for version 5.00, 5.20 or 5.30. Later versions may also be

supported (contact Dalziel Research Partners for details). You should note that on some

systems the BitFlow installation procedure can hang; if this occurs, try installing after

rebooting Windows in Safe Mode.

The BitFlow framegrabber requires a configuration file (.cam, .rcl or .r64) for the camera

being used. Configuration files for cameras known to work with DigiFlow may be found at

http://www.dalzielresearch.com/digiflow/cameras/.

If you have a multi-user system where most users do not have administrative access, we

recommend that you change the permissions on the BitFlow software to allow all users to

change the camera configuration file if and when they need to. This is achieved using the

Registry Editor (regedit.exe; accessible from the command prompt) to adjust the permissions

on all keys in the registry relating to ‘BitFlow’ by adding the ‘Authenticated Users’ security

principle with ‘Full control’. Failure to do this would mean that only users with administrative

access could change the camera configuration.

2.3.2 Camera configuration
DigiFlow requires information over and above what is provided in the configuration file for

the framegrabber card. This additional information about the camera capabilities and users

preferences is stored in DigiFlow_Cameras.dfc; consult §13.3 for details of the format of this

file. Cameras not listed in this file have not been tested, although there is a reasonable chance

that all that is required (for a camera supported by the BitFlow frame grabber) is the addition

of appropriate entries, provided a suitable camera configuration file is also available for the

BitFlow framegrabber. Please contact Dalziel Research Partners if you require any help or

guidance with this.

2.3.3 Local security policy
In the ‘Local security policy’ (found in the ‘Administrative tools’ section of the ‘Control

Panel’), open the ‘Local Policies: User Rights Assignment’ option. You need to add

permission for all DigiFlow users to the following items:

 Adjust memory quotas for a process

 Increase scheduling priority

 Lock pages in memory

It is suggested that you do this by giving full control to ‘Authenticated users’

These adjustments are necessary to ensure that DigiFlow is able to manage the machine

performance adequately to ensure trouble-free capture.

http://www.dalzielresearch.com/digiflow/cameras/

DigiFlow Installation

– 8 –

2.3.4 Video capture configuration
It is strongly recommended that video capture is to a disk other than that containing the

operating system in order to obtain adequate performance. The necessary disk system

bandwidth may be in excess of 240MB/s in some cases (e.g. with a Dalsa 4M60 camera), thus

requiring a Mode 0 RAID array, or using Windows to ‘stripe’ across multiple disks. However,

for most cameras 40MB/s is sufficient and this may be achieved via a fast IDE or SATA disk

(but not the one the operating system is on!).

The capture process in DigiFlow can be configured in two ways. Either you can directly

specify the capture file and location each time (risking the user specifying a disk system with

insufficient bandwidth), or setting up DigiFlow to capture to a fixed location and require the

user to ‘review’ (and possibly edit) the sequence in order to copy it into their own directory

space. For multi-user systems, this second is generally preferred as it allows users to utilise the

capture facility like a video recorder while preventing retention of unwanted video footage.

The default configuration takes the second option, and assumes that the capture location is

V:\Cache\CaptureVideo.dfm. We recommend that you configure your system so that this

directory exists (either by appropriate naming of the capture disk, or by setting up a share to

an appropriate point and then connecting to it). This directory must not be compressed and

must have full access for all DigiFlow users. Once you have created this directory, you should

run File: Live Video: Setup (see §5.1.5.3 for further details) to create the initial

V:\Cache\CaptureVideo.dfm. It is strongly recommended that you do this before writing any

other data to the capture disk. Details on how to change the name or location of the cache

file may be found in 13.2.

It is important that the space DigiFlow reserves in this file remains as a single contiguous

block on the disk drive. If it becomes fragmented for any reason then, due to the very high

data transfer rates required, DigiFlow may not be able to write to the disk as fast as data

becomes available from the camera and so timing errors may result.

Once created, V:\Cache\CaptureVideo.dfm will be flagged as Read only by the operating

system (although DigiFlow will still be able to write to it). The file will not shrink if a smaller

sequence is captured, but may grow if one larger than that specified during File: Live Video:

Setup is requested (note that there is a risk of fragmentation if this occurs). It is important,

therefore, that you go through the review process outlined in §5.1.5.2, rather than simply

copying this file, as in general only a part of the file will contain valid data.

Consult §13.2 on DigiFlow_LocalData.dfc should you wish to change the name or location of

V:\Cache\CaptureVideo.dfm.

DigiFlow Basics

– 9 –

3 Basics

3.1 Starting DigiFlow

It is recommended that you use a new directory for each new set of experiments and for

each new project. In this way the DigiFlow strategy of storing localised status files will

facilitate use of DigiFlow in the various different contexts. In such an environment it is

frequently most convenient to start DigiFlow from the command prompt (see figure 4) within

the appropriate directory structure, although other strategies such as multiple shortcuts or

setting up associations for Windows Explorer are also possible.

Figure 4: It is frequently most convenient to start DigiFlow from the command prompt.

If you wish to run DigiFlow from a command prompt (strongly recommended), it is worth

putting this directory on the path so that DigiFlow may be started by simply typing DigiFlow

at the prompt, and placing a shortcut to the command prompt on the topmost level of the Start

button. It is also worth pinning a shortcut to the command prompt to the start menu (and/or

task bar for Windows 7), and in the properties setting the Start in path to an appropriate

location.

If you are not familiar with the use of the command prompt, then the following brief list of

the most useful commands may be of some value.

Command Description

cd folder Changes to the directory (folder) located within the current

directory.
cd .. Move up one directory level.
cd \ Move to the topmost (root) directory on the current drive
dir List all files in the current directory.
dir *.dfi List all .dfi files in the current directory.
dir *.dfc /s List all dfc files located either in the current directory, or any

subdirectories.

move file dest Move file to a new directory dest. Can also be used to rename

folders.

copy srce dest Copy the file srce to dest.

xcopy srce dest A more flexible form of copy.

DigiFlow Basics

– 10 –

xcopy srce dest /s/d If srce and dest are directories, then will copy all the files in the

directory and any subdirectories to dest, but only if the srce version

is newer. This might be used, for example, as
xcopy expt*.dfd results /s/d

to update a collection of DigiFlow drawings (dfd files) in a results

folder.

ren file new Rename file with the name new.

A very useful feature of Windows XP and later is that the <tab> key will expand a file name.

For example, if you are in a directory that contains subdirectories named Expt1, Expt2 and

Expt3, then typing cd e followed by <tab> will expand this to cd Expt1. Pressing <tab> a

second time will change this to cd Expt2, and so on. To find out more about the commands

available at the command prompt, then search for command prompt in the Window’s Help

and Support Centre and select Using Command Prompt. Alternatively, if you know the name

of the command but want more details of its options, type the command followed by /? at the

command prompt (see figure 5 for an example).

Figure 5: Help is available for a command at the command prompt by adding /? after the command.

If you prefer to start DigiFlow directly from the desktop or start menu, you will need to

create a shortcut at that point and set the Start in directory appropriately (see figure 6). It is

strongly recommended that you do not normally run DigiFlow from the directory in which the

program resides.

DigiFlow Basics

– 11 –

Figure 6: Properties dialog for a short cut to start DigiFlow.

DigiFlow supports a number of command line arguments. The most common use is to

specify either an image file or movie to be loaded when DigiFlow starts, or a dfc file to be run.

In both these cases, simply type DigiFlow at a command prompt, followed by the name of the

image file/movie or dfc file.

Additionally, there are a number of command line switches that can be used in special

circumstances. These are given in the following table.

Switch Description
/? Give the command line options for starting DigiFlow.
/allowautorun Causes files named _autorun.dfc to be started automatically when

they are created in the current folder. Note that they will be

deleted once they have been run.
/archive Turns on the .dfa archive file generation system when not enabled

by default.
/noarchive Turns off the .dfa archive file generation system.
/dfa Identical to /archive.
/autopreprocess Turns on the auto-preprocess mechanism (using .dfb filter files).
/noautopreprocess Turns off the auto-preprocess mechanism (using .dfb filter files).

/bitflow:n For machines with more than one BitFlow framegrabber installed,

specifies which board this instance of DigiFlow is to use. Note:

there should be no space between the colon and the number.
/camera:camerafile Specifies that a particular camera configuration file should be

used rather than the default (specified through the BitFlow

SysReg utility. Note: there should be no space between the colon

and the name of the camera file.
/camerabuffer:option Specifies the type of buffering to be used for the capture file. One

of: "(default)", "buffer", "nobuffer" or "writethrough".
/con Start up a conole window at the same time as starting DigiFlow.

DigiFlow Basics

– 12 –

(The console window can also be started from dfc code using

open_console() or open_file().)
/debug Turns on all logging options (to DigiFlow.log) for debug purposes.
/dev Enable certain features related to internal performance

monitoring. Intended for use by the developer.
/disablewritequeue Disable the threaded writing of images, thus forcing the process

generating the image to wait until the image has been written

before moving on to the next stage.
/enablewritequeue Enable the threaded writing of images. This speeds up processing

by allowing the process generating the images to proceed to the

next image before the write is complete. Enabled by default.
/disableparallelwrite Certain aspects of reading and writing images may have problems

if accessed simultaneously by multiple threads. Use of this flag

introduces mutexes (blocks of code where a thread has mutually

exclusive execution) to prevent simultaneous access. This has a

detramental impact on performance.
/enableparallelwrite Certain aspects of reading and writing images may have problems

if accessed simultaneously by multiple threads. Use of this flag

turns off the mutexes (blocks of code where a thread has mutually

exclusive execution) to prevent simultaneous access. Allowing

simultaneous access improves performance.

/dpi:n Tells DigiFlow to assume the display has n pixels per inch. This

is used to work out the size of some of the visual elements in the

user interface. Note that including

DigiFlow.Options.Display.dpi and

DigiFlow.Options.Display.Scaling in DigiFlow_LocalData.dfc

sets the assumed pixels per inch and scaling (respectively) of the

screen.

/stack:multiple Sets the multiple for stack size allocation. If not specified, thenthe

default multiple is 1.0. This switch can be used in an attempt to

decrease or increase the size of the stack created for separate

computational threads in event of memory problems.
/timing This turns on a performance timing feature incorporated in some

of the DigiFlow facilities.
/wine Changes some features to improve performance when running

DigiFlow under Wine on Linux.

The final option for starting DigiFlow is to double-click in Windows Explorer on a file

associated with DigiFlow.

3.2 Main Window

The main DigiFlow window follows that common for most applications with a Multiple

Document Interface (MDI). The menu bar at the top provides access to the majority of the

facilities, while the toolbar underneath gives a more convenient method of accessing the more

widely used functions. A typical example is shown in figure 7.

DigiFlow Basics

– 13 –

Figure 7: The basic DigiFlow window.

As is normally the case for Windows applications, the main window and the client

windows may be resized by dragging the frame of the window. Holding down the control key,

while dragging the boundary of a client window, will cause the contents of the window to be

zoomed so as to make the best use of the available space. If you do not hold down the control

key, then the window size is changed without changing the zoom applied to its contents.

3.3 Obtaining help

As is common with most Windows applications, help while using DigiFlow can be

obtainined by pressing the f1 key. This will start an instance of Internet Explorer and bring up

an html copy of this manual. DigiFlow will automatically scroll to the position within the

manual that is most relevant to the dialog or process you have open at the time. Subsequent

presses of f1 will utilise the same tab in Internet Explorer, provided this remains open.

Some users, particularly when first starting, may prefer to have the manual automatically

keeping track with their activities. This can be achieved by turning on the AutoHelp facility,

either from the Help menu, or by clicking the questionmark button () on the toolbar. When

activated, an instance of the Internet Explorer browser will be activated and track your

activity, providing timely help.

As an option to using the html version of this manual, the manual is also provided as

DigiFlow.pdf.

Menu Bar Toolbar

Image

window

Close

window

Thread

running

indicator

Current

time
Cursor

coordinates Process

details

Resize

grip

Cursor

intensity

DigiFlow Basics

– 14 –

3.4 Image Selectors

DigiFlow uses image selectors to specify image streams for input to and output from a

given process. Four types of image stream are supported:

Single images. These contain just a single image.

Movie. A movie contains multiple images stored in a single file.

Sequence. A sequence is a collection of related files, typically identified by a numeric part

of the file name that increases by one between neighbouring images in the sequence.

Collection. A collection is a group of image files that have no special relationship to each

other. Collections may be subdivided into two groups: homogeneous collections and

heterogeneous collections. In a homogeneous collection, all the images within the collection

have the same format (same size, colour depth, file type, etc.). With a heterogeneous

collection, the format may vary from one image to another. At present, most processes within

DigiFlow do not support heterogeneous collections.

Image selectors may specify not only raster format image files, but also vector format files.

DigiFlow supports many standard raster formats, including .bmp, .tif, .gif, .png, .jpg, and .avi

along with special formats to provide backward compatibility with DigImage (.pic and .mov,

the latter now renamed .dfm in DigiFlow). DigiFlow also introduces the new DigiFlow Image

format, .dfi, to allow images to be saved with full floating point precision, and the DigiFlow

Pixel format (.dfp) provides text output specifically tailored for raster images.

Vector format files include Enhance Meta Files (.emf) Windows Meta Files (.wmf) and

DigiFlow Drawing format (.dfd). The last of these provides output formatted as plain text

containing both data and drawing commands. This text may be imported into other

applications, or read back into DigiFlow to reconstruct the image or drawing it represents. If

GhostScript is installed on the system (see GettingStarted.pdf), then Encapsulated PostScript

(.eps) files can also be opened with DigiFlow.

DigiFlow also provides a specialised file format (.dft) for storing particle tracking data.

While these may be treated as images, in general the functionality available through the

specialised particle tracking facilities is to be preferred.

The specialised DigiFlow and DigImage formats (.dfm, .dfi, .dfp, dft and .dfd) are described

more thoroughly in §11.2.

3.5 Archive files

The concept of an archive file was introduced to DigiFlow in version 3.4 as a method of

both collecting multiple image files that form part of a sequence, and of storing additional

details about an image or a sequence of images when the file format being used does not

provide a mechanism for storing this information.

DigiFlow archive files use a .dfa extension appended on to the corresponding image file or

sequence name. For example, if a .dfa file is generated for a sequence of images image000.png,

image001.png, … image732.png, then the name of the .dfa file will be image###.png.dfa.

If the use of archive files is enabled, then when reading the image sequence back in as

image###.png, additional information not present in the .png files themselves (such as the

method used to construct the sequence and the timing of the sequence) will be recovered from

the .dfa file. Alternatively, attempting to open image###.png.dfa will both read the sequence

image###.png and recover the additional information from the .dfa file.

The use of DigiFlow archive files is enabled or disabled through the Open Image and Save

Image dialogs (see §4.1 and §4.2). For some builds of DigiFlow, .dfa generation is disabled by

default. Under these circumstances, .dfa support may be turned on by including the switch

/dfa on the command line.

For further details on the format of .dfa files, refer to §12.11.

DigiFlow Basics

– 15 –

3.6 Sifting

A key concept associated with input image streams is sifting. In DigiFlow, sifting is the

process by which images are extracted from in input stream. The extraction process may result

in all the images being extracted, or only a subset of images (typically specified by a start

number, an end number and a step). It may also result in a subregion of the image (a

rectangular window within the image) being returned, or, in the image being modified to

conform to some reference. Further details of the sifting process are given in §4.3.

3.7 DigiFlow Macros

DigiFlow includes a powerful interpreter and associated macro language. The language is

referred to as dfc code. While the programming language for dfc code is specific to DigiFlow,

it follows the general syntax and conventions of many other modern high-level languages. In

addition to the basic functionality expected of such languages, DigiFlow provides a vast range

of functions tailored specifically to tasks for which DigiFlow is ideal. This includes not only

image processing functions (ranging from contour tracing to Fast Fourier Transforms), and

data analysis functions (such as statistics, least squares fits), to numerical solution of the

equations of motion (e.g. Goudnov solution of shallow water equations and stream function-

vorticity formulation for two-dimensional Boussinesq flows).

The present manual contains introductory documentation for the use of dfc functions and

code. However, much of the detailed documentation for the individual dfc functions is to be

found in the interactive help system Help: dfc Functions. The most convenient way of

accessing this is frequently through the dfcConsole feature described in §5.2.10. The

DigiFlow macros\ subdirectory (found in the folder where DigiFlow is installed) contains a

number of documented examples of macro code.

3.8 Threads

One important aspect of DigiFlow is that it supports not only multiple image windows, but

also multiple processing threads. This has two important benefits. First, it allows DigiFlow to

continue to be used interactively while it is processing simultaneously one or more sequence

of images, thus allowing real-time inspection of the progress. Second, for PCs with multiple

processors, the execution time of a single process can be greatly reduced. (It should also be

noted that more than one copy of DigiFlow may be used simultaneously).

If the user attempts to close a window that is in use with an active thread, then the system

will warn the user that closing the window will also kill the thread. Depending on the version

of DigiFlow you are using, windows that are playing a role in an active thread have the name

of the thread indicated in the window status bar at the bottom of the window and have a

‘sloshing tank’ symbol in the bottom right-hand corner.

The user may also control the individual threads more directly, stopping them, pausing or

resuming them, or changing their priority. This is achieved through the View Threads menu

item (§5.3.10), or the corresponding button on the main toolbar. (All active process threads

may be suspended by clicking on the toolbar.)

3.9 Text output

Some of DigiFlow’s features include graphical and text output. In such cases it may be

desirable to include more than simple plain text. To achieve this, fully licenced copies of

DigiFlow support LaTex-like math-mode text formatting. For example, in Analyse: Time

Series: Summarise (see §5.6.1.6) it is possible to specify the titles of the axes of the graph

produced. Specifying it as the string "Dimensionless height

$\big(\frac{h}/{\alpha^2H_0}\big)$" would produce the label

DigiFlow Basics

– 16 –

Dimensionless height (
h

2H
0
)

.

Although DigiFlow does not understand the full range of LaTeX commands and macros, it

can interpret those most likely to be of use in figures and graphs. The list includes:

Upper and lower case greek letters (e.g. \Alpha or \zeta)

$

\!

\#

\$

\%

\&

\,

\2dots

\:

\;

\aleph

\angle

\approx

\backslash

\bar

\bf

\big

\BIG

\Big

\bigsizes

\bullet

\cdot

\circ

\copyright

\cos

\cosh

\dagger

\ddagger

\dddot

\ddot

\div

\dot

\dots

\downarrow

\Downarrow

\ell

\equiv

\euro

\exists

\exp

\footnotesize

\forall

\frac

\ge

\geq

\gg

\hat

\HUGE

\huge

\Im

\in

\infty

\int

\it

\langle

\LARGE

\large

\Large

\lbrace

\lbrack

\le

\left(

\left[

\Leftarrow

\leftarrow

\Leftrightarro

w

\leftrightarro

w

\leq

\ll

\ln

\log

\mathbf

\mathit

\mathrm

\minus

\mp

\nabla

\ne

\neq

\normalsize

\notin

\oplus

\oslash

\otimes

\overchar

\P

\partial

\phantom

\pm

\pounds

\prime

\prod

\propto

\qquad

\quad

\rangle

\rbrace

\rbrack

\Re

\right)

\right]

\rightarrow

\Rightarrow

\S

\scriptsize

\sim

\simeq

\sin

\sinh

\small

\sqrt

\subset

\subseteq

\sum

\supset

\supseteq

\surd

\tan

\tanh

\textbf

\textit

\textnormal

\textrm

\therefore

\tilde

\times

\tiny

\underline

\Uparrow

\uparrow

\wedge

\wp

\yen

\\

\^

_

\{

\}

\~

Thereare some minor restrictions and additional requirements for the DigiFlow LaTeX-like

syntax compared with standard LaTeX. For example, the standard LaTeX

$\left(\frac{a}{b}\right)$ should be stated in DigiFlow as

$\left({\frac{a}{b}}\right)$. The additional pair of braces tells DigiFlow that the

fraction a/b is controlling the size of the large left bracket. This additional pair of braces does

not affect the processing of the string by LaTeX. A further example is that DigiFlow accepts

LaTeX macros such as \alpha whether or not it is in ‘maths mode’ (i.e. between $..$).

This LaTeX-like text formatting (available only with fully licensed copies of DigiFlow)

may also be used in dfc code, for example through the draw_text(..), draw_axes(..) and

plot_titles(..) commands.

DigiFlow Basics

– 17 –

It is not possible to define additional LaTeX-like macros from within LaTeX-like formatted

text. However, additional macros may be defined from within dfc code; see §11.4 and the dfc

help for further details.

A powerful feature of this component of DigiFlow is the way it works to support the use of

Encapsulated PostScript (.eps) files in LaTeX through the psfrag macro package. See §5.1.12

for further details.

DigiFlow Common dialogs

– 18 –

4 Common dialogs

4.1 Open Image

The Open Image dialog box is used throughout DigiFlow to open source image selectors

(§3.1).

(a)

(b)

Figure 8: The Open Image dialog box under Windows XP. (a) Showing all files and (b) using

Compact List option.

The Open Image dialog box consists of a standard Explorer-style display of folders, files,

file types, etc., along with a preview pane on the right-hand side. This preview pane will

attempt to display the currently selected file.

DigiFlow supports a range of industry standard image formats, plus some special formats.

The special formats both provide compatibility with the earlier DigImage system, and provide

DigiFlow Common dialogs

– 19 –

facilities (e.g. floating point data representation) not found in industry-standard formats. These

non-standard formats are described in more detail in §11.2 (DigiFlow drawing format) and

§12 (DigiFlow image file formats). Note that DigiFlow expects the user to specify the

extension of the file. It is therefore important that all extensions are visible in the dialog (refer

to §2.2 for how to achieve this).

To select a single image or a movie, simply click on the name of the file containing this

object. If you prefer, the name of the file may be typed at the File name prompt. If you type in

the file name a preview will not be generated automatically, but can be requested by clicking

the Preview button. If manually entering the file name, then it is important that you specify the

file extension to remove any potential ambiguity.

To select a sequence, the name of the sequence must be typed at the File name prompt,

using hashes (#) to indicate the varying numeric part of the file name. Alternatively, click on

any member of the sequence and check the Numbers as #### box. This will convert (starting

from the right-hand end of the file name) any digits found into the appropriate number of hash

characters, thus allowing easy specification of the sequence. However, numbers enclosed in

parentheses or square brackets (i.e. (..) or [..]) will not be converted to hashes. This allows

numeric data to be included unambiguously in the file name. Again, the Preview button may

be used to generate a preview if it is not generated automatically.

The precise behaviour of the Compact list check box depends on which version of

Windows you are using. The motivation, however, is to provide a more compact way of

accessing a large number of numbered images in a given folder. Under Windows XP, the

Compact list check box will provide a more compact summary of those present by displaying

the name of the first few in a given sequence, and using the compact hash notation to

summarise the rest. An example of this is given in figure 8, where figure 8a shows all the files

(without Compact list checked) and figure 8b shows how the number of files visible is

decreased and sequences are replaced by hashes in the file name when the Compact list box is

checked.. Selecting the summary containing hashes is equivalent to selecting the entire series.

(Note that clicking on Compact list will retain the files specified at the Object name prompt,

but remove any selection in the view window.)

Unfortunately, this simple Compact list option is not available under Windows Vista or

Windows 7. Instead, checking Compact list searches for .dfa DigiFlow archive files (see §3.5)

and displays only them. Provided all the images and sequences have been created with the

archive facility enabled, then the net effect is very similar. An example of this is shown in

figure 9.

Whichever version of Windows you are using, if you select an image file (rather than a .dfa

file) then the .dfa file is read only if the Read .dfa archive box is checked. However, if you

select the .dfa file itself, then it will always be read, along with the image or sequence of

images.

DigiFlow Common dialogs

– 20 –

(a)

(b)

Figure 9: The Open Image dialog box under Windows 7. (a) Showing all files and (b) using Compact

List option. Note that only thos files for which a .dfa archive file was generated will be shown when

the Compact list box is checked.

Note that the default settings of the Number as ####, Compact list and Read .dfa archive

check boxes is remembered from one invocation of the dialog to the next.

A collection of images may be specified using the mouse in combination with the <shift>

key to select a range of files, or the ctrl keys to select or deselect individual files.

Alternatively, the names may be typed at the File name prompt, each name enclosed by

double quotation marks. The collection is sorted into alphabetical order for display and

processing. (If a collection is specified in this manner then any hash characters will be

interpreted as hashes. Similarly, checking Number as #### will be ignored.) In general, a

sequence is preferable to a collection as it offers a greater level of control.

DigiFlow Common dialogs

– 21 –

A collection of images may also be selected using wildcards. This may be achieved in two

ways. If you use the standard Windows wild cards (? to represent a single character, and * to

represent a variable number of characters) then the dialog will display only those files that fit

the description; you may then select them in the normal manner. Alternatively, you may use %

in place of ? and $ in place of * to do the selection directly. For example, typing Sheep*.* will

cause the dialog to display sheep2.tif, sheep.bmp, sheep.jpg, sheep.pic and sheep.tif to be

displayed in the dialog box, which may then be selected using the mouse and shift key.

Alternatively, Sheep$.$ will achieve the same result, selecting all five files.

If the selected image contains true colour, then the Colour component list box is enabled.

This list box allows selection of whether the image is to be treated as full colour, or how the

colour information is converted to a greyscale for processing by DigiFlow. For example,

selecting RGB will allow DigiFlow to process the red, green and blue image planes separately

(where this makes sense), while green will take the green component of the colour image and

treat it as a greyscale image, or hue will process the colour using a hue/saturation/intensity

representation of the image. The options greyscale and mean all produce a similar effect,

although precise details of how the resulting image is constructed from the red, green and blue

components differs. The table below gives the relationships.

Key Returns Comments

RGB Three colour planes Full colour image

Mono 0.11*red + 0.59*green + 0.30*blue Same as grey.

Red red Red component only.

Green green Green component only.

Blue blue Blue component only.

hue Image hue (colour)

saturation Image saturation (purity)

intensity Image intensity (brightness)

cyan 1 – red

magenta 1 – green

yellow 1 – blue

grey 0.11*red + 0.59*green + 0.30*blue Same as mono.

mean (red + green + blue)/3 Mean of three components.

max max(red, green, blue) The brightest component.

min min(red, green, blue) The darkest component.

An image containing only a single plane of data may contain colour information if captured

from a camera fitted with a Bayer colour mosaic filter. To provide support for this and since it

is unlikely that the image file will contain information that DigiFlow can use to automatically

detect such an image, when DigiFlow detects a single plane of data in the image to be opened

it provides the following supporting options:

Key Returns Comments

(single plane) P Standard image

RGB from Bayer filter Three colour planes Interpret as a full colour

image using a standard Bayer

filter layout

times 2 2*P Intensities rescaled

times 4 4*P Intensities rescaled

times 8 8*P Intensities rescaled

times 16 16*P Intensities rescaled

DigiFlow Common dialogs

– 22 –

times 32 32*P Intensities rescaled

times 64 64*P Intensities rescaled

div 2 P/2 Intensities rescaled

div 4 P/4 Intensities rescaled

div 8 P/8 Intensities rescaled

div 16 P/16 Intensities rescaled

4.2 Save Image As

The Save Image As dialog is essentially the same as the Open Image dialog (§4.1), but is

produced when the name of the output image selector (§3.1) is required.

Figure 10: The Save Image As dialog box.

If an image selector of the same name does not exist already, then the file name must be

entered by typing at the File name prompt. The extension to be used should be specified

explicitly as DigiFlow uses this to determine the file type to be created. It is therefore

important that all extensions are visible in the dialog (refer to §2.2 for how to achieve this).

Simply selecting a type from the Save as type list will not necessarily have the desired effect

if more than one possible type is indicated.

Note that some file types have a range of options such as bit depth and compression. These

are normally controlled from outside the Save Image As dialog box using the Options…

button in the parent dialog. Refer to §4.4 for further details.

DigiFlow supports a range of industry standard image formats, plus some special formats.

The special formats both provide compatibility with the earlier DigImage system, and provide

facilities (e.g. floating point data representation) not found in industry-standard formats. These

non-standard formats are described in more detail in §11.2 (DigiFlow drawing format) and

§12 (DigiFlow image file formats).

The Compact list check box operates in the same way as for the Open Image dialog

described in §4.1. Here, the Create .dfa archive check box replaces the Read .dfa archive and

causes DigiFlow to create a .dfa archive for the output it produces (see §3.5).

DigiFlow Common dialogs

– 23 –

4.3 Sifting input streams

When processing an image stream it is often desirable to select only a subset of the stream

for processing. This subset may contain only some of the images from the stream, and/or it

may contain only part of each image. Within DigiFlow this process of selecting a specific part

of an image stream for processing is referred to as ‘sifting’. When sifting is available, the

corresponding dialog will have a Sift… button (typically one for each input selector) that starts

a tabbed dialog box controlling the sifting process. The following subsections describe the

various sifting options.

4.3.1 Selector timing
The Selector Timing tab of the Sift dialog allows the user to specify which times from a

multi-image image selector (§3.4) will be used for a process.

Figure 11: The standard Selector Timing tab of the Sift dialog.

This tab allows the preview of the image selector and specification of the processing start

and end points as well as the step between the images to be processed.

The buttons down the right-hand side allow the image selector to be played, the speed of

this preview controlled by the hare and tortoise buttons. The slider allows the currently visible

frame to be dragged to any time. The Frame edit box and spin control allow more precise

movement of the preview frame. The and buttons move to the currently specified limits

for the processing.

The frame numbers for the start and end points may be typed in the From and To edit

boxes, and the spacing in the Step edit box. The corresponding time boxes below will be

updated automatically.

Clicking the buttons adjacent to the From or To edit boxes will set the corresponding

from or to position to the current position, shown by the slider and the edit boxes immediately

above (time) and below (frame).

DigiFlow Common dialogs

– 24 –

Alternatively (but less precisely), holding <shift> while dragging the slider will allow

specification of the timings.

When the From and To times are set, or Step is not unity, then this information is displayed

on a yellow background at the top of the image preview.

For files that do not store timing information, the DigiFlow assumes by default that the

files are separated in time by one second. This may be changed using In file, in which the

image spacing may be specified in either seconds or, using the lower of the two controls, in

frames per second. These two controls are disabled for files that store time information, but

display the relevant details.

Reset to All resets the start and end points to include the entire selector.

Checking the Default colours control will cause the preview image to be displayed using

the DigiFlow default colour scheme rather than the colour scheme stored in the image file.

4.3.2 Selector region
The Selector Region tab of the Sift dialog allows the user to specify a region within an

image selector (§3.4) that will be used for a process.

Figure 12: The standard Selector Region tab of the Sift dialog.

For a process requiring more than one input stream (and hence having more than one image

selector in its dialog box), one of the streams (typically the first in the dialog box) will be the

master stream. If the region for this stream is changed, then the region for the other (slave)

streams will be changed automatically to conform to (typically made the same as) that for the

master stream. It remains possible, however, to change independently the region for the slave

selectors, provided the size of the region for the slave selector is compatible with that for the

master selector.

DigiFlow Common dialogs

– 25 –

The type of region is selected by the Region type group of radio buttons. The example

shown in figure 12 is for a master selector; the Conform option is not available here, but

would be visible above All when sifting slave selectors.

If Pixel window is selected, the pixel coordinates of the left, right, top and bottom of the

window may be specified in the edit controls within the black rectangle. If preferred, the size

may be increased without shifting the centre of the region, or the location of the region may be

changed without adjusting the size, using the Size and Position controls, respectively.

Alternatively, clicking the Draw button opens a full size window that allows the window to

be moved and resized dynamically using the mouse (see figure 13). (Hint: it is sometimes

worth dragging a corner of the window to increase its size and thus make it easier to grab the

edge of the region window.) The Zoom In and Zoom Out buttons may be used to control the

magnification while drawing. Similarly, you may swap between this window and the Sift

dialog box to use the various edit and spin controls to move the region around. Click on the

End Draw… button to close the drawing window and re-enable the other controls on the Sift

dialog.

Figure 13: Drawing a region.

If Named region is selected, then previously saved regions are displayed and may be

selected. This provides a convenient method of using the same region in a range of different

processes. The four buttons to the right of the list box may be used to manage these named

regions. New named regions may be created either by clicking the New button, in which case

a subdialog is produced to allow specification of the region, or by clicking the Name button

(when Pixel window is selected) to give a name to a pixel window. The Edit button allows

alteration of an existing window, while Delete removes the region from the list. Note that

selecting a named region that is a Pixel window will update the controls in the Pixel window

group. Switching back to Pixel window allows editing of these values, while Name may be

used to overwrite the old values with the new ones, or to create a copy.

DigiFlow Common dialogs

– 26 –

Figure 14: Editing a region.

4.3.3 Matching intensities
Quantitative measurements often require that the intensities are matched between different

frames and sequences. The intensities of the raw image streams may fluctuate due to a number

of reasons. One common one is the mismatch in frequencies between the illumination and the

camera frame rate. Depending on the type of light source and the shutter speed of the camera,

this mismatch may lead to a modulation of nearly 50% of the signal amplitude, while

automatic gain features can lead to similar results. While it is in general best to avoid these

problems by using continuous or high frequency light sources, this is not always practical.

The Match Intensity tab in the Sift dialog (figure 15) provides a basic mechanism for

correcting the intensities of input image streams to match them to some fixed reference. The

basic strategy is for the image to contain two reference regions that contain approximately

uniform intensities that should not change with time. These two regions are then used to

generate a linear mapping between the input image and a reference intensity, thereby adjusting

the intensities in preparation for processing.

DigiFlow Common dialogs

– 27 –

Figure 15: The Match Intensities tab provides the ability to directly relate an image to reference

values.

The Match Intensity facility is turned on and off using the radio button group in the top-

left; .when off (None), then the intensities are read without alteration. The Match Intensity

facility can be enabled either using details provided locally (Local), or with details saved

previously (Named), in a similar manner to that used for Regions.

A locally defined Match Intensity reference consists of a pair of rectangular regions,

Region A and Region B. The location and size of these regions is controlled by a variety of

controls for specifying the left, right, top and bottom of each of the rectangles. Additionally,

as with the Regions dialog, the regions may be drawn on an image and dragged to their

desired location by clicking the Draw… button (see figure 16).

Each region requires an intensity to be associated with it. When Reference from is set to

Values, then the Intensity controls in the Region A and Region B groups is enabled. The user

may directly enter the desired (target) reference here, or by using File in Match to selector to

select a suitable image, then the Match button will read the intensities from the specified

image. Alternatively, if Reference from is set to First image, then the reference intensities are

not entered at this point, but rather they are determined automatically from the first image in

the stream to be processed.

Once the various controls for a Local Match Intensity have been set, their values may be

saved for use elsewhere by clicking Name…. This prompts for a user-supplied descriptive

name, saves the settings, and switches the dialog into Named mode.

Selecting an entry from Named matches loads the corresponding settings for use. If you

wish to alter the settings of a saved match, load it by selecting from the list, then switch to

Local mode. Make any necessary changes, then click again on Name to name and save it (you

may re-use an existing name).

DigiFlow Common dialogs

– 28 –

Figure 16: Drawing regions for intensity matching.

4.4 Modifying output streams

This section describes the various modifications that may be made to the output streams.

These modifications are accessed via the Options… button in the output stream select group.

The precise contents of this dialog will vary depending on the output file type that has been

selected.

Figure 17: The Save Options dialog.

4.4.1 Setting output stream colour
The colour scheme for the output stream is selected from the list of known colour schemes

in the Colour scheme list box. Selecting the (input) member will set the colour scheme to be

the same as for the master input stream.

If you wish to add a new colour scheme or modify an existing scheme, you must use the

View: Colour Scheme… menu option. Refer to §5.3.6 for further details.

DigiFlow Common dialogs

– 29 –

4.4.2 Full colour
For output formats such as .bmp, .png or .jpg that support true colour images, a Full colour

checkbox is produced. If checked, then the output is saved as in a 24 bit true colour format. If

not checked, then a greyscale version of the output is saved, along with the selected false

colour map (the false colour map is not saved for .jpg files).

4.4.3 File format
The File format group invokes various options that may exist for the specified file type. The

contents of this group will depend on the file type specified: in many cases there are no

options and so the group is left empty.

The Bit depth field determines the number of significant bits saved for each pixel in the

image. Most image formats use 8 bits, but for high resolution images, or images that result

from numerical computations, a greater depth may be desired. If the .dfi format is specified for

the file type, then bit depths of 8, 32 and 64 bits are possible.

When available, the Compression level edit and spin control will determine whether or not

the image is to be compressed using a lossless compression. A value of zero indicates no

compression, with positive integers giving various levels of compression. Typically

compressing an image reduces its size by around a factor of two, but at the cost of slower

access (although for a very slow hard disk the access speed may improve with compression).

The additional time taken to compress an image will depend in part on the level of

compression requested, and in part on the structure of the image. If a process seems

particularly slow, but still producing the correct answer, try reducing the level of compression.

In the case of an .avi file, selecting zero causes full, uncompressed images to be saved,

whereas setting Compression level to 1 will use the Cinepak compression (installed by default

with Windows). For other compressions specify a value of 2 for Compression level which will

then cause the standard Windows Video Compression dialog to be produced when DigiFlow

is ready to save the first frame of the output stream. (Note that most of the .avi compression

options are ‘lossy’ in the sense that only an approximation to each image is saved.)

Figure 18: Standard Windows Video Compression dialog.

For .jpg images, the compression applied is ‘lossy’. The higher the level of compression,

the greater the fraction of information lost. This is controlled by the Quality control. Note that

in general the lossy nature of the compression in .jpg images means that they should not be

used for the storage of intermediate results.

4.4.4 First index
By default, the first image in a sequence produced by DigiFlow will be given a zero index

(numerical part of the file name). The First index control may be used to change the index for

this first image. In either case, subsequent images will always be produced with unit

increments from this value.

4.4.5 Resampling
When the .dfi image format is selected, it is possible to rescale the output stream before it is

saved and then reverse this rescaling when the image is subsequently read in. Typically this

DigiFlow Common dialogs

– 30 –

option is used to reduce the resolution of the saved image, but maintain its size by

interpolating back to the original size before using the image again.

This feature is enabled using the Resample check box. When enabled, the resolution of the

saved image is controlled by the Factor edit control which accepts a floating point value for

the relative resolution of the saved image. For example, a value of 0.5 will cause the saved

image to have only ¼ of the number of pixels of the original in the file, but through

interpolation the missing pixels are reconstructed when the image is read in again. This option

is particularly valuable for use with images produced by the synthetic schlieren (§5.6.4.3) and

PIV (§5.6.5.2) facilities.

4.4.6 Save user comments

Figure 19: User comments tab.

Some file formats (e.g. .dfi, .dfd and .dft) allow user comments to be saved along with the

images. These comments are specified using the User Comments tab of the Save Options

dialog.

4.4.7 Encapsulated PostScript streams
DigiFlow can produce Encapsulated PostScript (.eps) output either using the Export to EPS

option in the File menu (see §5.1.12) or by specifying an .eps file as the output stream. In the

latter case the normal Options dialog has an additional EPS button that invokes the dialog

shown in figure 20.

Figure 20: The output options for Encapsulated PostScript (.eps) files.

DigiFlow Common dialogs

– 31 –

The PostScript options provide the ability to add a title either above (Top) or below

(Bottom) the image or graphic output, and to add a frame (Frame) around the output.

DigiFlow (commercial version only) provides support for the LaTeX \psfrag macro package.

This enables the text produced by DigiFlow to be readily replaced with text generated by

LaTeX, thus keeping font and style information consistenet and allowing post-plotting

adjustment of the text labels, etc. Selecting Normal produces the eps containing the original

labels, whereas with either of the PSFrag options the text is replaced by a unique character for

each element. At the same time, DigiFlow creates a .tex file that contains the mapping

between these characters and the original text. This .tex file can then be embedded in included

in the main LaTeX document to reproduce the figure. See §5.1.12 for further information on

the Encapsulated PostScript formatting options.

4.5 dfc Help

As will be seen in §5, a large part of DigiFlow’s power and flexibility is gained by the use

of user-supplied macro code. This code is known as dfc code. Examples of facilities that

require such code include Analyse: Time: Extract (§5.6.1.5), Analyse: Time: Summarise

(§5.6.1.6), Tools: Transform Intensity (§5.7.2) and Tools: Combine Images (§5.7.3). Details

of the macro code itself are given in §§8 and 9. However, this manual gives only a relatively

brief introduction to a subset of the dfc functions available within DigiFlow. Instead, the bulk

of the documentation is provided within an interactive help facility available from within

DigiFlow itself in the Help: dfc Functions menu item, and from the button within dialogs

where such information is of value.

The help facility takes the form of the dialog illustrated in figure 21. To find a function

performing a given task, simply type some information about that task into the Search for

box. For example, if you want to find functions that have something to do with drawing, enter

“draw”. You will notice that as you enter “draw”, the Look up list changes as each letter is

typed. When you type the “d”, the size of the items in the list is reduced so that it only

includes those with a “d” somewhere in their names. Similarly, “dr” leads to a further

reduction, excluding those that do not have this pattern, and so on.

Spaces in the Search for box are interpreted as “and” criteria for the search. For example,

entering “dr ma” would reduce the list to those functions with both “dr” and “ma” in their

names, but without the two patterns needing to be adjacent. This, combined with the logical

and descriptive (if somewhat verbose) naming conventions for DigiFlow functions, provides a

very powerful search facility.

At all stages the Look up list is sorted alphabetically. (Note that if Search for is left blank,

then Look up contains all possible functions.)

Selecting an item in the Look up list then brings up the documentation for the function in

the three boxes below. The top of these identifies the role played by the entry within dfc code.

The list box below gives the range of possible entry points to the function. As we shall see

later, many DigiFlow functions are “overloaded” (i.e. they accept more than one type of data),

and may have optional parameters. This list itemises the full range of possibilities. Selecting

an entry point from this list and clicking the Copy button copies this entry point into the

clipboard.

The bottom control on the dialog provides the detailed documentation for the selected

function. This documentation should be read in conjunction with the entry point

documentation. The help system is hyperlinked (e.g. draw_start(..) in figure 21): clicking

on a hyperlink will take you to the corresponding help. Similarly, backward () and forward

() buttons will move through previously selected hyperlinks.

DigiFlow Common dialogs

– 32 –

The General items list box provides access to more general information, such as modifiers

for input and output streams, recent changes to DigiFlow, how to return images from code

specified for tools such as Transform intenstiy, and how to produce simple plots.

Figure 21: The help dialog for dfc code.

The help facility may also be started from within a code edit box by right-clicking. Doing

so will cause the word under the cursor to be pre-loaded into Search for field. Moreover, if

that word is a known DigiFlow command, the details will be looked up automatically.

4.6 Code library

DigiFlow incorporates a number of features that will facilitate the re-use of the dfc code

used in facilities such as Analyse: Time: Extract (§5.6.1.5), Analyse: Time: Summarise

(§5.6.1.6), Tools: Transform Intensity (§5.7.2) and Tools: Combine Images (§5.7.3). This

section describes the DigiFlow Code Library. Details of the macro code itself are given in §§8

and 9.

The dfc Code Library provides convenient method of storing and retrieving user-developed

code. The library itself is stored in a file named DigiFlow_Library.dfs in the directory in which

DigiFlow is started. Note that this file is re-read from the current directory every time the

Code Library is invoked. The DigiFlow_Library.dfs file may be copied from one directory to

another, if the user desires.

The library is accessed via the Code Library button in appropriate dialogs. Central to

the Code Library dialog, shown in figure 22, is the Entry list that itemises all previously saved

items of code for this DigiFlow facility (a separate list is maintained within the same file for

each different facility). Any code currently specified in the parent dialog box is recorded under

the _current key; this will be the default selection upon entry.

To retrieve a previously stored code item, simply select it from the Entry list and click OK

to insert it in the parent dialog. The Code edit box will show the code, while Description will

DigiFlow Common dialogs

– 33 –

show any previously saved description. Clicking Cancel will return to the parent dialog

without changing the code in that dialog.

Figure 22: The code library dialog.

The Code and Description may be edited before returning to the parent dialog. The

Process list allows code to be selected from different processes. The Delete button may be

used to remove an entry from the Code Library, and the button gains access to the dfc Help

facility. Finally, the Save As button allows code to be saved into the data base (see figure 23)

under any of the processes.

Figure 23: Name under which a Code Library entry is to be saved.

DigiFlow Menus

– 34 –

5 Menus

This section describes the main menu options. Some of these will be familiar as they

follow standard Windows conventions, whereas others are specific to DigiFlow. Many of

these menu options can be strung together to create processes that are more complex. Details

of how to achieve this are given in §6.

5.1 File

5.1.1 Open Image

Toolbutton:

Shortcut: ctrl+O

Related commands: open_image(..), read_image(..), read_image_details(..),
view(..)

Allows an image selector (§3.4) to be opened for viewing. The image is selected through

the Open Image dialog box (§4.1). Both images and drawing formats may be opened.

Encapsulated PostScript (.eps) may also be opened if DigiFlow is able to find an installed

copy of GhostScript (see §2.2.2).

5.1.2 Run Code

Toolbutton:

Shortcut: ctrl+R

Related commands: include(..)

Opens and runs a DigiFlow dfc macro. Refer to §10 for further details.

5.1.3 Run Macro
Toolbutton: ctrl+shift+R

Shortcut:

Related commands:

Opens and runs a DigiFlow dfc macro from the Macros subfolder within the folder where

DigiFlow is installed. This folder contains various macros and wizards that are of general

value. Refer to §10 for further details.

5.1.4 Save As

Toolbutton:

Shortcut: ctrl+S

Related commands: save_image(..), write_image(..)

This option allows the contents of the active window to be saved. Note that if the active

window contains a sequence or other collection of images, only the currently displayed image

will be saved. To copy an entire sequence use File Edit stream (see §5.1.6) or one of the

related transformation tools.

5.1.5 Live Video

5.1.5.1 Show Live Video

Toolbutton:

Shortcut:

Related commands: process File_ShowLiveVideo(..), camera_live_view(..)

This option creates a new window and streams live video directly to it. Whilst the live view

is intended primarily for previewing camera output, it may be used in conjunction with macros

such as camera_grab(..) to acquire single or multiple frames, or with

DigiFlow Menus

– 35 –

camera_capture_file(..), camera_start_capture and camera_stop_capture(..) to

acquire entire sequences.

Figure 24: The dialog controlling what is seen in a live video window.

Video captured using this option is fed continuously to the display until stopped by the

user; it is not saved to hard disk (except via the use of dfc code). For this reason, no duration

can be specified. For some cameras, it is possible to set the shutter speed (Shutter, in frames

per second; n frames per second is equivalent to a shutter speed of 1/n seconds) independently

of the acquisition rate (set by Capture, in frames per second). However, many digital cameras

force the two rates to be equal. For some supported CameraLink cameras, the Shutter speed

and camera Gain can be set as integer indices into the range of possible values. The meaning

and acceptable range of values varies between different makes and models of cameras. (Note

that a value of zero indicates unit gain on some cameras, but on others, such as the

UniqVision UP1830CL, unit gain corresponds to a value of 128. The default value is obtained

from the entry for a specific camera in DigiFlow_Cameras.dfc.)

The frame rate for updating the display is independent of the shutter and capture rates.

Typically Display is set to a lower frame rate (there is little point exceeding around 12 frames

per second). Any necessary processing of the incoming data stream to correct the format is

undertaken automatically.

The Display resolution group controls how much of the original image being captured by

the framegrabber will be displayed on the screen (note that this does not affect the data

available through dfc functions such as camera_grab(..)). The meaning of the various

options is self-explanatory.

In some cases, simple real-time processing of the image prior to display will greatly assist

with the setting up and running of the experiment. The Display processing group controls the

type of processing that will be done. These are described in more detail for the Capture Video

option in §5.1.5.2. To suppress processing, select none from the list box. For large images, it

may be best to use Display resolution to reduce the resolution and thus the computational

burden of undertaking any processing.

DigiFlow Menus

– 36 –

The Tools: Slave Process family of functions (see §5.7.5) provides a convenient way of

accessing an even broader range of additional functionality, ranging from focusing tools to

real-time optical flow calculation.

Particle Streaks

If Display processing is set to particle streaks then the dialog shown in figure 25 is

displayed to provide processing of display output while at the same time capturing the raw

video to a file. There are four display options: Threshold, Maximum, Minimum and Direct.

For Threshold the incoming image is segmented into particles (bright points) and

background (dark points) by varying the Threshold control. Using relatively simple

processing, the particles so identified may be converted into comet-like streaks that slowly

fade with time. The length (in time) of these streaks is determined by the Length control.

The Maximum and Minimum options work in a similar way except that rather than

segmenting the incoming image, the brighter (Maximum) or dimmer (Minimum) of the

incoming and stored images is used. Again the length of the streaks can be set using the

Length control.

When Direct is selected, then the incoming images are displayed without any further

processing.

The Reset button clears the display of all earlier times.

Figure 25: Particle streaks preview dialog.

The rate at which the screen is refreshed is set by Display fps. Note, however, that the

desired rate may not be achieved if the computational load is too great.

The Display step group of controls is used to aid the viewing of very large images that may

be larger than the available display area. The edit and spin controls set the step between

displayed pixels (hence a value of 2, for example, will give a half-resolution image). The grid

of buttons in the bottom left allows the view port into a larger image to be moved around in a

manner that is efficient to display. These options are only enabled if the Window option in the

Live Video dialog is checked.

Synthetic Schlieren

If Display processing is set to synthetic schlieren then the dialog shown in figure 26 is

displayed to provide processing of display output while at the same time capturing the raw

video to a file. This allows real time visualisation of a synthetic schlieren image (see §5.6.4).

There are three processing options: Difference is the simplest (and computationally fastest)

technique that provides a qualitative output proportional to the magnitude of the gradient in

DigiFlow Menus

– 37 –

the density perturbation. The Horizontal gradient and Vertical gradient options perform more a

more sophisticated analysis that returns a semi-quantitative output of the specified component

of the gradient in the density perturbation. Note that these two options distinguish between

positive and negative gradients.

Figure 26: Synthetic schlieren preview dialog.

The Gain control determines the relationship between the gradient and the intensity of the

display. The Reset button forces the reference image to be recaptured.

The rate at which the screen is refreshed is set by Display fps. Note, however, that the

desired rate may not be achieved if the computational load is too great. The Direct button turns

off the streaks processing and displays directly the camera input.

The Display step group of controls is used to aid the viewing of very large images that may

be larger than the available display area. The edit and spin controls set the step between

displayed pixels (hence a value of 2, for example, will give a half-resolution image). The grid

of buttons in the bottom left allows the view port into a larger image to be moved around in a

manner that is efficient to display. These options are only enabled if the Window option in the

Live Video dialog is checked.

5.1.5.2 Capture Video

Toolbutton:

Shortcut:

Related commands: process File_CaptureVideo(..), camera_live_view(..),

camera_capture_file(..), camera_start_capture(..),
camera_stop_capture(..)

Using this facility, a video sequence may be captured from one of the digital video cameras

supported by DigiFlow.

DigiFlow Menus

– 38 –

Figure 27: Dialog box controlling the capture of video.

The basic timing for the video sequence is controlled by a combination of the Duration and

Frame Rates groups. The first of these sets the length of the sequence, either as a specified

number of frames (if Number selected), or as time in seconds (Time selected). For some

cameras, it is possible to set the shutter speed (Shutter, in frames per second; n frames per

second is equivalent to a shutter speed of 1/n seconds) independently of the acquisition rate

(set by Capture, in frames per second). By checking Shutter = capture, then the two of these

are forced to be equal. For some supported CameraLink cameras, the Shutter speed and

camera Gain can be set as integer indices into the range of possible values. The meaning and

acceptable range of values varies between different makes and models of cameras. (Note that

a value of zero indicates unit gain on some cameras, but on others, such as the UniqVision

UP1830CL, unit gain corresponds to a value of 128.)

The frame rate for updating the display is independent of the capture rate. Typically Display

is set to a lower frame rate (there is little point exceeding around 12 frames per second). This

setting does not affect the data stored to disk. For some systems the bandwidth requirements

of displaying the image while acquiring to hard disk exceeds that available. In such cases the

Display during capture check box should be cleared, thus suppressing the display during the

capture, although the display is still updated before capture begins and after capture finishes.

For some camera and framegrabber combinations, the raw data coming from the

framegrabber may not be in the correct format for display. This typically occurs with multi-tap

cameras; most single-tap cameras produce data in the correct format and require no additional

processing. If additional processing is required, the Preprocess frame group determines what

should be done in this situation. The Untangle option forces the data to be untangled before

displaying or saving to hard disk. This option is the most processor and memory bandwidth

intensive, and so may not function adequately on all systems, especially during the capture

DigiFlow Menus

– 39 –

process when much of the bandwidth is already taken up. To overcome this, the Fast acquire

option untangles the images before and after the capture process, thus giving an intelligible

preview, but turns off the untangling during the capture. DigiFlow will automatically untangle

the image subsequently when it reads the image file produced in this manner. The remaining

option, None, turns off all processing.

The Display resolution group controls how much of the original image being captured by

the framegrabber will be displayed on the screen (note that this does not affect the data stored

to disk). The meaning of the various options is self-explanatory.

In some cases, simple real-time processing of the image prior to display will greatly assist

with the setting up and running of the experiment. The Display processing group controls the

type of processing that will be done. Note that this does not affect the data written to disk. To

suppress processing, select none from the list box. For large images, it may be best to use

Display resolution to reduce the resolution and thus the computational burden of undertaking

any processing.

The Output group provides a standard interface to select the destination for the captured

image. However, by default DigiFlow will be configured to always capture to a fixed location

(see §13 for details) to avoid the user having to select a disk drive with appropriate

characteristics and to force the user to go through a compulsory review process to extract only

those parts of the image stream that are of value. If this feature is enabled, then the Output

group will be disabled (the file name CaptureVideo.dfm will be visible) and following

completion of the sequence capture, the Edit Stream dialog (see §5.1.6) will be started

automatically to control this second step.

If you do not want to capture the entire field of view of the camera then you may choose

the region you wish to save through the Region list. The region must have been defined within

DigiFlow previously (e.g. using Edit: Regions; see §5.2.7, or as part of a Sift operation). Note

that there is a time overhead in extracting a region from an image. Consequently, although the

amount of data to be stored is reduced, the total time taken may be increased in some

circumstances. However, if the region to be saved is more than around 20% smaller than the

full view, then it could well be worth capturing a more limited region.

After pressing OK, DigiFlow opens an image preview, creates a Display processing dialog

(see below) if display processing was selected, and then prompts the user to start the

acquisition as illustrated in figure 28.

Figure 28: Message box starting the video capture.

After the sequence capture has finished, the performance is displayed in a message box,

such as shown in figure 29. The precise text in the message box will depend on whether or not

the compulsory review feature is enabled. Note that the ‘achieved’ timings may not be precise,

especially for relatively short sequences.

DigiFlow Menus

– 40 –

Figure 29: Message box at end of video capture.

If the computer fails to keep up with the bandwidth requirements of the capture process,

then this will be indicated by there being some missed frames, and a lower than expected

frame rate being achieved. The amount of CPU time required is a strong function of any

display processing required. The synthetic schlieren option was selected for the example

illustrated in figure 29. This was performed on a 1GHz dual processor machine. Clearly more

CPU time was required than the capture time, but each processor was busy only around 60%

of the time. A single processor machine, however, would not have managed to keep up with

the bandwidth requirements.

The review process will utilise either the File: Edit Streams (see §5.1.6) or File: Camera

File (see §5.1.7) dialogs. For most cameras, the former will be used as all that is necessary is

to copy across the parts of the captured sequence that are actually needed. However, for some

cameras, it can be desirable to impose a flat-field correction during this copy process. Where

the DigiFlow camera database suggests this is desirable, DigiFlow will start the File: Camera

FIle dialog instead. In either case, if Cancel is selected in response to the dialog (figure 29) at

the end of the capture process, you can still access the captured sequence by manually

accessing one of these two dialogs and selecting the Input from capture cache check box.

Further information on how to generate a flat-field correction may be found in §5.1.5.4.

5.1.5.3 Setup

Toolbutton:

Shortcut:

Related commands:

This menu item controls the configuration of the cache file used when DigiFlow is

capturing a digital video sequence directly from an attached camera. As noted in §2.3.4, it is

important that the cache file is located on a disk other than that containing the operating

system, and that the capture file is in a single large contiguous block, rather than many

fragments scattered over the disk. Typically, the disk drive will only be able to keep up with

the camera if the drive can devote all its time to writing the video data. This will not be the

case if there is other disk activity occurring for that drive (as would be the case if it contained

the operating system), or if the heads of disk drive have to continually move backwards and

forwards across the disk as would occur if the file becomes fragmented.

Ideally, this menu item will be run when the capture disk is empty (e.g. following a

reformat of the disk) or at least nearly so. By default the disk should be assigned the drive

letter V: (either through the Disk Manager or by net use V: … onto a share) and the directory

V:\Cache should be created before running File: Live Video: Setup. (Details on how to change

the name or location of the cache file may be found in 13.2.)

DigiFlow Menus

– 41 –

Figure 30: Configuration of the cache file for capturing video sequences.

Figure 30 shows the dialog that is produced. It is recommended that the default size of

50GB is used. While this may seem excessively large, if you make the file too small you may

need to offload all your data and reformat the hard disk to be able to create a single large

contiguous file at a later stage.

Note that if DigiFlow detects an existing V:\Cache\CaptureVideo.dfm, then this dialog will

not be produced. DigiFlow does not provide a mechanism for you to remove or change the

size of the cache file. If you must change the size, then you should delete it from Windows

Explorer then run File: Live Video: Setup again. Note, however, that doing so may lead to

fragmentation of this file, which may in turn prevent the hard disks from keeping up with the

bandwidth from the camera.

5.1.5.4 Calibrating a camera
Calibration of a video camera falls at two different levels. On the one-hand, for some forms

of processing, it is necessary to have a known linear relationship between actual intensity and

the digitised values. Typically, all that is required here is to know the value to which black

digitises. This form of calibration is dealt with later in §6.1. However, for some cameras, an

additional low-level calibration is required to take into account details of the image sensor

where these are not ideal.

This section is divided into two parts: determining the optimal black value for a camera,

and generation of a flat-field correction. Most cameras do not require either of these processes

to be undertaken.

Optimising black

Most image sensors are sensitive not only to visible light, but also to heat. Consequently,

the output potentially depends on camera temperature as well as the incident light. To

counteract this, many cameras have a built in method for eliminating or at least reducing the

temperature-dependent signal. For example, the image sensor may have some rows of blacked

off pixels to assess the temperature-induced component of the signal from the sensor. For

most cameras their built-in approach works fairly well, although there are some where an

additional calibration, adjustment or correction is necessary.

Related to this is the desire, for most forms of processing, to maximise the dynamic range

available on the sensor. This includes ensuring black is digitised to a low but nonzero value.

The reason why having black digitise to zero is that one cannot be sure whether it is digitised

to zero or a negative value. Some methods of determining black are discussed in §6.1. Here

we concentrate on the subset of cameras where the black offset can be set in software but the

DigiFlow Menus

– 42 –

camera’s own internal mechanism for setting this is not sufficient. The DigiFlow cameras

webpage (www.dalzielresearch.com/digiflow/cameras/) indicates which cameras require such

calibration.

Once completed, the calibration is stored in the Cameras folder within the DigiFlow

installation process and subsequently picked up automatically when DigiFlow is started. (Note

that in order to complete this calibration, you must have write permission for this folder.)

Unfortunately, for some cameras, it may be necessary to redo this calibration from time to

time if there are significant differences in ambient temperatures, or if the camera is mounted

differently so that its equilibrium temperature changes.

To complete the calibration, start by opening a live view (see §5.1.5.1) then use File: Run

Macro (§5.1.3) to navigate to the Wizards subfolder and run Wizard_Camera_OptimiseBlack.dfc.

The wizard will lead you through the process (see figure 31), which is typically completed

with the lens cap on so that no light is falling on the image sensor.

Figure 31: Dialogs for Wizard_OptimiseBlack.dfc.

Although the wizard operates on the assumption that it is the exposure time and not the

frame rate which is of paramount importance, the wizard lets you choose the frame rate to be

used. It is recommended that this is no less than one fifth of the maximum frame rate for the

camera. The output of the wizard is fit of the best possible black level over a range of

exposure times, the default maximum exposure time is slightly less than the reciprocal of the

frame rate, whereas the default minim is 1/5000 s. Again, the user has the ability to adjust

these.

For a given exposure, the definition of the optimal black is based on an instantaneous count

of the number of pixels that have an exactly zero digitised value. By default, 2% (a fraction of

0.02) of the pixels are permitted to be zero. The final pair of questions prior to starting the

http://www.dalzielresearch.com/digiflow/cameras/

DigiFlow Menus

– 43 –

calculation specifies the range of black values that the wizard should search over. Note that

the wizard can complete the task more rapidly if the lower bound is set close to the actual

level needed.

0.005 0.01 0.015 0.02 0.025 0.03 0.035

t 1/shutter

0.0

50.0

100.0

150.0

200.0

250.0

bl
ac

k

163.22 2508.1 dt

Figure 32: The output from Wizard_OptimiseBlack.dfc.

While it is working the macro will show in the status bar the various shutter speeds and

black levels it is using. At the end, it provides a plot of the data (in blue) and the best fit (in

magenta) for the optimal black. If desired, this best fit can be written automatically to the

appropriate folder (based on the BitFlow camera file name) within the DigiFlow\Cameras folder.

Flat-field correction

The available flat-field corrections are stored in the Cameras folder within the folder in

which DigiFlow is installed. These comprise of a fixed field noise and a gain. The wizard

Wizard_Camera_FlatFieldCorrection.dfc provides a mechanism for determining and setting up the

flat field correction. To run this wizard, open a live view with File: Live Video: Show Live

Video (see §5.1.5.1) then select File: Run Macro (see §5.1.3) and navigate to the Wizards

subfolder and run Wizard_Camera_FlatFieldCorrection.dfc.

Where a flat-field correction is necessary, it will generally be valid only for a particular

shutter speed, hence the first question asked by the wizard is what shutter speed you will be

using. The wizard will then set the camera to that shutter speed (if possible) and ask the user

to put the lens cap on so that the camera sees only black. Click OK once this has been done,

and the wizard will determine the time average black value over fifty frames. The user is then

asked to make the view white. This is the most difficult and critical step. The user needs to

illuminate the camera as uniformly as possible, preferably using the same lens and aperture as

DigiFlow Menus

– 44 –

will be used subsequently. A good diffuser paced immediately in front of the lens is essential

for this (e.g., a number of thicknesses of tracing film or a piece of opal acrylic), as is a fairly

uniform light source to illuminate the diffuser. The intensity of the digitised image should be

in the upper half of the range, but without any pixels saturating. Once this illumination has

been set up, click OK and DigiFlow will again average the live video over fifty frames.

Once the averaging is complete, DigiFlow converts the ‘white’ image into a measure of the

gain required to achieve a uniform intensity relative to the ‘black’ image, and the user will be

prompted to use this to update the stored calibration. The default camera name under which to

save the calibration is based on the name of the camera file currently in use, whereas the

default name for the correction is a combination of the shutter speed selected at the start and

the date on which the calibration is made.

Figure 33: Prompts controlling the generation of a flat field correction.

5.1.6 Edit Stream
Toolbutton:

Shortcut:

Related commands: process File_EditStream(..)

This option provides efficient editing of a single video stream.

DigiFlow Menus

– 45 –

Figure 34: The Edit Stream dialog for editing a single video stream.

Parts of the Source Stream are copied to the Edited Stream; the parts to be copied are

determined by the Sift button (see §4.3). Typically this is used to change image file format,

reduce the time period, select only specific frames, and/or extract a subregion of the input

stream. Note: if you do not click the Sift button when setting up the input stream, then

DigiFlow might prompt you by starting up the sift dialog itself if it detects no or minimal

changes are to be applied during the editing process.

The Input from capture cache check box disables the File and Process buttons, connecting

instead the input to the capture cache file (see §5.1.5.2), allowing you to extract additional

sequences from the cache file, if desired.

5.1.7 CameraFile
Toolbutton:

Shortcut:

Related commands: process File_CameraFile(..)

This option is a variant on File: Edit Stream (see §5.1.6). The principal difference is that it

provides the opportunity to apply a flat field correction to the image while importing it from

the cache used during a video acquisition process. For many video cameras, there is little

point using this facility rather than File: Edit Stream either as a flat field correction is

undertaken in the camera, or relatively little change is justified.

DigiFlow Menus

– 46 –

Figure 35: The Camera File dialog for copying a video stream, optionally transforming it using a flat

field correction for the camera.

Parts of the Source Stream are copied to the Edited Stream; the parts to be copied are

determined by the Sift button (see §4.3). If selected, the intensities will be transformed by a

flat-field correction, specified by the combination of the Camera File and the FFC Name.

Typically, the input is taken from the capture file by checking Input from capture cache and

written out to a file format of the users choosing. Note: if you do not click the Sift button

when setting up the input stream, then DigiFlow might prompt you by starting up the sift

dialog itself if it detects no or minimal changes are to be applied during the editing process.

The Input from capture cache check box disables the File and Process buttons, connecting

instead the input to the capture cache file (see §5.1.5.2), allowing you to extract additional

sequences from the cache file, if desired.

Details of how to generate a flat-field correction may be found in §5.1.5.4.

5.1.8 Merge Streams
Toolbutton:

Shortcut:

Related commands: process File_MergeStreams(..)

This option allows two video streams to be merged into a single stream to provide an

extended sequence.

DigiFlow Menus

– 47 –

Figure 36: The Merge Streams dialog for combining image streams sequentially.

Two input selectors are provided: First and Second. These are written to the Output

selector in the order suggested by their names. The timings of the two input selectors need not

correspond, but the regions must conform. The First selector is the master, dictating the region

to be used.

5.1.9 Export AVI
Toolbutton:

Shortcut:

Related commands: process File_ExportAVI(..)

This option provides an efficient mechanism for exporting a sequence of images, drawings

or a DigiFlow movie to a standard Windows AVI movie file.

DigiFlow Menus

– 48 –

Figure 37: The Export AVI dialog.

The dialog consists of a single input and a single output selector. The latter should be

directed to an .avi file. The playback speed of the resulting .avi file is set by Frame rate, while

Rescale allows the input image to be rescaled (typically reduced in size) before copying to the

movie. If Compress is not checked, then the full raw data is saved to the .avi file. If Compress

is checked, then the type of compression is determined by the list box to the right. Only a

subset of the compressions methods available are listed explicitly in this box. However,

specifying (ask) will cause DigiFlow to prompt the user with the complete range of methods

available at the point where DigiFlow is ready to save the first image in the output stream (i.e.

the user will be prompted after OK has been clicked; see figure 38).

Figure 38: Compression options when exporting to an .avi file.

5.1.10 Print View

Toolbutton:

Shortcut: ctrl+P

Related commands: print_view(..), ask_printer(..)

Print out the currently selected viewing window. The menu version of this facility produces

a dialog box allowing the user to select the printer, whereas the toolbar version simply prints

to the currently selected printer.

DigiFlow Menus

– 49 –

5.1.11 Print Visible View
Toolbutton:

Shortcut: shift+ctrl+P

Related commands: print_view(..), ask_printer(..)

This command is the same as File: Print View (see §5.1.10) except that only the currently

visible part of the view is printed.

5.1.12 Export to EPS
Toolbutton:

Shortcut:

Related commands: export_to_eps(..)

Converts the currently selected viewing window into an Encapsulated PostScript (.eps) file.

Section 2.2.2 describes how to set up an .eps printer driver that allows both bit image and

vector graphics to be converted to .eps format. If the .eps printer is not set up, then DigiFlow

will convert vector graphics to a bit image before generating the .eps file.

When using the printer driver, not only can the user specify the name of the output file

(figure 39a), but some control over the format is also provided (figure 39b). In particular, a

title may be added either above or below the figure, and the figure may be given a frame.

Further, using the Text filter group, it is possible to suppress all text on a figure, or to replace

each element of text with a unique letter combination. These text filtering options are

provided for convenience with manuscript submissions where some journals wish all text

removed from figures, while others use systems such as the LaTeX \psfrag package to replace

the original text and fonts. Selecting Normal produces the eps containing the original labels,

whereas with either of the PSFrag options the text is replaced by a unique character for each

element. At the same time, DigiFlow creates a .tex file that contains the mapping between

these characters and the original text. This .tex file can then be embedded in included in the

main LaTeX document to reproduce the figure.

Figure 39: The dialogs controlling the saving and formatting of the exported eps file.

For example, when the drawing shown in figure 40a is exported, all the text is replaced by

single characters. Close inspection shows that these characters appear to be positioned

incorrectly, but this is necessary to resolve differences between the way Windows positions

characters, and the way psfrag determines their positioning from the eps file.

DigiFlow Menus

– 50 –

 (a) (b)
Figure 40: Example of exporting a drawing through psfrag with the PSFrag (new sytle) option. (a)

Before exporting. (b) The resulting eps file.

At the same time as producing the eps file, DigiFlow also generates the following LaTeX

file that contains a psfrag wrapper:
\begin{figure}

 \psfrag{a}[cc][Bl]{0.0}

 \psfrag{b}[cc][Bl]{10.0}

 \psfrag{c}[cc][Bl]{20.0}

 \psfrag{d}[cc][Bl]{30.0}

 \psfrag{e}[cc][Bl]{40.0}

 \psfrag{f}[cc][Bl]{50.0}

 \psfrag{g}[cc][Bl]{60.0}

 \psfrag{h}[cc][Bl]{x}

 \psfrag{i}[cr][Bl]{0.0}

 \psfrag{j}[cr][Bl]{5.0}

 \psfrag{k}[cr][Bl]{10.0}

 \psfrag{l}[cr][Bl]{15.0}

 \psfrag{m}[cr][Bl]{20.0}

 \psfrag{n}[cr][Bl]{25.0}

 \psfrag{o}[cr][Bl]{30.0}

 \psfrag{p}[cr][Bl]{35.0}

 \psfrag{q}[cr][Bl]{40.0}

 \psfrag{r}[cr][Bl]{45.0}

 \psfrag{s}[Bc][Bl]{y}

 \psfrag{t}[Bc][Bl]{-0.1}

 \psfrag{u}[Bc][Bl]{0}

 \psfrag{v}[Bc][Bl]{$ 0.1$}

 \psfrag{w}[Bc][Bl]{T'}

 \includegraphics{junk2.eps}

 \end{figure}

Each of the \psfrag{..}[..][..]{..} statements gives the letter code, the required

alignment relative to the point specified in the eps file, how the point specified in the eps file

relates to the character rendered in the eps file, and finally the text to be typese in place of the

letter code. Due to incompatibilities between Windows and psfrag, it is necessary for

DigiFlow to position the characters in the eps file above and to the right of the reference point

or else confusion arises in the height and width of the string. Thus each of the entries has [Bl]

as the second of the positioning codes. The LaTeX text, however, is rendered in the correct

place via the first of the positioning codes, as illustrated in figure 41a, although if there is a

change in the size of the font some further adjustments may be necessary to improve the

spacing between some elements. Here, for example, the font size has been increased and the x

axis and y axis titles would look better if they were moved away from the axes. This may be

achieved, for example, by adding \raisebox(..)(..) in the above example. In particular,
\psfrag{h}[tc][Bl]{\raisebox{-10 pt}{x}}

\psfrag{s}[Bc][Bl]{\raisebox{5pt}{y}}

DigiFlow Menus

– 51 –

 (a) (b)
Figure 41: LaTeX output using automatically generated psfrag replacements. (a) Straight from the

LaTeX generated by DigiFlow. (b) After small adjustments to the positions of the x and y axis labels.

Such adjustments are less frequently necessary if the original graphic is produced with text of

much the same size as will be used in the final version. With DigiFlow drawings, this may be

achieved readily by including a call to draw_set_base_scales(..) near the start of the

drawing.

Note that .eps files may also be specified for the output stream from most of DigiFlow’s

menu options. If this is done, then the dialog in figure 39b replaces that normally produced by

the Options button.

Some journals require the figures to be complete as .eps files rather than relying on \psfrag

within the LaTeX. This does not prevent you, however, from using \psfrag in their production.

The following process allows you to process the text with LaTex and end up with a stand-

alone .eps file.

1. 1. Include the graphic plus all the psfrag commands in a LaTeX file with

\thispagestyle{empty}. Probably best if standard PostScript fonts are used, so have

something like:
\documentclass{article}

\usepackage{psfrag}

\usepackage{mathptmx} % PostScript fonts

\usepackage[T1]{fontenc}

\thispagestyle{empty}

\begin{document}

\input{myfig} % The figure in myfig.tex

\end{document}

2. Compile to create the .dvi and .ps, as normal. The output should all be on a single page.

3. Open the output .ps with GhostView. Select PS to EPS from the File menu. Select

Automatically calculate BoundingBox, give the file a name (e.g. myfig.eps) and save.

4. Check that the myfig.eps can be read OK and has the correct bounding box.

5.1.13 Export Visible to EPS

Toolbutton:

Shortcut:

Related commands: close_view(..)

This command is equivalent to File: Export to EPS (see §5.1.12) except that only the

currently visible part of the view is used to generate Encapsulated PostScript.

DigiFlow Menus

– 52 –

5.1.14 Export to simple EPS
Toolbutton:

Shortcut:

Related commands: export_to_simple_eps(..)

The standard method of generating PostScript, described in §5.1.12, utilises a Windows

printer driver to make the conversion. Vector graphics remain as vectors, while raster images

remain as rasters. However, the Encapsulated PostScript produced tends to be cumbersome.

Occasionally, Encapsulated PostScript with a simpler structure is desired. The present Export

to simple EPS option does not utilise the Windows printer driver, but generates the

Encapsulated PostScript directly. The big limitation of this option, however, is that it only

produces raster formatted files. If applied to vector drawings, then these are first converted to

a raster format.

5.1.15 Close

Toolbutton:

Shortcut: ctrl+W

Related commands: close_view(..)

Close the active window. This is equivalent to clicking on the close button at the top

right corner of the document window.

5.1.16 Close All
Toolbutton:

Shortcut:

Related commands: close_all_views(..)

Close all open views.

5.1.17 Exit
Toolbutton:

Shortcut:

Related commands: exit_digiflow(..)

Closes DigiFlow and all open image windows. This is equivalent to clicking on the close

button at the top right corner of the main DigiFlow window. If DigiFlow detects that any

processes are currently running then it will prompt the user to ensure DigiFlow should still be

closed as this will terminate those processes.

5.2 Edit

5.2.1 Copy

Toolbutton:

Shortcut: shift+ctrl+C

Related commands:

Copies the currently selected image or drawing to the system clipboard. The image or

drawing is available to other applications in both raster and metafile formats.

DigiFlow Menus

– 53 –

5.2.2 Copy as Bitmap

Toolbutton:

Shortcut: ctrl+alt+C

Related commands:

Copies the currently selected image or drawing to the system clipboard, placing it there as a

bitmap regardless of its initial form.

5.2.3 Copy as Text

Toolbutton:

Shortcut: shift+ctrl+alt+C

Related commands:

Copies the file name or description of currently selected image to the system clipboard.

5.2.4 Zoomed Copy
Provides a group of options that allow images to be copied to the clipboard at a size that

differs from the full resolution image.

5.2.4.1 Double size
Copies the currently selected image to the system clipboard, doubling the size of the image

using bicubic interpolation, where appropriate.

5.2.4.2 Full size

Toolbutton:

Shortcut: shift+ctrl+C

Related commands:

Identical to Edit Copy (§5.2.1). Copies the currently selected image to the system

clipboard, doubling the size of the image using bicubic interpolation, where appropriate.

5.2.4.3 Half size

Toolbutton:

Shortcut: shift+ctrl+alt+C

Related commands:

Copies the currently selected image to the system clipboard, halving the size of the image

first.

Copies the currently selected image to the system clipboard, reducing the linear resolution

of the image by a factor of three.

5.2.4.4 Quarter size
Copies the currently selected image to the system clipboard, reducing the linear resolution

of the image by a factor of four.

5.2.4.5 Zoom
Copies the currently selected image to the system clipboard, adjusting the resolution using

a user-specified factor (see figure 42).

Figure 42: Dialog selecting scale factor for image to be placed on clipboard.

DigiFlow Menus

– 54 –

5.2.5 Properties

Toolbutton:

Shortcut: ctrl+\

Related commands: read_image_details(..)

Displays the properties for the selected window.

Figure 43: Process that created the image.

The Process tab contains comments supplied by the user at the time when the image was

created. Note that this tab is only available when the image is supplied by a file format that

supports the storage of this information. The contents here is exactly that that invoked the

command (either interactively or from a dfc macro).

Figure 44: User comments.

DigiFlow Menus

– 55 –

The Notes tab contains comments supplied by the user at the time when the image was

created. Note that this tab is only available when the image is supplied by a file format that

supports comments.

Figure 45: Image format.

The Format tab contains information describing the format of the image. This information

is available for all image types.

5.2.6 Coordinates
Toolbutton:

Shortcut:

Related commands: coord_system_create(..), coord_system_mapping(..),
coord_system_add_point(..),coord_system_destroy(..),

coord_system_set_default(..),coord_system_list(..),

coord_system_mapping(..),coord_system_get_mapping(..),

coord_system_get_points(..),coord_system_translate(..),

coord_system_translate_pixel(..),

coord_system_units(..), coord_system_apply_region(..),

pixel_coordinate(..), world_coordinate(..)

Provides the ability to define, edit and delete coordinate systems providing a mapping

between the pixel coordinates of an image and some user-defined coordinate system.

Note that once defined, the coordinate system is stored in the DigiFlow_Status.dfs file in the

directory from which DigiFlow was started. This file uses the standard dfc syntax but is run

automatically upon starting DigiFlow. In some cases you may wish to make a copy of the

relevant part of the coordinate system for backup purposes.

DigiFlow Menus

– 56 –

Figure 46: Selection of coordinate system.

The top-level dialog provides the ability to select the active coordinate system for the

current window by clicking on the desired entry in the list box, or to make changes to the

available coordinates.

The Edit, New and Copy buttons are used to adjust an existing coordinate system, create a

new coordinate system, or create a copy of an existing coordinate system (respectively). A

more complete description of these buttons is given below. The Delete button will remove the

currently selected coordinate system from DigiFlow, while Make Default will register the

selected system as the default for other operations.

Note: details of all coordinate systems defined, and which system is the current default, are

stored in the DigiFlow_Status.dfs file located in the directory from which you started DigiFlow.

These details are local to instances of DigiFlow started from that directory, although you may

either copy the DigiFlow_Status.dfs file to another directory, or open it in an editor and extract

the details of the coordinate system for use in a dfc macro. Refer to §

5.2.6.1 New coordinate system button
To create a new coordinate system, click on New. This starts a dialog allowing the name,

type and units of the new coordinate system to be specified.

Figure 47: Give a name and type to the new coordinate system.

The Name of the coordinate system is arbitrary. The user should select a name that is

meaningful to the task at hand. This name will subsequently be used for identifying the

coordinate system. The Units are also arbitrary. They may refer to some standard measure of

length, or to a dimensionless unit. The name of these units is recorded for later use in

captions, titles, etc.

There are three possible types of coordinate system that may be specified. Pixel coordinates

have a one to one correspondence with the pixels in the image and are the least flexible.

DigiFlow Menus

– 57 –

Function coordinates have a user-specified mapping between the pixel and user

coordinates. This form of mapping is the most precise, but will only be of use where there is

some external method of determining the required mapping functions. Four functions are

required, separated by semicolons. The first two functions give the world x and y coordinates

as functions of the pixel coordinates i and j, while the third and fourth give the pixel

coordinates as functions of the world coordinates.

Mapping coordinates are generally the most useful. These systems are specified through a

combination of mapping functions and identification points where both the pixel and user

coordinates are known. A least squares mapping is then used to generate the unknown

coefficients in the mapping functions and complete the transformation. There are a number of

pre-defined mapping functions, or the user may specify their own. The format of the mapping

function specification is an arbitrary name followed by a colon then a list of basis functions,

each separated by a semicolon and expressed in terms of the generalised coordinates x and y,

and optionally the time t. The points defining the unknown coefficients are specified using the

Edit button of the parent dialog.

5.2.6.2 Edit coordinate system button
The Edit button starts a dialog that may be used to edit the Units and Mapping functions for

the coordinate system. As noted above, the coordinate system may also be time dependent, in

which case Use Time-dependent Mapping should be checked and the points defining the

coordinate system should span both space and time.

Figure 48: Editing coordinate systems.

To specify the points used for the mapping, the Edit Points button should be clicked, which

will allow the user to specify points in the window that was active before entering the

coordinate system dialogs. At the same time a modeless dialog box, which should be used to

indicate the specification of the points is complete, is started.

Coordinate points are specified within the window by clicking at the desired location. This

places a plus mark (+) at the position. The plus mark may then be dragged to a new location,

if desired. Double-clicking the plus mark activates a dialog for specifying the user coordinates

for this point.

DigiFlow Menus

– 58 –

Figure 49: World coordinates for a point when defining a coordinate system.

This dialog gives the current Pixel Position of the point (and allows this to be edited), and

provides the ability for the user coordinates to be defined in the World Position group. If a

time-dependent mapping were specified, then the Time for this point must also be specified.

Clicking Delete will remove the point, while checking Lock will prevent the point being

dragged around the image accidentally.

Figure 50: Indicate that you have finished editing the coordinate system markers.

When you have finished adding and/or editing the coordinate system markers, click the

Finished button in the dialog shown in figure 50.

5.2.6.3 Copy coordinate system button
The Copy button provides the ability to make a copy of an existing coordinate system.

Figure 51: Copy a coordinate system.

5.2.6.4 Coordinate system creation wizard
As an alternative to manually defining a coordinate system as outlined in the above

subsections, DigiFlow provides a wizard for this purpose. This wizard,

Wizard_CoordSystem.dfc, takes the form of a dfc macro and can be found in the folder in which

DigiFlow is installed. The purpose of the wizard is to take an image of a regular grid of

features, location the features and form a coordinate system from them.

One way of forming the grid of regular features is to use one of the

CoordinateSystemGrid_*.pdf files found in the DigiFlow installation folder. When printing these

out, make sure they are printed at the correct scale rather than ‘shrink to fit’! These grids,

constructed from the following PostScript segment, can readily be printed out on paper or

overhead transparency and placed in the flow. (It may be necessary to laminate a paper grid!)
%!PS-Adobe-3.0

DigiFlow Menus

– 59 –

% Select paper size (e.g. a4 or a2)

a4

/inch {72 mul} def

/mm { 25.4 div inch } def

% Make all subsequent measurements in mm

1 mm dup scale

% Set the spacing of the features

/FeatureSpacing 10 def

/radius 0.75 def

% Page size: can be much bigger than the actual page size!

/Width 1000 def

/Height 1000 def

0 setgray % Make black

0 FeatureSpacing Height

 {/y exch def

 0 FeatureSpacing Width

 {/x exch def

 x y radius

 0 360 arc

 closepath % make sure start and end are connected

 fill}

 for}

for

Set the number of identical copies you want and print

/#pages 1 def

showpage

%%EOF

Figure 52 shows such an image captured from such a coordinate system grid. Here the grid

was printed with features spaced at 20mm on an A2 format with the subsequent pages

laminated and then carefully taped together. Once you have an image of your grid, simply start

the wizard and it will lead you step-by-step through the definition of your coordinate system.

Note, however, that the wizard requires the actual coordinate system to be closely aligned

with the pixels and that the mapping required for the coordinate system is close to linear.

Figure 52: Image of coordinate system grid used with the Coordinate System Wizard.

DigiFlow Menus

– 60 –

5.2.6.5 Coordinate system test wizard
This wizard, Wizard_TestCoordinateSystem.dfc, is intended as a tool for checking the

consistency and accuracy of a coordinate system and, optionally, removing points defining the

coordinate system that may be outliers (e.g. due to them having incorrect data assigned to

them). When run, the wizard will lead the user through the process.

5.2.7 Region
Toolbutton:

Shortcut:

Related commands: region_create(..), region_destroy(..), get_region(..),
region_list(..)

In most cases the creation and modification of regions is handled as part of the sifting

process started with the Sift button when specifying an input image stream, as described in

§4.3.2. In some cases, however, it may be desirable to specify a region independently from

processing any images (e.g. creating a region used during the capture of live video, as seen in

§5.1.5.2). Selecting Edit: Region will start up a dialog containing only the Regions tab from

the normal Sift dialog, as shown in figure 53. The only point in invoking this is to look at,

define or modify a named region. The only lasting effect of this dialog is any changes in the

definition(s) of named regions.

Figure 53: The Region tab from the Sift dialog is produced in response to Edit: Dialog.

DigiFlow Menus

– 61 –

5.2.8 Process again

Toolbutton:

Shortcut:

Related commands: get_process_details(..)

Users often wish to reprocess an image, perhaps making minor changes to the control

settings, or maybe to apply the same process to a different set of images. The Process again

facility provides a convenient method for doing this.

To use this feature, simply open the image for which you wish to replicate the process, and

click on the Process again button (or select from the Edit menu). DigiFlow will then recover

the process settings from the image and, where possible, use them to initialise the dialog that

was initially used to create the image.

Note that this feature only works with DigiFlow-specific formats such as .dfi, .dfd or .dft

files as other formats do not provide an appropriate mechanism for storing the settings used to

create the image.

5.2.9 Dialog responses
The purpose of this facility is to provide an aid for those trying to create dfc files (see §8)

to run processes, and to provide an alternative user interface to many of the DigiFlow

processing facilities.

Figure 54: The Dialog Responses dialog that contains details of the responses corresponding to the

latest invocations of the dialogs.

The Process list box indicates the dialog for which responses are required. This list is

empty when DigiFlow is first started in a directory, but gradually fills as more DigiFlow

features are used. Upon exit from DigiFlow, all this information is saved in the

DigiFlow_Dialogs.dfs file that is created in the DigiFlow start directory.

Selecting a dialog from the Process list causes the corresponding response lines to be

displayed in the Response variables edit box on the left-hand side of the dialog. Note that the

entries in this edit control are always displayed in alphabetical order, and the list will only

contain assignment statements. Entries in the edit box may be edited, selected, copied, etc., as

is standard for edit boxes. Users may find it useful to copy the contents of this edit box to .dfc

files they are creating.

DigiFlow Menus

– 62 –

If the responses variables are edited, then they may be saved by clicking Save; alternatively

Reset restores them to their previous values. The user will also be prompted to save any

alterations if a different dialog is selected from the list.

The corresponding dialog may be started (e.g. to provide updated values) by clicking the

Dialog button, while clicking Execute will cause the corresponding process to be started.

5.2.10 dfcConsole

Toolbutton:

Shortcut: ctrl+E

Related commands:

The dfcConsole provides an interactive tool for writing, editing and debugging dfc macro

code.

Figure 55: The dfcConsole dialog is resizable.

This resizable window contains an edit control allowing interactive editing of the dfc code

to be run, alongside a series of controls allowing control over the execution environment and

providing timely information.

The main window (top left) in the dfcConsole allows interactive editing of dfc code. Syntax

is colourised and, matching parentheses, braces and square brackets are highlighted as they are

entered (or when the <shift> key is depressed adjacent to a bracket). The buttons in the Code

DigiFlow Menus

– 63 –

group down the right-hand side provide the basic editing functionality in conjunction with

standard short cuts such as ctrl+Z for undo (or shift+ctrl+Z for redo).

The Execute group may be used to selectively execute code. If there is no text selected,

then Line(s) will execute the current line. If there is an active selection, then Selection will

execute the selected code, and Line(s) will execute not only the selected text, but all the lines

on which some text is selected. Regardless of the selection, All will cause the entire code to be

executed. If Auto reset is checked, then using All will first discard any existing variables, etc.,

from the interpreter. Note that <alt><enter> is equivalent to clicking Line(s).

Most of the control buttons are disabled while the code is executing. Amongst the

exceptions are the stop and pause buttons. Clicking the stop button will abort the

currently executing code, while the pause button will temporarily suspend execution. When

toggled, the will cause the line currently being executed to be displayed regularly (at

intervals of about 1s) in the bottom-left control of the console. If not toggled, then the

button will cause the line currently being executed to be displayed when it is clicked.

Checking Breaks (&) causes break points, indicated by an ampersand in the code (see §8.12.5)

to be executed as and when they are found by the interpreter. If cleared, then the break points

are ignored. Note that the status of the Breaks (&) control may be changed by the user as the

dfc program runs.

The Interpreter group controls the internal state of the DigiFlow interpreter. Reset will

clear all variables and functions from the interpreter, while View displays the variables and

objects defined within the interpreter using the view_variables(..) interface. If an error

occurs, then Last Error will redisplay the last error message.

Below the code window is a documentation window. When DigiFlow detects a function

name under the cursor in the code window then it will display the documentation for this

function. This documentation (which is also accessible through the dfc help facility) is

hyperlinked to aid navigation. Standard forward and back navigation buttons are provided to

the right of the window. A given help topic may be pinned (or unpinned) using , or by

double tapping the <alt> key on the keyboard. Double-clicking on a line from within the

documentation window will cause the corresponding text (e.g. the definition of the entry point

for a function) to be inserted at the cursor in the main edit window.

The two windows at the bottom of the dfcConsole provide information about the contents

of variables. When the cursor is on a variable name, and that variable has a defined value

(typically the result of executing part of the code), then a summary of its contents will be

displayed in the left-hand window.

The bottom right-hand window serves two separate functions. As the user types in code, a

list of possible corresponding function names will be shown in this window. Double-clicking

on any of the entries in the list will cause the corresponding help text to be displayed in the

documentation window. This provides a convenient method of determining the name and

usage of the most appropriate function if you do not know its name in advance. At run-time

the bottom right-hand window takes on a different role and displays the output resulting from

a Query (see §8.12.4 for further details). The Show button in the Queries group may be used

to switch between the possible function list and the query output whilst editing code.

Standard file open and save buttons are provided to handle dfc code, along with a

dedicated button to reopen the last dfc code edited. The dfcConsole will automatically

reopen the last code edited if it did not complete cleanly its execution, and also saves

snapshots of the code prior to execution, etc., in DlgResponses.log.

The search facility is provided by a group of three buttons, , and , that search

forwards or backwards for, or highlight all the text that matches that in the edit box beneath

DigiFlow Menus

– 64 –

the buttons. Cut (ctrl+X or), copy (ctrl+C or) and paste (ctrl+V or) operate in the

standard way. Additionally, indenting (ctrl+space or), unindenting (shift+ctrl+space

or), commenting (ctrl+/ or) and uncommenting (shift+ctrl+/ or) can help with

the laying out and testing/documenting of dfc code.

Utility buttons to delete all code , help and code library buttons are provided for

convenience. Similarly, the font size may be increased or decreased .

Information about where a running code is currently executing can be found by clicking the

 button. This will cause the line currently being executed to be displayed in the dfc help

window at the bottom of the console. Similarly, clicking turns on (or off) automatic display

of the line currently being executed, updated typically every second. Note that these facilities

can have a significant impact on the execution speed.

When toggled, the smart indent button, , will attempt to align elements of the code in an

intelligent way. The settings button, , opens the subdialog shown in figure 56. This dialog

controls syntax and variable highlighting, and whether the calculator interpreter is

automatically reset each time All is clicked.

Figure 56: dfcConsole settings for controlling syntax highlighting, etc.

Note that using either the Close or buttons to close the window will prompt to save the

dfc code it contains. This feature is bypassed if you close the main DigiFlow window which

will simply close the window without prompting for the dfc code to be saved.

5.3 View

5.3.1 Zoom

5.3.1.1 In

Toolbutton:

Shortcut: alt+Z, or up_arrow

Related commands: view_zoom(..)

Zoom in the current window by a factor of two. Note: if the ctrl key is held down while

clicking the toolbutton or using the up arrow, then the window is resized to fit the new zoom.

5.3.1.2 Out

Toolbutton:

Shortcut: shift+alt+z, or down_arrow

Related commands: view_zoom(..)

Zoom out the current window by a factor of two. Note: if the ctrl key is held down while

clicking the toolbutton or using the down arrow, then the window is resized to fit the new

zoom.

DigiFlow Menus

– 65 –

5.3.1.3 Full size

Toolbutton:

Shortcut: ctrl+1

Related commands: view_zoom(..)

Zoom the current window to full size (one pixel on the display for each pixel in the stored

image). Note: if the ctrl key is held down while clicking the toolbutton, then the window is

resized to fit the new zoom.

5.3.1.4 Custom

Toolbutton:

Shortcut:

Related commands: view_zoom(..)

Starts the zoom dialog box that allows a broader range of zooms to be selected, and also

allows specification of the aspect ratio for the displayed image.

Figure 57: The custom zoom dialog box.

The two slider controls are linked with the two edit boxes. The Zoom setting controls the

number of pixels on the display used to display a single pixel in the stored image in the

horizontal direction. In contrast, the Aspect Ratio control determines the shape of the virtual

pixels to be displayed. For images captured through DigImage, the aspect ratio should be set

to 0.68 for PAL systems, or 0.75 for NTSC, thus recovering the original aspect ratio of the

images.

5.3.1.5 To Window

Toolbutton:

Shortcut: shift+ctrl+Q

Related commands: view_zoom_to_fit(..), view_zoom_all_to_fit(..)

Changes the zoom to fit the current window.

5.3.1.6 All Full Size

Toolbutton:

Shortcut: shift+ctrl+1

Related commands: view_zoom_all(..)

Changes the zoom of all windows to 100%, and fits the windows to the size of the images.

5.3.1.7 All Half Size

Toolbutton:

Shortcut: shift+ctrl+2

Related commands: view_zoom_all(..)

Changes the zoom of all windows to 50%, and fits the windows to the size of the images.

DigiFlow Menus

– 66 –

5.3.1.8 All Third Size

Toolbutton:

Shortcut: shift+ctrl+3

Related commands: view_zoom_all(..)

Changes the zoom of all windows to 33%, and fits the windows to the size of the images.

5.3.1.9 All Quarter Size

Toolbutton:

Shortcut: shift+ctrl+4

Related commands: view_zoom_all(..)

Changes the zoom of all windows to 25%, and fits the windows to the size of the images.

5.3.2 Fit Window

Toolbutton:

Shortcut: ctrl+Q

Related commands: view_fit_to_zoom(..), view_fit_all_to_zoom(..)

Resizes the current window so that it fits the zoom of its contents.

5.3.3 Cursor
Under all cursor modes, holding down the left mouse button will cause a duplicate cursor

to be displayed at the same pixel location on all the other open image windows. At the same

time, the current intensity and other related data (e.g. velocity) will be displayed in the status

bar for that window. This feature is valuable when trying to assess the relationship between

features in different images. As described below, the cursor can also be set to display other

information or to perform other tasks when the buttons are clicked.

If you hold down alt and click the left mouse button, then the duplicate cursor will continue

to be displayed in the location of the click on all windows (and on the window you clicked)

until you click again without the ctrl key held down. (Clicking again while holding down ctrl

will cause a further duplicate to be placed on all the windows, and so on.)

 Left Middle Wheel Right

 Click: Show

duplicate cursor on

all windows.

Click: Play/pause

movie or sequence.

Drag: Move rapidly

through a movie or

sequence.

Step through movie

or sequence

shift Drag: Scroll (pan)

current view.

 Zoom current view.

ctrl Click: Play/pause

movie or sequence in

all views*.

Drag: Move rapidly

through all movies or

sequences*.

Step through movie

or sequence in all

views.

alt Click: Add cursor

marker to all

windows (removed

by next click)

shift+ctrl Drag: Scroll (pan) all

views.

Click: Move all

movies or sequences

Zoom all vies.

DigiFlow Menus

– 67 –

to frame of the

clicked view.*

shift+alt

ctrl+alt

shift+ctrl+alt

*Sequence animation controls only operate on views that do not have their synchronisation

button activated.

5.3.3.1 Show Where

Toolbutton:

Shortcut: ctrl+alt+M (ctrl+M to turn off)

When the left mouse button is held down on an image, a popup window will appear next to

the cursor showing the current pixel and (if defined) world coordinates. Clicking the right

button (while the left button is still depressed) will produce a message box showing the

coordinates, as seen in figure.

Figure 58: The message box produced when the right-hand mouse button is clicked whilst the left-

hand button is held down. The coordinate i,j is in pixel coordinates, while x,y are in the current world

coordinates. In this case a velocity field was being explored and U and V represent the velocity, and S

gives the scalar field (here vorticity) on which the velocity is displayed.

5.3.3.2 Measure Distance

Toolbutton:

Shortcut: shift+ctrl+M (ctrl+M to turn off)

When the left mouse button is held down on an image, a popup window will appear next to

the cursor showing the distance between where the left-hand button was depressed and the

current location of the mouse pointer. Clicking the right button (while the left button is still

depressed) will produce a message box showing the distance.

Figure 59: The message box produced when measuring distances with the cursor. The first line gives

the pixel coordinates of the start and end points, along with the x and y in pixels (within brackets)

and the distance and angle (within <..> pairs). The second line repeats this for world coordinates. The

last two lines give the principal angle from horizontal and vertical, respectively, for the line with the

first value in each case being in pixel coordinates, whist the second gives the same information with

reference to the world coordinate system.

5.3.3.3 Move Image

Toolbutton:

Shortcut: shift+ctrl+alt+M (ctrl+M to turn off)

When the left mouse button is held down on an image, moving the mouse will pan the

image. The mouse wheel can be used to zoom the image.

DigiFlow Menus

– 68 –

Note that holding down shift while using the mouse will temporarily activate this feature

regardless of the toolbar settings.

5.3.3.4 Move All Images

Toolbutton:

Shortcut:

Similar to Move Image (§5.3.3.3), but moves and zooms all open images.

Note that holding down shift+alt while using the mouse will temporarily activate this

feature regardless of the toolbar settings.

5.3.4 Vectors

5.3.4.1 Increase Length

Toolbutton:

Shortcut:

Related commands:

Increase the length of velocity vectors and similar arrows. For finer control, see View:

Appearance (§5.3.5).

5.3.4.2 Decrease Length

Toolbutton:

Shortcut:

Related commands:

Decrease the length of velocity vectors and similar arrows. For finer control, see View:

Appearance (§5.3.5).

5.3.4.3 Reset Length

Toolbutton:

Shortcut:

Related commands:

Resets the length of velocity vectors and similar arrows to their defaults. For finer control,

see View: Appearance (§5.3.5).

5.3.5 Appearance

Toolbutton:

Shortcut: ctrl+A

Related commands:

This tool provides a variety of tools for adjusting the appearance of an image. The scope of

the tools depends on the format of the image; in particular, if the image is integer or floating

point, and whether it contains a single plane of information or multiple planes.

Figure 60: Dialog for adjusting the appearance of an image. This example shows the features

available for an image containing a velocity field.

DigiFlow Menus

– 69 –

The Data plane control will show the data planes available within the image. For simple

images, only one data plane will be listed, but for velocity fields, for example, both velocity

(vector data) and a background image (scalar data) will be listed. The appearance of each data

plane type can be changed by selecting it in the Data plane control, then making the required

adjustments. For example, if a velocity plane is selected, then the scale of the vectors, the

spacing between the vectors, and the colour in which they are plotted may all be changed.

Additionally, a check box allows the removal of any mean velocity. For scalar data, the colour

scheme and the mapping between the scalar values and the limits of the colour scheme can be

changed. Some of this latter functionality is also available through the Colour scheme dialog –

see §5.3.6.

5.3.6 Colour scheme

Toolbutton:

Shortcut: shift+ctrl+C

Related commands: view_colour(..), colour_scheme(..), add_colour_scheme(..),
delete_colour_scheme(..)

Used to select the colour scheme for the active image, or define a new colour scheme. The

Select Colour Scheme dialog box invoked by this option provides the ability to add, remove

and alter colour schemes.

Figure 61: Dialog used for selecting the colour scheme for an image.

A specific colour scheme may be selected by clicking on the name in the list box. The (image

default) scheme is the scheme in use when the window was created. The (view default) is that

in use for the image when this dialog was entered.

Note: This dialog is modal for free versions of the DigiFlow licence, but modeless

(allowing switching between other elements of DigiFlow) for full licences.

Checking Adjust intensity and moving the sliders or typing a value into the associated edit

boxes may alter the appearance of a given scheme. For example, by setting Black to 1.0 and

Saturation to –1.0, a scheme with the negative colours may be produced. Colour schemes

created and added through the dfc function add_colour_scheme(..) are saved in

DigiFlow_Status.dfs and will be included in the list of available schemes.

DigiFlow Menus

– 70 –

Clicking on Add brings up a dialog for adding new colour schemes. Details of these new

schemes are added to the DigiFlow_Status.dfs file and thus remain available the next time

DigiFlow is started in the same directory.

Figure 62: Add a new colour scheme.

DigiFlow understands the DigImage colour schemes. These may be added, as illustrated in

figure 62, by simply giving them a name and typing the full path specification of the colour

scheme. For DigImage, the colour schemes are stored in the %DigImage%\LUTs directory under

the name Output##.lut, where ## represents a two digit number, starting with 00 for the first

DigImage colour scheme.

Alternatively, specifying an image in the File edit box will install the colour scheme stored

in that image, or construct a colour scheme of your own. The following example uses a short

piece of dfc code to construct and install a colour scheme that is white in the middle tending

towards red for low values and blue for high values. In this particular case, the scheme is

tweaked so that its equivalent greyscale intensity varies parabolically. (It is often useful to

have a colour scheme that works in both colour and monochrome.) The parabolic nature will

emphasise extreme values more than small values. Such a scheme can be useful for displaying

vorticity, for example.
Initialise arrays to white

red := make_array(1,256);

green := red;

blue := red;

Make basic colour scheme as two linear ramps

for k:=0 to 63 {

 z := k/64;

 p := 128 + k;

 q := 127 - k;

 red[p] := 1 - z; # Remove red

 blue[q] := 1 - z; # Remove blue

};

for k:=64 to 127 {

 z := (k-64)/64;

 p := 128 + k;

 q := 127 - k;

 red[p] := 0; # No red

 green[p] := 1 - z; # Remove green

 blue[q] := 0; # No blue

 green[q] := 1 - z; # Remove blue

};

Make parabolic in grey value

grey := 0.299*red + 0.587*green + 0.114*blue; # Current grey

equivalent

p := x_index(256)/255;

limit := 0.8; # Limiting grey value for ends

target := 1 - 4*limit*(p - 0.5)^2; # Target grey equivalent

DigiFlow Menus

– 71 –

scale := target/(grey max 1e-8); # The required scaling

red *= scale;

green *= scale;

blue *= scale;

Install the colour scheme

add_colour_scheme("test",red,green,blue);

Now test the colour scheme

im := x_index(512,64)/511;

hV := view(im);

view_colour(hV,"test");

5.3.7 Toggle colour

Toolbutton:

Shortcut: ctrl+B

Related commands: view_toggle_colour(..),

When an image is displayed using false colour, clicking this button will temporarily switch

to greyscale. Clicking a second time will return the image to the original false colour scheme.

5.3.8 Toolbar
Turns on or off the toolbar at the top of the main DigiFlow window. It is recommended that

you leave this turned on.

5.3.9 Slaves
Slave windows are a special type of window that are tied to a normal window – the master

window – in such a way that when the master window is updated, any changes are reflected in

the slave window. For example, if the master window is part of a sequence, then stepping

through the sequence will update not only the master window, but also its slave.

A given master window may have one or more slave windows. When a master window is

closed, its slaves are closed automatically (without prompting). Closing a slave window does

not alter the state of the master nor force it to close.

For a more comprehensive array of slaves, refer to Tools: Slave Process in §5.7.5.

5.3.9.1 3D View

Toolbutton:

Shortcut:

Related commands: slave_view_3d(..)

This option takes a copy of the image in the current active window and uses the values it

contains to create a three-dimensional surface plot in a new slave window. The special slave

window has its own toolbar that controls the three-dimensional rendering and allows re-

orientation and other visual changes. This window is illustrated in figure 63.

DigiFlow Menus

– 72 –

Figure 63: A three-dimensional slave view.

The buttons on the toolbar are divided into five groups. With the exception of the + and

buttons (the second group), the first four groups of buttons act as a set of radio buttons in

which only one button may be pressed at a time. The pressed button then selects the drawing

attribute that is to be changed using the plus or minus buttons. A brief summary of the buttons

is given below.

Button Description

Enable rotations about the x axis. Once enabled, then the and buttons

rotate the plot about the x axis

Enable rotations about the y axis. Once enabled, then the and buttons

rotate the plot about the x axis

Enable rotations about the y axis. Once enabled, then the and buttons

rotate the plot about the x axis

Decrements the number associated with a render setting. The render setting

is selected by clicking on the corresponding radio button in the toolbar menu.

Increments the number associated with a render setting. The render setting

is selected by clicking on the corresponding radio button in the toolbar menu.

Enable panning the three-dimensional view left or right. Once enabled,

then the and buttons pan the plot left or right.

Enable panning the three-dimensional view up or down. Once enabled,

then the and buttons pan the plot up and down.

DigiFlow Menus

– 73 –

Enable moving the camera closer or further. Once enabled, then the and

 buttons move the view position in and out.

Enable changing the vertical scale of the plotted data. Once enabled, then

the and buttons decrease and increase the scale.

Enable changing the spacing of the grid lines plotted on the surface. Once

enabled, then the and buttons change the spacing..

Toggle the grid on and off.

Paint the surface

Toggle hidden line removal

Toggle depth fog on and off.

Activate spotlight.

Change the colour of the background.

Toggle display of axes.

Reset settings.

Note that the view produced is displayed as a bitmap. This may be saved, printed and/or

converted to an Encapsulated PostScript plot.

5.3.10 Threads

Toolbutton:

Shortcut:

Related commands: as_thread(..), is_running(..), wait_for_end(..),

pause_thread(..), unpause_thread(..), kill_thread(..),

get_thread_prioritiy(..), set_thread_priority(..),

process, process_as_thread

Starts the dialog box showing and controlling the various active processing threads.

Figure 64: The thread control dialog box.

Each thread is given a name composed of a brief description of the process responsible for

the thread and an identification number. The latter is used to provide a unique identification of

a particular thread.

DigiFlow Menus

– 74 –

To make any changes to a thread, first select it from the list. The current status and

execution priority of the thread will then be displayed. The thread may be paused or resumed

by clicking the corresponding buttons. Alternatively, clicking Stop will close the thread,

terminating the associated process in a relatively graceful manner. Once a process thread has

been stopped, it may only be restarted by starting the process again from the beginning. In

contrast, a thread that has been paused may always be resumed.

Any threads still running when DigiFlow is exited will be stopped and cannot be restarted.

Note that Normal priority is one step lower than the default priority for most Windows

applications, thus preventing a DigiFlow process from unacceptably impacting the overall

performance of Windows.

5.3.11 Pause all threads

Toolbutton:

Shortcut:

Related commands:

This tool causes all threads currently running in DigiFlow to be paused until the OK button

is pressed. Note that pausing these threads does not prevent you from opening images,

changing colour schemes, or even starting new processes: it is only threads that were running

at the time the tool was activated that are paused.

Figure 65: Message box indicating all processing within DigiFlow has been paused.

Note: it is advisable not to use this tool while using the File: Live Video features.

5.3.12 Refresh

Toolbutton:

Shortcut:

Related commands:

Causes the currently selected view to be refreshed from the corresponding file, if one

exists. This is necessary if you wish to see any changes that have been made to the file since it

was originally displayed. This is particularly valuable when editing .dfd files or viewing

images made by external programs, for example.

5.3.13 In Parallel

Toolbutton:

Shortcut:

Related commands: in_parallel(..)

From DigiFlow version 2.0 (excluding the free version), DigiFlow is able to execute some

facilities in parallel when it detects multiple processors, allowing a significant speed-up of

these facilities. Note, however, that due to overheads in the parallelisation, plus limited

memory and disk bandwidth, the speed-up is less than the increased cpu usage. In general,

when doing standard processing, better performance can be achieved by running two jobs at

the same time on DigiFlow without the In Parallel facility invoked, than will be achieved by

running the two jobs in succession using the In Parallel facility.

DigiFlow Menus

– 75 –

Note that the current cpu usage is shown in the main DigiFlow status bar at the bottom of

DigiFlow. With multiple processors, invoking In Parallel should increase the cpu usage

beyond 100%. In version 2.0 the parallelisation is coded explicitly in only a small number of

facilities, although it is expected that in future versions parallel execution will be much more

widely available within DigiFlow.

5.4 Create

This menu is currently disabled.

5.5 Sequence

This menu is only available when the active window contains a movie, sequence or

collection of images. The menu largely replicates the functionality available from the toolbar

along the top of these windows.

Figure 66: The movie tool bar.

Button Section Description

§5.5.1.12 Play backwards in a loop

§5.5.1.6 Play backwards quickly (Review)

§5.5.1.2 Play backwards

§5.5.1.3 Stop playing sequence

§5.5.1.4 Pause current movie animation

§5.5.1.1 Play forwards

§5.5.1.5 Play forwards quickly (Cue)

§5.5.1.11 Play forwards in a loop

§5.5.1.9 Jump to the start

§5.5.1.8 Move back one frame

§5.5.1.7 Move forwards one frame

§5.5.1.10 Jump to the end

§ Speed up the playback

§ Slow down the playback

§5.5.1.13 Synchronise with another view

§5.5.1.14 Control dialog for additional control over

§5.5.1.15 Joggle between two frames

DigiFlow Menus

– 76 –

§5.5.1.16 Joggle across multiple frames

§5.5.1.17 Set first frame for loop

§5.5.1.18 Frame track bar showing location in sequence

§5.5.1.19 Set last frame for loop

5.5.1 Animate

5.5.1.1 Play

Toolbutton:

Shortcut: alt+up; Click middle mouse button

Related commands: animate_view(..,"play")

Plays the image selector (§3.4) from the current location onwards.

Clicking the middle mouse button will play the movie (unless it is already playing,

forwards or backwards, in which case it will pause it). Holding the middle button down while

dragging the mouse to the right (left) will move rapidly forwards (backwards) through the

movie.

5.5.1.2 Play Backwards

Toolbutton:

Shortcut: alt+down; Double click middle mouse button

Related commands: animate_view(..,"playbackward")

Plays backwards the image selector (§3.4) from the current location.

Double clicking the middle mouse button will play the movie backwards. Holding the

middle button down while dragging the mouse to the right (left) will move rapidly forwards

(backwards) through the movie.

5.5.1.2.1

5.5.1.3 Stop

Toolbutton:

Shortcut:

Related commands: animate_view(..,"stop")

Stops the playing of the image selector (§3.4) from the current location. The sequence is

left with the final frame played visible, but internally the movie, sequence or collection is

returned to its starting point. Playing the movie forwards again will start from the beginning,

or backwards will start from the end.

5.5.1.4 Pause

Toolbutton:

Shortcut: alt+space; Click middle mouse button

Related commands: animate_view(..,"pause")

Pauses the playing of the image selector (§3.4) from the current location. The sequence is

left with the final frame played visible, and play operations will restart from this point.

Clicking the middle mouse button will pause the movie if it is already playing (either

forwards or backwards. If the movie is not already playing, then clicking the middle mouse

button will play it.

DigiFlow Menus

– 77 –

5.5.1.5 Cue

Toolbutton:

Shortcut:

Related commands: animate_view(..,"cue")

Plays the image selector (§3.4) at ten times the normal speed (showing only every tenth

frame).

5.5.1.6 Review

Toolbutton:

Shortcut:

Related commands: animate_view(..,"review")

Plays the image selector (§3.4) backwards at ten times the normal speed (showing only

every tenth frame).

5.5.1.7 Step Forwards

Toolbutton:

Shortcut: alt+right; Mouse wheel, middle mouse button

Related commands: animate_view(..,"step")

Step forwards one frame in the image selector (§3.4), starting from the current location.

Rotating the mouse wheel will step the movie forwards or backwards, depending on the

direction of rotation. Holding the middle button down while dragging the mouse to the right

(left) will move rapidly forwards (backwards) through the movie.

If the ctrl key is held down at the same time as using the above mouse controls, then the

command is applied to all open windows.

5.5.1.8 Step Backwards

Toolbutton:

Shortcut: alt+left; Mouse wheel, middle mouse button

Related commands: animate_view(..,"stepbackward")

Step backwards one frame in the image selector (§3.4), starting from the current location.

Rotating the mouse wheel will step the movie forwards or backwards, depending on the

direction of rotation. Holding the middle button down while dragging the mouse to the right

(left) will move rapidly forwards (backwards) through the movie.

If the ctrl key is held down at the same time as using the above mouse controls, then the

command is applied to all open windows.

5.5.1.9 Start of Movie

Toolbutton:

Shortcut:

Related commands: animate_view(..,"start")

Move to the start of the image selector.

5.5.1.10 End of Movie

Toolbutton:

Shortcut:

Related commands: animate_view(..,"end")

Move to the end of the image selector.

DigiFlow Menus

– 78 –

5.5.1.11 Loop

Toolbutton:

Shortcut:

Related commands: animate_view(..,"loop")

Plays the image selector (§3.4) forwards in a continuous loop.

5.5.1.12 Loop backward

Toolbutton:

Shortcut:

Related commands: animate_view(..,"loopbackward")

Plays the image selector (§3.4) backwards in a continuous loop.

5.5.1.13 Synchronise

Toolbutton:

Shortcut:

Related commands: animate_view(..,"sync")

Causes this image selector (§3.4) to be slaved to another selector. The other selector will

provide the time information for synchronous advancement of this selector.

5.5.1.14 Control dialog

Toolbutton:

Shortcut:

Related commands:

This option fires up a dialog providing more detailed control over the animation of the

image selector.

Figure 67: The dialog box that provides detailed control of image animation.

The buttons and controls in this dialog box are similar to those found for the selector

timing tab in the Sift dialog in §4.3.1. In addition, the dialog provides more detailed control

over the animation speed.

Note: This dialog is modal for free versions of the DigiFlow licence, but modeless

(allowing switching between other elements of DigiFlow) for full licences.

DigiFlow Menus

– 79 –

5.5.1.15 Joggle between two frames

Toolbutton:

Shortcut:

Related commands: animate_view(..,"joggle2")

This causes the sequence to flip back and forwards between two consecuitive images. This

can be useful for looking at the relative movement or relationship between the images.

5.5.1.16 Joggle across multiple frames

Toolbutton:

Shortcut:

Related commands: animate_view(..,"joggle6")

This causes the sequence to repeatedly play multiple (six) images and then jump back to

the first. This can be useful for looking at the relative movement or relationship between the

images.

5.5.1.17 Set first frame for loop

Toolbutton:

Shortcut:

Related commands: animate_view(..,"setfrom")
animate_view(..,"resetfromto")

Sets the first image (the From image in the control dialog in §5.5.1.14) to be the current

frame. Any subsequent playing of the sequence will start at this image. Note the range over

which the sequence is played can also be set by selecting a range by holding down the shift

button while using the frame trackbar (see §5.5.1.18).

5.5.1.18 Frame track bar

Toolbutton:

Shortcut:

Related commands:

The trackbar shows the current position of the image within the sequence. Grabbing the

track bar with the mouse allows rapid movement through the sequence. A range of images

may be selected by using the shift key in conjunction with the mouse. Any subsequent play

or loop operation will be restricted to the selected range, although the track bar can still be

used to access images outside that range. Clicking the bar while holding down the ctrl key

will reset the range to the entire sequence.

The range of the track bar may also be set using the buttons detailed in §§5.5.1.17 and

5.5.1.19.

5.5.1.19 Set last frame for loop

Toolbutton:

Shortcut:

Related commands: animate_view(..,"setto")
animate_view(..,"resetfromto")

Sets the last image (the To image in the control dialog in §5.5.1.14) to be the current frame.

Any subsequent playing of the sequence will start at this image. Note the range over which the

sequence is played can also be set by selecting a range by holding down the shift button

while using the frame trackbar (see §5.5.1.18).

DigiFlow Menus

– 80 –

5.6 Analyse

5.6.1 Time information

5.6.1.1 Time average

Toolbutton:

Shortcut:

Related commands: process Analyse_TimeAverage(..)

Calculates a variety of averages and other statistics for an image selector.

Figure 68: Compute the average of an image selector.

The Input group contains the controls used to determine the image selector to be sampled.

This selector may be specified from a file by clicking the File button, in which case the

standard Open Image dialog box is produced. Finer control over which parts of the input

stream are to be processed are determined via the Sift button; see §4.3. Alternatively, the

output of a different process may be utilised by clicking the Process button (refer to §7 on

chaining processes for further details).

Note that this tool can process not only images from any DigiFlow supported format, but

also velocity fields and other complex data stored in .dfi files. The output stream preserves the

data format of the input stream. For example, if the input stream is a velocity field, then the

output stream will also contain velocity information.

The time average image is saved to the file specified in the Outputs group by clicking the

Save As button. If this process is acting as the source for another process, the Save As button

is suppressed (refer to §7 for further details). The colour scheme and compression options to

be used for the output stream is set by clicking the Options button (§4.4).

The Method radio buttons select the averaging procedure adopted. Arithmetic returns the

standard arithmetic mean, while RMS calculates the root mean square image. The image

fluctuations are represented by the Std. Dev. option, while Geometric and Harmonic provide

the other forms of averaging. These are summarised in the table below.

DigiFlow Menus

– 81 –

Method Formula Comments

Arithmetic

1

0

1 n

i

iP
n

This is the standard mean

value.

RMS 21
1

0

21

n

i

iP
n

The root mean square value.

Std. Dev. 21
2

1

0

1

0

2 11

n

i

i

n

i

i P
n

P
n

Standard deviation of the

image series.

Geometric n

i

n

i

P

1
1

0

Geometric mean.

Harmonic

1

0

1n

i iP
n

Harmonic mean.

Min
i

n

i
P

1

0
min

Minimum value.

Max
i

n

i
P

1

0
max

Maximum value.

5.6.1.2 Weighted time average
The weighted time average facility provides an extension to that provided by the more

simple averaging. In particular, the following table defines the weighted means. Here, Pi is the

intensity at a given pixel from the image at time i, and Ai is the weighting applied to that

pixel/image.

Method Formula Comments

Arithmetic 1

0

1

0

n

i i

i

n

i

i

A P

A

This is the standard mean

value.

RMS 1 2
1

2

0

1

0

n

i i

i

n

i

i

A P

A

The root mean square value.

Std. Dev. 1 2
2

1 1
2

0 0

1 1

0 0

n n

i i i i

i i

n n

i i

i i

A P A P

A A

Standard deviation of the

image series.

Geometric 1

0

1
1

0

n

i

i
i

A
n

A

i
i

P

Geometric mean.

Harmonic 1 1

0 0

1n n

i

i i i i

A
A P

Harmonic mean.

Min
i

n

i
P

1

0
min

, only for Ai 0

Minimum value.

DigiFlow Menus

– 82 –

Max
i

n

i
P

1

0
max

, only for Ai 0

Maximum value.

The user interface for the weighted mean is similar to that for the simple mean facility (see

§5.6.1.1), but has an additional (optional) Weighting selector for specifying a second input

stream to provide information with which to construct the weighting Ai. The weighting itself

is constructed by the code specified in Expression. This code should return an array of the

same dimensions as the input Sequence, or a two-dimensional array of the same size in those

two dimensions. This array can be constructed from the input Sequence and (when specified)

the input Weighting. If Weighting is specified, then this image is available to the code through

the array variable A and the compound variable B. If Weighting is not specified, then A and B

point to the input Sequence. In both cases the input Sequence is also available through the

array variable P and compound variable Q.

For simple images, the array variables A and P will have two dimensions, whereas for more

complex images A and P will have more than two dimensions. The information in these

multidimensional arrays will also be available through individual components of the

compound variables B and Q. For example, if the first input Sequence contains a velocity field

generated by the PIV facility (see §5.6.5.2) then Q.u and Q.v will contain the two components

of the velocity field, and (depending on the options selected during the processing) Q.Scalar

may contain the vorticity field. Full colour images are supplied as their red, green and blue

components with a three-dimensional P array: P[:,:,0] contains the red component,

P[:,:,1] contains the green component, and P[:,:,2] contains the blue component. For

convenience, these are also supplied as Q.Red, Q.Green and Q.Blue. The button may be

used to search for or provide information on specific DigiFlow functions. The button may

be used to search for or provide information on specific DigiFlow functions.

One common use of the weighted average facility is for computing the temporal average of

velocity fields where there may be an incomplete spatial coverage for the velocity at any

particular time. In such cases, only points with valid velocity vectors should contribute to the

temporal mean. This may be achieved by specifying the sequence of velocity fields to the

input Sequence and simply specifying A<>0; as the Expression as the PIV subsystem sets the

velocity to exactly zero when it is unable to determine a velocity. More sophisticated

averaging can be achieved by using the Quality output from the PIV subsystem to construct a

more continuous measure of quality to be used as the weighting.

DigiFlow Menus

– 83 –

Figure 69: Dialog controlling the weighted time average.

5.6.1.3 Harmonic analysis

Toolbutton:

Shortcut:

Related commands: process Analyse_HarmonicAnalysis(..)

One valuable method of analysing periodic signals, such as waves, is by harmonic analysis

to determine the phase and amplitude of the component of the signal at a given frequency or

set of frequencies.

DigiFlow provides a convenient method of analysing a sequence for a given frequency and

harmonics (integer multiples) of that frequency. The Input sequence should span one or

preferably more periods of the frequency you wish to analyse. The Sift button should be used

to ensure the period being analysed represents a time of steady oscillation. In general, the

more images available within this period the better the results.

The Fundamental frequency to be analysed can be specified in a number of ways, with the

Period stated in either time or frames, or the Frequency in Hertz (cycles per second) or

radians per second. For best results, the input sequence should correspond to an exact multiple

of the fundamental period. If the Conform input to period box is checked, then DigiFlow will

automatically truncate the input sequence so that it is as close as possible to a multiple of the

period.

In addition to analysing the fundamental frequency, DigiFlow can simultaneously analyse

harmonics of this frequency, plus the mean (zero frequency) component. Unlike many other

DigiFlow facilities, the Harmonic Analysis tool will generate the names of the harmonic files

automatically from the files specified in Output for the fundamental. If the name for the

DigiFlow Menus

– 84 –

fundamental file is amp.dfi, then the 2 harmonic is saved in amp[x2].dfi. Similarly for other

harmonics. (Note that even if the Number as #### or Compact list boxes are checked in the

Open Image dialog then DigiFlow will not treat the number within the square brackets as part

of a sequence number.)

Figure 70: Dialog controlling harmonic analysis within DigiFlow.

 (a) (b)
Figure 71: Example of harmonic analysis, showing (a) amplitude and (b) phase of the fundamental

frequency of an internal gravity wave.

Once the harmonic analysis has been completed, it is a simple matter to reconstruct the

flow field at an instant in time. Alternatively, the field may be decomposed into the different

wave components using a Hilbert Transform. A tool for achieving this is found under the

Spectral recipes in Tools Transform Recipes. Figure ?? illustrates the results.

DigiFlow Menus

– 85 –

Figure 72: Hilbert Transform yielding waves with kx > 0 and ky > 0. (a) Amplitude. (b) Phase.

5.6.1.4 Time series

Toolbutton:

Shortcut:

Related commands: process Analyse_TimeSeries(..)

Extracts a time series of the intensity along some line or curve and forms an image with

one spatial and one temporal dimension.

Figure 73: Dialog box controlling the extraction of time series information from an image sequence.

This facility takes a single input stream, and creates one or more output streams. The input

streams are normally sequences, while the output streams are normally individual images.

The Input group contains the controls used to determine the image selector to be sampled.

This selector may be specified from a file by clicking the File button, in which case the

standard Open Image dialog box is produced. Finer control over which parts of the input

DigiFlow Menus

– 86 –

stream are to be processed are determined via the Sift button; see §4.3 for further details.

Alternatively, the output of a different process may be utilised by clicking the Process button

(refer to §5.7.5 for further details).

Note that this tool can process not only images from any DigiFlow supported format, but

also velocity fields and other complex data stored in .dfi files. The output stream preserves the

data format of the input stream. For example, if the input stream is a velocity field, then the

output stream will also contain velocity information.

A number of time series may be generated simultaneous in this manner, each representing a

different section through time image, and each written to a different Timeseries Image. You

may move between each of the possible time series using the Series edit control and

associated spin control. Individual extraction codes are enabled or disabled via the Use check

box, while the Reset All button may be used to turn off all and reset all extraction time series.

For each time series, the section through the image may be specified in a variety of ways.

The Column and Row radio buttons allow data to be extracted from a given column or row

within the image. In both cases, this data is written to the output image as a row of pixels,

with each successive time being placed above the previous one.

The Between radio button allows two points to be specified, and the data extracted from

the line joining the two points using a specified number of steps. The points may be specified

in either pixel or world coordinates by selecting the appropriate Coordinate sytem.

Alternatively, expressions may be given to determine the line or curve along which data is

to be sampled. These curves may be specified either as y(x), x(y), or parametrically as x(s) and

y(s). Depending on which of these is selected, the formula supplied by the user should be cast

in terms of x, y or s. The formula may also include time Time.tNow and/or the frame number

Time.fNow (the limits on the selector times and frames are also available through Time.tFrom,

Time.tTo, Time.tStep, Time.fFrom, Time.fTo and Time.fStep). In addition, the variable

Time.iNow provides an iteration counter. This will always start at zero and increase by one for

each image processed (in contrast, the first value for Time.fNow depends on where in the input

sequence the sequence to be processed starts, and its increment depends on the stepping

between the images to be processed). In all cases, the user can specify the number of sample

points and the coordinate system to be used.

The direction of the time axis on the resulting images may be specified using the Time

direction group.

Each Timeseries Image created has the samples taken across its width (from first to last

left to right), and time increasing from bottom to top. The file that receives this image is

specified in the Outputs group by clicking the Save As button. Note that a different

destination is provided for each time series activated. If this process is acting as the source for

another process, the Save As button is suppressed (refer to §7 for further details). The colour

scheme and compression options to be used for the output stream is set by clicking the

Options button (§4.4).

In addition to the standard image formats for the output of each time series, this facility

supports simple ASCII data files with a .dat extension that provides a more convenient

format, including precise details of the pixel or world coordinates from where the data came.

Note that subpixel precision is obtained for all the samples by using bilinear interpolation,

where appropriate.

DigiFlow Menus

– 87 –

5.6.1.5 Time extract

Toolbutton:

Shortcut:

Related commands: process Analyse_TimeExtract(..)

Using a user-specified formula, extract a one-dimensional array of data from each image in

a sequence, and use this to construct an image with one spatial and one temporal dimension.

Figure 74: Dialog controlling the extraction of calculated data from an image to form a time series of

this data.

This facility takes a single input stream, specified through, and creates one or more output

streams. The input streams are normally sequences, while the output streams are normally

individual images.

The Input group contains the controls used to determine the image sequence to be sampled.

This selector may be specified from a file by clicking the File button, in which case the

standard Open Image dialog box is produced. Finer control over which parts of the input

stream are to be processed are determined via the Sift button; see §4.3 for further details.

Alternatively, the output of a different process may be utilised by clicking the Process button

(refer to §7 for further details).

Note that this tool can process not only images from any DigiFlow supported format, but

also velocity fields and other complex data stored in .dfi files. The output stream preserves the

data format of the input stream. For example, if the input stream is a velocity field, then the

output stream will also contain velocity information.

The Extraction code should take the current image and return a one-dimensional array of

data to be added to the time series, and the Variables box lists some of the variables

describing the image that are available for use in the code; a more comprehensive list may be

viewed by clicking the Variables button.. A number of time series may be generated

simultaneous in this manner, each with a different Extraction code, and each written to a

different Timeseries image. You may move between each of the possible time series using the

eSeries edit control and associated spin control. Individual extraction codes are enabled or

DigiFlow Menus

– 88 –

disabled via the Use check box, while the Reset All button may be used to turn off all and

reset all extraction time series.

Each Timeseries Image created as one axis as time and the other as the ordinal position of

the one-dimensional array returned by the Extraction code. The direction of the time axis is

specified by the Time direction group. The file that receives this image is specified in the

Outputs group by clicking the Save As button. Note that a different destination is provided for

each time series activated. If this process is acting as the source for another process, the Save

As button is suppressed (refer to §7 for further details). The colour scheme and other output

options to be used for the output stream is set by clicking the Options button (§4.4).

The basic image from the input stream is supplied to the Extraction code in the array

variable P. For simple images this will be a two-dimensional array. However, for more

complex image formats (such as velocity fields stored in .dfi files), P will contain more than

two dimensions. In such cases DigiFlow will also provide the same data split into its

individual component two-dimensional arrays in the compound variable Q. For example, if the

input stream contains a velocity field generated by the PIV facility (see §5.6.5.2) then Q.u and

Q.v will contain the two components of the velocity field, and (depending on the options

selected during the processing) Q.Scalar may contain the vorticity field. If the input stream

contains a DigiFlow drawing (typically one or more .dfd files), then DigiFlow provides the

drawing is available through its handle hD, in addition to a bitmap version of it in the array

variable P. Additional drawing commands may be added to the drawing handle, or it may be

incorporated into a compound drawing using draw_embed_drawing(..).

Full colour images are supplied as their red, green and blue components with a three-

dimensional P array: P[:,:,0] contains the red component, P[:,:,1] contains the green

component, and P[:,:,2] contains the blue component. For convenience, these are also

supplied as Q.Red, Q.Green and Q.Blue.

DigiFlow also provides time information about the input stream through the Time

compound variable. Typically this contains Time.fNow and Time.tNow giving the current

frame number and time (in seconds) relative to the start of the entire input stream. An

additional variable Time.iNow gives an iteration counter that is the frame number relative to

the start of those that are actually being processed. Details of the entire input stream are

provided through Time.fFirst, Time.fLast and Time.tFirst, Time.tLast that provide

details of the first and last frame/time that exist in the input stream. Moreover, Time.fFrom,

Time.fTo and Time.tFrom, Time.tTo provide information about which part of the stream is

being processed.

Although the main variables available are listed in the Variables list box this list does not

include any additional modifiers for the individual data plane variables beginning with Q.

These modifiers include the description, scaling and (where appropriate) spacing of the data.

A more comprehensive list may be viewed by clicking the Variables button. For further

details, refer to the PIV data example in §5.7.2.

The Extraction code may be as simple as returning a subarray (e.g. P[100,10:50]), or it

may be the result of a complex calculation on the image. The button may be used to search

for or provide information on specific DigiFlow functions. Examples of more complex

processing are given below.

Depth of gravity current

For example, suppose you have an experiment of a gravity current propagating along a

channel and want to produce a time history of the depth of the current. The first question is

how to measure the depth. There are a number of possibilities.

DigiFlow Menus

– 89 –

The simplest measure of the depth would be the height from the bottom to the point where

the density fell below some threshold. Suppose we have previously processed a sequence

using the dye attenuation facility described in §5.6.3.1 and have an image stream that

represents the concentration/density of the current. This could be defined as the number of

pixels that exceed some threshold in intensity. In this case the Extraction code would be

y_count(P > 0.1)/y_size(P), where the threshold is 0.1. Dividing by y_size(P) means

that the resulting depth will be normalised by the height of the input stream.

A more robust measure would be to use the integral of the concentration over the depth.

This is achieved simply by looking at the vertical mean as a function of position by

y_mean(P). This gives a measure of the hydrostatic pressure excess at the base of the current.

Concentration power spectrum

As a more complex example, suppose we have a series of LIF images from turbulent flow

(these may have been processed using the LIF facilities described in §5.6.3.2), and you would

like to know how the power spectrum of some region evolves in time. The region might vary

for each image. In particular here we are looking at Rayleigh-Taylor instability and are

interested only in the region where the two layers are mixing. In this case the camera was

turned on its side. We could rotate the image (e.g. using rotate_image_clockwise(..) or

transpose(..)), but for this example we will work in the rotated space with x vertical and y

horizontal. A suitable code segment is given below:
Threshold for fluctuations

thresh := 0.05;

Determine fluctuations

Fluct2 := y_rms(P)^2 - y_mean(P)^2;

Fird first location where threshold exceeded

iStart := -1;

for i:=0 to x_size(P)-1 {

 if (iStart = -1 and Fluct2[i] > thresh) {

 iStart := i;

 };

};

Fird last location where threshold exceeded

iEnd := -1;

for i:=x_size(P)-1 to 0 step -1 {

 if (iEnd = -1 and Fluct2[i] > thresh) {

 iEnd := i;

 };

};

Compute power spectrum within this region

Spect := power_spectrum_column(P[iStart:iEnd,:]);

Determine and return mean

x_mean(Spect);

To determine the region over which we will compute the concentration power spectrum we

probe the magnitude of the concentration power spectrum, calculated from the root mean

square and mean intensities (concentrations) in the y direction, looking for the first and last

columns that satisfy a threshold condition. (Note we could use the function

x_transition_index(..) in place of the loops for improved computational efficiency.)

5.6.1.6 Time summarise

Toolbutton:

Shortcut:

Related commands: process Analyse_TimeSummarise(..)

The Time summarise facility is similar to the Time extract facility, except that it is tailored

towards extracting and graphing scalar quantities from an image sequence.

DigiFlow Menus

– 90 –

Figure 75 shows the dialog controlling this facility. The Input group contains the controls

used to determine the image sequence to be sampled. This selector may be specified from a

file by clicking the File button, in which case the standard Open Image dialog box is produced.

Finer control over which parts of the input stream are to be processed are determined via the

Sift button; see §4.3 for further details. Alternatively, the output of a different process may be

utilised by clicking the Process button (refer to §7 for further details).

The Extraction code should take the current image (provided in P for simple images)

and return a scalar value to be added to the time series. This code may be as simple as

returning the intensity at a specific point (e.g. P[100,10]), or it may be the result of a

complex calculation on the image (see below for further details).

The result of the Extraction code is rendered on a graph against time. The method of

representing the individual data points is determined by Draw with to specify line or mark

type, and Colour to set the colour to be used. Multiple data sets may be plotted on the same

graph by specifying different Extraction code, Draw with and Colour for each Series that is

selected by Use.

The extracted data are all rendered on the same graph, specified by Output graph in the

normal way. In this case, Output graph would normally be a vector format image (.dfd, .emf or

.wmf file), but this may be saved as a raster image, if preferred. The x axis represents time,

while the y axis is used for the extracted data. The limits on the y axis are set by yMin and

yMax. The titles for the two axes are given by x Title and y Title. With fully licensed copies of

DigiFlow these may contain LaTeX-like text formatting commands. For example, the string

Dimensionless height $\big(\frac{h}/{\alpha^2H_0}\big)$ would produce the label

Dimensionless height (
h

2H
0
)

.

See §3.9 for further details.

A number of time series may be generated simultaneous in this manner, each with a

different Extraction code, and each written to a different Timeseries image. You may move

between each of the possible time series using the Series edit control and associated spin

control. Individual extraction codes are enabled or disabled via the Use check box, while the

Reset All button may be used to turn off all and reset all extraction time series.

The basic image from the input stream is supplied to the Extraction code in the array

variable P. For simple images this will be a two-dimensional array. However, for more

complex image formats (such as velocity fields stored in .dfi files), P will contain more than

two dimensions. In such cases DigiFlow will also provide the same data split into its

individual component two-dimensional arrays in the compound variable Q. For example, if the

input stream contains a velocity field generated by the PIV facility (see §5.6.5.2) then Q.u and

Q.v will contain the two components of the velocity field, and (depending on the options

selected during the processing) Q.Scalar may contain the vorticity field. Full colour images

are supplied as their red, green and blue components with a three-dimensional P array:

P[:,:,0] contains the red component, P[:,:,1] contains the green component, and

P[:,:,2] contains the blue component. For convenience, these are also supplied as Q.Red,

Q.Green and Q.Blue. The button may be used to search for or provide information on

specific DigiFlow functions.

DigiFlow also provides time information about the input stream through the Time

compound variable. Typically this contains Time.fNow and Time.tNow giving the current

frame number and time (in seconds) relative to the start of the entire input stream. An

additional variable Time.iNow gives an iteration counter that is the frame number relative to

the start of those that are actually being processed. Details of the entire input stream are

DigiFlow Menus

– 91 –

provided through Time.fFirst, Time.fLast and Time.tFirst, Time.tLast that provide

details of the first and last frame/time that exist in the input stream. Moreover, Time.fFrom,

Time.fTo and Time.tFrom, Time.tTo provide information about which part of the stream is

being processed.

The main variables available are listed in the Variables list box. This list does not,

however, include any additional modifiers for the individual data plane variables beginning

with Q. These modifiers include the description, scaling and (where appropriate) spacing of

the data. A more comprehensive list may be viewed by clicking the Variables button. For

further details, refer to the PIV data example in §5.7.2.

Figure 75: The Analyse: Time Summarise dialog.

Evolution of fractal dimension

In the example shown in figure 75 (the code is repeated below for clarity) we want

determine the evolution of the fractal dimension of a contour from a series of LIF images.

Here we can make use of DigiFlow’s in-built box counting algorithm in conjunction with its

ability to fit least squares curves.
Count boxes

boxes := fractal_box_count(image:=P,threshold:=0.5);

Only want to use mid-range for the fit

k0 := count(boxes[:,0] < 10];

k1 := count(boxes[:,0] < 100];

Fit a power law

fit := fit_expression(expr:="1;ln(size);",

varNames:="size;",values:=boxes[k0:k1,0],rhs:=boxes[k0:k1,1],

rhsExpr:="ln(n);",rhsNames:="n;");

Return the slope

-fit.coeff[1];

DigiFlow Menus

– 92 –

The net result (just visible in the preview of the output image) is a time series showing the

evolution of the fractal dimension. In reality, it is advisable to plot the individual box count

verses box size curves for individual images before embarking on processing such as that

described above in order to ensure a power law relationship exists in the range of box sizes

selected (here between 10 and 100 pixels).

Evolution of mean intensity along line

Suppose we want to know the mean intensity along some line within an image. Obviously,

if the line is simply a line or column then we need simply specify mean(P[10,:]), for

example, for the mean intensity of column 10. However, if the user wishes to specify the line

interactively, we might use
if (Time.iNow = 0) {

 # For first iteration, find line and determine points

 hView := get_active_view();

 line := get_mouse_line(hView);

 dx := line.x1 - line.x0;

 dy := line.y1 - line.y0;

 if (abs(dx) > abs(dy)) {

 x := make_array(0,abs(dx));

 y := line.y0 + x*dy/dx;

 x := line.x0 + dx/abs(dx)*x_index(x);

 } elseif (abs(dy) > 0) {

 y := make_array(0,abs(dy));

 x := line.x0 + y*dx/dy;

 y := line.y0 + dy/abs(dy)*x_index(y);

 } else {

 x := make_array(line.x0,1);

 y := make_array(line.y0,1);

 };

};

Extract values for specified points and determine the mean

points := sample_values(P,x,y);

mean(points);

In this case, we use Time.iNow to detect the first time through and set up the x and y arrays to

contain the points on the line specified by the user drawing it on the input image stream. Here

we rely on the input view being active at the time the code segment starts, allowing its handle

to be determined by get_active_view(..).

5.6.2 Ensembles

5.6.2.1 Ensemble mean

Toolbutton:

Shortcut:

Related commands: process Analyse_EnsembleMean(..)

It is frequently desirable to determine the behaviour of flows across an ensemble of

experiments. The Ensemble Mean facility provides one of the basic building blocks for

analysing an ensemble of experiments.

DigiFlow Menus

– 93 –

Figure 76: Dialog controlling the calculation of ensemble means.

The interface for specifying an ensemble of experiments differs slightly from the normal

mechanism of specifying input streams in DigiFlow in order to provide a more compact and

convenient specification process, although this is at the cost of some of the functionality of the

standard interface. The Input group provides the various controls needed to specify the

members of the ensemble. Add will fire up the standard Open Image dialog for specifying an

input stream. Once specified, the name of the input stream is added to the list on the left of the

group. An input stream may be sifted by selecting it from the list then clicking the Sift button

(see §4.3). While a given member of the ensemble is selected, its name and directory are

displayed at the bottom of the Input group, with a preview just above. The Master checkbox

indicates if the selected stream is the master (controls the timing, region, etc.). This checkbox

may be used to specify the currently selected stream as the master, but not to deselect it (to

deselect a stream you must select another stream as the master). Streams may be removed

from the ensemble by selecting from the list then clicking the Remove button. Alternatively,

all members of the ensemble may be removed using the Reset button.

The ensemble mean image is saved to the file specified in the Outputs group by clicking

the Save As button. If this process is acting as the source for another process, the Save As

button is suppressed (refer to §6 for further details). The colour scheme and compression

options to be used for the output stream is set by clicking the Options button (§4.4).

The Controls group allows specification of the type of average to be computed, and

whether or not to include zero values in the average. Seven types of average are provided

through the Kind group. The meaning of each of these is identical to that given for the time

averaging in §5.6.1.1. If the Ignore zeros box is checked, then only those points which are not

identically zero are included in the averaging. DigiFlow’s synthetic schlieren and PIV

facilities both flag missing data with identical zeros, thus checking Ignore zeros provides a

convenient way of calculating a mean that is not contaminated by missing data.

DigiFlow Menus

– 94 –

5.6.3 Dye images

5.6.3.1 Dye attenuation

Toolbutton:

Shortcut:

Related commands: process Analyse_DyeAttenuation(..)

Correct a back-illuminated image for variations in the intensity of the back-illumination.

Pre- and post-correction manipulations allow for easy implementation of camera calibration

and dye calibration procedures.

Principle of operation

Let us consider polychromatic light from a source with an intensity i0(x,y,k) = I0(x,y) J(k),

where x,y are the location on the source and k the wavenumber of the light emitted. For

simplicity, we assume the source colour is independent of the position within the source.

Here, I0(x,y) represents the spatial variation in the intensity of the illumination, while J(k)

gives the spectral colour. Assuming the spectral response of a linear monochrome camera

(with no black offset) is described by S(k), then the intensity perceived by the camera viewing

this source directly is

 0 0

0

, ,P x y I x y J k S k dk

 .

For a colour camera, there will (typically) be three such expressions, one each for the red,

green and blue components (with corresponding SR(k), SG(k) and SB(k) leading to P0R, P0G and

P0B). For simplicity, we shall concentrate on a camera yielding a single (monochrome)

component. Moreover, we shall assume that the only light received by the camera is that from

the source I0 and that the source is ‘in focus’.

Suppose we conduct an experiment using coloured (non-fluorescing) dye of concentration

c(x,y,z,t) such that the attenuation of light from the source passing in the z direction through

the dye is governed by

di

ci
dz

 ,

where = (k) describes the colour of the dye. The intensity falling on the camera is therefore

 0 0 0, , , exp exp expCi x y t k i c dz I J c dz I J cL ,

where
1

, ,c x y t c dz
L

 is the mean concentration along the light ray connecting the source

and camera, and L(x,y,t) is the thickness of the region in which we are interested in associating

with the mean , ,c x y t . Here we have assumed that the light rays are parallel (or nearly

parallel) with the z axis.

The intensity perceived by the camera is therefore

0

0

0

, , , , ,

, exp ,

CP x y t i x y t k S k dk

I x y J k S k k c x y L dk

 (1)

We proceed by considering three classes of dyes, catagorised by (k) in conjunction with the

J(k)S(k) combination.

DigiFlow Menus

– 95 –

Ideal dyes

If the dye is neutral density ((k) = 0 = const) then (1) reduces to

 0

0

exp
P

Q cL
P

 .

Here we have defined Q as the normalised intensity P/P0. Similarly, if the light is

monochromatic of wavenumber k1 at which (k1) = 1, or the camera’s response is

monochromatic of wavenumber k1, then

 1

0

exp
P

Q cL
P

 .

We shall call these two situations as the ‘ideal’ case. The first can be achieved using a black

dye such as nigrosin, while the second can be achieved either using a monochromatic light

source or by placing in front of the camera lens.

In this ‘ideal’ case, if L is known a priori, then we can readily determine the mean

concentration as

1

ln
i

c Q
L

 ,

where the combination iL is typically determined by calibration. Similarly, if c is know a

priori (typically by setting c(x,y,z,t) = c0 = const), then we can use the same relation to

determine the thickness (depth) of the layer from

1

ln
i

L Q
c

 .

If L is constant in time but varies in space, it is often more convenient to determine this

from an image of a constant concentration of dye, rather than attempting to measure it

everywhere. Suppose the camera perceives an image of intensity PL when the experiment is

filled with a constant concentration of dye cL. From this we can calculate

0

1 1
ln lnL

L

i L i L

P
L Q

c P c
 ,

where QL = PL/P0, and substitute back to determine

ln

, ,
ln

L

L

Q
c x y t c

Q
 .

Non-ideal dyes

If the dye is not ideal (i.e. it is neither neutral density nor illuminated by a monochromatic

light source) then additional calibration is required. Recall that the camera perceives

0

0

0

expJ S cL dk
P

Q
P

J S dk

.

For a given illumination and camera response, we can write Q g cL g where g()

(which is bounded above by one) characterises the response of the dye as

DigiFlow Menus

– 96 –

0

0

expJ S dk

g

J S dk

.

If g() is invertible then we can determine the concentration as

 11
c g Q

L

 .

As we saw above, for an ideal dye g1(Q) is
1

ln
i

Q

 .

In general, however, we may not have a detailed knowledge of the spectrum of the light

source J(k), the spectral response of the camera S(k) or of the dye absorption (k), but must

instead determine by calibration g() or, more usefully, the inverse g1(Q).

Suppose we determine, through a calibration procedure, that g1(Q) Dye(Q), then we can

proceed to compute c or L. In particular, if L is known a priori, then

1

c Dye Q
L

 ,

while if c is know a priori then

1

L Dye Q
c

 .

As before, if L is constant in time but varies in space we can compute c by introducing a

calibration image PL of a uniform dye concentration cL to obtain

 L

L

Dye Q
c c

Dye Q
 ,

where QL = PL/P0.

Band-pass dyes

Some dyes can be approximated as being transparent to some wavelengths of light while

strongly filtering other wavelengths. The spectral response of such a dye could be

approximated by (k) = 0 + H(kk0), where H() is the Heaviside step function, 0 (0)

and 1 are constant attenuation rates and k0 is a constant wavenumber. If, further, we assume

the product J(k)S(k) is constant for k1 k k2¸and zero outside this range, then for such a dye

g() becomes

0 2

1 0

2

1

0 1

0 0 1

2 0

2 1

exp exp

k k

k k

k

k

J S dk J S dk

g

J S dk

k k
e e

k k

In the limits of 1 >> 2 and of 1 ~ 0, then g() is well approximated by a constant plus a

decaying exponential. The constant term is due to little attenuation of light over some

bandwidth, while the exponential is due to a rapid (nearly constant) attenuation of light over

the remainder of the spectrum. As seen by a number of previous authors, this model is a good

approximation to the behaviour of some food colourings when illuminated by white light.

DigiFlow Menus

– 97 –

DigiFlow interface

Figure 77: Analysis of variations in background illumination to determine the dye concentration.

This process takes either two or three source image selectors, depending on whether the

base optical thickness needs to be calculated.

The Dye Image group determines the image selector to be corrected. This image selector

may be selected from a file by clicking the File button, in which case the standard Open Image

dialog box (§4.1) is produced. Precise details of the region and times to be used may be set

using the Sift button (§4.3). Alternatively, clicking the Process button will allow a source

process to be used (refer to §7 on chaining processes for further details).

The Background Image group determines the image selector containing the background

illumination. Only the first image will be used if an image selector containing multiple images

is selected, although the particular image from a sequence may be specified using the Sift

button. As with the Dye Image group, clicking File activates the Open Image dialog box

(§4.1), whereas clicking Process allows a source process (§7) to be used.

The resulting image selector is saved to the file specified in the Concentration Image group

by clicking the Save As button. If this process is acting as the source for another process, the

Save As button is suppressed (refer to §7 for further details).

The Controls group allows user specification of the camera and dye calibration.

The Camera calibration is applied to both the Dye Image and Background Image prior to

their processing. The calibration is specified as a function of the intensity in the input image

selectors, represented in the expression as the variable P (upper case). Note that regardless of

the format of the input selectors, all processing is performed in floating point arithmetic and

normally the images will be scaled between an intensity of 0.0 for the darkest parts and 1.0 for

the brightest parts. Thus the default P – 16/255 would set an intensity of 16 in an eight-bit

greyscale image to zero. Refer to §8 for further details on the interpreter.

DigiFlow Menus

– 98 –

The Dye calibration mapping is applied to the image(s) resulting from this procedure. The

mapping function should be specified in terms of the intensity of the corrected image. Here

this corrected image intensity is expressed through the variable Q (upper case), which is again

in the range 0.0 to 1.0. The default for this calibration is dye_deal(Q), which is simply –
ln(Q)

The normal processing undertaken by this feature may be described as

Back

Dye

Conc PCamera

PCamera
DyeP ,

where Camera(..) represents the Camera calibration, Dye(..) represents the Dye

calibration, PDye is the Dye Image, PBack is the Background Image and PConc is the

Concentration Image. The result of Camera(PDye)/Camera(PBack) is what is provided in the

variable Q, thus PConc = Dye(Q).

However, strictly speaking, PConc is proportional to the integral of the dye concentration

over the length of the light ray seeing dye as it passes through the flow. Thus, if the length of

this light ray varies (e.g. due to tank geometry or camera parallax), the PConc image is

contaminated by this variation.

As noted above, by using an additional image, PL, of the tank containing a uniform

concentration of dye CL, it is possible to correct for this variation in the length of the light

rays. In such a case the required processing is

Back

Thick

Back

Dye

UniformConc
PCamera

PCamera
Dye

PCamera

PCamera
DyeCP .

This more advanced processing is enabled by checking Use Thickness Image. This then

enables the Thickness Image group to determine the image selector containing the

background illumination. Only the first image will be used if an image selector containing

multiple images is selected. As with the Dye Image group, clicking File activates the Open

Image dialog box, whereas clicking Process allows a source process to be used.

5.6.3.2 Light Induced Fluorescence (LIF)
LIF, often referred to as Laser Induced Fluorescence but more generally can stand for Light

Induced Fluorescence, describes the family of techniques where a sheet of light is used to

stimulate emission from a fluorescent dye. Typically this dye is dissolved in the fluid at very

low concentrations, rendering it a passive tracer, but which is used to tag some other species

(e.g. salt concentration) thereby providing a means of visualising and quantifying an otherwise

invisible component of the flow.

Fluorescent dyes are often used in fluids experiments to obtain an image of the

concentration field on a single plane of a flow. The name often given to such techniques is

LIF or Laser Induced Fluorescence. However, the use of a laser is not obligatory, and white

light may be used to produce comparable results, provided the colour temperature of the light

source is sufficiently high. Xenon arc lamps, for example, provide an excellent and safer

alternative to the high cost of lasers.

LIF principles

The fluorescent dyes used in LIF typically absorb energy from incident light over a range of

wave lengths and radiate it at a single or well defined range of wave lengths. Typically the

absorption in the range of wave lengths radiated is relatively small so that radiated light

passing through regions of fluid containing the fluorescent dye is not attenuated significantly

by that dye. Clearly the illuminating light must attenuate as it passes through the dye. For most

useful dyes the efficiency of this fluorescence is relatively high so that only very weak

solutions are required and the attenuation of the illuminating light is small.

DigiFlow Menus

– 99 –

If the flow is illuminated by monochromatic light (such as a laser, or at least coloured light

with a narrow power spectrum) with a wave length significantly different from that of the

fluoresced light, then it is possible to eliminate the effect of any light scattered directly from

the experimental apparatus or contaminants in the water by introducing a filter in front of the

camera to cut the wave length(s) of the light source. However for reasons of cost, availability

and safety, a laser was not employed for these experiments. Thus our LIF images contain a

component of directly scattered light despite efforts to minimise this.

In all the LIF experiments reported here, sodium fluorescein was used as the fluorescent

dye. Its choice was based on its high efficiency, low cost and relative safety. The light

fluoresced typically appears green, with the dye responding better to the blue end of the

visible spectrum (this is one of the reasons the blue-white light of the arc lamp was better than

the yellow-white light of the halogen light source).

Correction for illumination

As mentioned above, as the illuminating light sheet passes through the dyed fluid, some of the

light is absorbed thus reducing the intensity of the light sheet. In addition, the light sheet will

typically diverge slightly, effectively reducing the intensity further. In order to obtain

quantitative information about the density field (as marked by dye concentration) it is

necessary to correct the LIF images for this attenuation and divergence. In this subsection we

briefly outline the technique used in this work for performing this correction.

Consider an image p = p(x) of a flow containing a fluorescent dye of concentration

C = C(x). We define a virtual light sheet P = P(x) such that

 P = C P. (2)

Assume that the attenuation of the virtual light sheet as it passes through the dye can be

described by

 pCP
ds

dP
 (3)

where s describes the path of the light rays and = (x) is the attenuation of the virtual light

sheet. Suppose we have a calibration image p0 of a constant concentration C0. Now we may

estimate the spatial structure of the attenuation from

ds

pd

pC

0

00

ˆ

ˆ

1~ , (4)

where 0p̂ is the least squares fit of

3

3
2

21

00
ˆ sasasa

eap

 (5)

to the calibration image p0 (it is often necessary only to include the linear term in the

exponential). Using our estimate of the attenuation we can calculate an estimate 0

~
P (say) for

the virtual sheet from

 0
0 ~

~

p
ds

Pd
 (6)

and thus obtain our estimate of the concentration field

 0

p
C C

P
 , (7)

where P
~

 is the estimate for the virtual light sheet evaluated from equation (3).

We may determine how accurate this process is by performing this process on the

calibration image, and then comparing the result with the known virtual sheet P0 = p0/C0 to

obtain the defect ratio

DigiFlow Menus

– 100 –

 0

0

0

0

0

~~

C
p

P

P

P
Rdefect . (8)

In some cases we may wish to adjust our calculation for other images using this defect ratio by

determining

 0

0

0

~

~ C
p

P

P

p
C . (9)

This approximation guarantees perfect reconstruction of the calibration image, but does not

necessarily ensure an improved concentration field for other images.

Another technique that can be useful is to use Rdefect to improve the estimate to the decay

law fit rather than as a direct modification to the concentration field. To achieve this, a least

squares fit of the same form as (5) is applied to Rdefect (which we would hope was a constant),

and the coefficients a1, a2, etc., are used as a correction to those obtained from (5). Applying

this correction iteratively will ensure that in the mean Rdefect is unity.

LIF processing in DigiFlow

The processing of LIF images in DigiFlow is somewhat more sophisticated than that

described above, extending the basic idea to include multiple point light sources, distributed

light sources, and additional models for the behaviour of light rays.

Figure 78: Dialog controlling correction of LIF images.

The example illustrated in figure 78 is for Rayleigh-Taylor instability. In this case, the

camera was rotated by 90 degrees so that the initially dense layer is to the left and the light

layer to the right. The flow was illuminated from below by a sheet of white light. Fluorescent

DigiFlow Menus

– 101 –

dye (disodium fluorescein) was present in the upper layer. The two layers were initially

separated by a barrier at half the depth of the tank.

The Dye Image input image stream is the raw footage of the experiment. The attenuation

and divergence of the illuminating light sheet as it passes through the fluorescent dye is

clearly visible. In this case, the light sheet is generated by a pair of 300W arc lamps, each

effectively a point source. The Left-hand light source and Right-hand light source input

streams give images of the two separate light sources illuminating the tank when it contains a

uniform concentration of dye. These images are used for calibration purposes. Each of these

three input selectors is specified in the normal manner using the associated File and Sift

buttons.

The Controls group contains the various parameters that affect the modelling of the light

passing through the dye. For this correction procedure to operate effectively, it is important

that the experiment is carefully set up, that there are no stray reflections reaching the camera,

and that all the necessary details are recorded at the time of the experiment.

The Camera calibration should specify the relationship between the digitised values and

real intensities. With most modern scientific CCD and CMOS cameras the relationship is

close to being linear. However, ‘black’ seldom digitises to zero. Here, we assume a linear

relationship with black digitising to a value of 0.034. A number of methods for determining

this black level are described in §6.1.

Provided the concentration of the fluorescent dye is sufficiently low, then the assumption

that the fluoresced signal is linear in its concentration is reasonable. Deviations from this may

be entered in the Dye calibration control.

The Concentration value is the (arbitrary) concentration used in the calibration images Left-

hand light source and Right-hand light source. Note that these images are used not only to

calibrate the response of the light sheet as it passes through the dye, but also to calibrate the

intensity of the light sheet entering the dyed region. In this latter context it is important that

these images (and also the experimental images) extent to the tank boundaries where the light

first enters the dye.

The Ray from group indicates the direction from which the light rays enter the image. Here

it is the bottom of the tank which corresponds to the right-hand side of the image. The Ray

source type allows selection between single point light sources, distributed light sources, and

double point light sources. (The Right-hand light source input stream is enabled only for the

last of these.) The Defocus control recognises that the lights might not in fact be true point

sources and that they will become slightly defocused as they pass through the flow.

Alongside the origin of the light rays is their direction which will not normally be aligned

exactly with the pixel coordinates. Indeed, the light rays will typically be diverging. The Ray n

group provides a means of specifying the orientation of light rays. This process is typically

achieved by capturing an additional image of the uniform concentration in which a grid has

been imposed on the light sheet in order to show clearly the direction of the light rays. This

additional image (or two additional images when double light sources are used) is temporarily

loaded into the Left-hand light source stream. Clicking Show rays then superimposes the ray

definitions from the Ray n group on that image. Subsequent use of the controls within this

group allows interactive specification of the orientation of the rays. It is recommended that

three or four such light rays are specified as a minimum.

DigiFlow Menus

– 102 –

Figure 79: Light ray definition for LIF processing.

Up to ten sets of light rays may specified. Each set contains either one or two directions,

depending on the Ray source type. The rays in each set share a common Start, but can have

different rotations through the First ray and Second ray controls. The ray definitions may be

reset using the Reset Rays button.

Modelling of the light sheet can be handled in a number of different ways using the Light

sheet group. Both Model and Fix defects begin by fitting a model decay law (using least

squares) to the calibration image(s) to determine the relationship between fluorescence and

attenuation. If Iterative is checked, then this process is performed iteratively to improve the

model by taking into account the directions of the light rays. In many cases the linear model

1;s; (corresponding to an exponential decay of light through the calibration image) is most

appropriate. However, in some circumstances higher order terms can improve performance (a

combination of visual inspection and tests for mass conservation should be used to determine

the optimal model).

The difference between Model and Fix defects is that the latter compares the calculation

performed on the calibration image with the ‘known’ constant concentration it contains and

develops a multiplicative correction to force a uniform concentration in the output. This

correction may be appropriate in cases where optical imperfections alter the apparent lighting

in a static manner that does not coincide with the simple attenuation modelling.

Calculations using the Direct fit light sheet model are similar to the other two, but rather

than fitting an exponential decay law, the data in the calibration image is used directly, pixel

by pixel, to determine the relationship between fluorescence and absorption. This approach is

likely to lead to a higher noise level in most situations, but may have advantages in cases with

complex optical effects such as reflections.

For most good quality experiments, the combination of Fix defects with 1;s; and Iterative

selected will yield the best results.

DigiFlow Menus

– 103 –

Finally, the output stream may be specified in the normal way using the Save As and

Options buttons.

5.6.4 Synthetic schlieren
Theory

Synthetic schlieren is a novel technique for producing qualitative visualisations of density

fluctuations and for obtaining quantitative whole-field density measurements in two-

dimensional density-stratified flows. This set of techniques is outlined in detail in Dalziel et

al. (2000) (and a subset in Sutherland et al. 1999). In this section, we discuss only the most

advanced of these techniques, ‘pattern matching refractometry’, and how this may be applied

to provide accurate quantitative measurements of a two-dimensional density field.

While synthetic schlieren has its origins in the classical optical schlieren and moiré fringe

techniques, synthetic schlieren is much simpler to set up than the classical schlieren and

interferometry methods, and provide useful information in situations where shadowgraph is of

little or no value. Moreover, they may be set-up to analyse much larger domains than is

feasible with the classical approaches, and do not require high quality optical windows in the

experimental apparatus. Ultimately the greatest strength of these techniques is the ability to

extract accurate, quantitative measurements of the density field.

The basic setup for synthetic schlieren is illustrated in figure 80. An illuminated mask

(normally simply a piece of paper printed with a pattern) with a strong pattern is placed to the

rear of the experiment. This mask is then viewed by the video camera looking through the

experiment.

Diffuse light source

Mask

Video camera

Figure 80: Basic setup for synthetic schlieren. An illuminated textured mask is placed on one side of

the experiment, and is viewed by the camera on the other side of the experiment.

The key idea behind synthetic schlieren is the bending of rays of light by fluctuations in the

refractive index field. A detailed description of this process is required in order to make

quantitative measurements. This description may start from a number of points. Sutherland et

al. (1999) analysed a ray of light by invoking Snell’s law. Here we shall start from Fermat’s

variational principle for the behaviour of light in an inhomogeneous medium

 0,, dszyxn , (10)

where s is oriented along the light ray and n(x,y,z) is the refractive index field (the ratio of the

speed of light through a vacuum to that through the medium). We select our coordinate system

(x,y,z) with x along the length of the tank, y across the width (the direction in which variations

in the flow are negligible) and z vertically upward.

Rather than solving the full variational problem, we restrict ourselves to rays of light which

always have a component in the y direction so that their paths may be described by x = (y)

and z = (y). This restriction is simply a requirement that light is able to cross the tank, a

fundamental requirement for synthetic schlieren. The variational principle then gives rise to a

DigiFlow Menus

– 104 –

pair of coupled ordinary differential equations (Weyl 1954) relating the light path to the

gradients of n in the xz plane:

x

n

ndy

d

dy

d

dy

d

1
1

22

2

2
, (11a)

z

n

ndy

d

dy

d

dy

d

1
1

22

2

2
. (11b)

For synthetic schlieren we are interested primarily in light rays which remain approximately

parallel to the y direction. Under this restriction the terms (d/dy)2 and (d/dy)2 may be

neglected, effectively decoupling (11a) and ((11b). For a two-dimensional flow where there

are only weak varitions in density (and hence weak variations in the refractive index) along

the ray path, we may integrate these expressions across the width W of the tank to obtain the

path of the light ray across the tank:

x

n

n
yyi

1
tan 2

2
1 , (12a)

z

n

n
yyi

1
tan 2

2
1 , (12b)

where i, i describe the incident location and tan = d/dy(y=y0) and tan = d/dy(y=y0)

describe the horizontal and vertical components (respectively) of the angle at which the light

ray enters the tank (measured relative to the y direction).

With synthetic schlieren, we are interested in how an image of a mask placed some

distance B behind the tank appears to change as the result of flow-induced refractive index

variations relative to the refractive index variations in the absence of the flow. Specifically we

wish to analyse the changes in the image formed by the camera as a shift in the origin of the

light ray reaching the camera. By back tracking the light rays received by the camera the

apparent shift (,) in the origin of the light ray is given by

x

n

n
yyi

1

2

1
tan 2

 , (13a)

z

n

n
yyi

1

2

1
tan 2

 . (13b)

Here we have decomposed the refractive index field n into n0 + nbase + n', where n0 is the

nominal refractive index of the medium (e.g. n0 = 1.3332 for water), nbase represents spatial

variations associated with the “known” base state (e.g. the changes introduced by adding a

quiescent linear background stratification) and n' is the variation caused by the flow under

consideration (e.g. the internal wave field). In obtaining (13) we have assumed the variations

nbase and n' in the refractive index field are small compared with the nominal value n0. (As we

will see below, a correction is necessary to take into account the refractive index contrasts

between air, the material the tank is made of and the working fluid.)

In many cases, it is more convenient to consider the apparent displacement of the origin of

the light rays in terms of their projection on the experiment in the absence of any fluctuations

in the density field. This then allows us to use a common coordinate system for both the

coordinates within the experiment and for the texture mask located behind the experiment.

Taking the distance between the texture mask and the camera as L, and assuming that the

experiment is ‘thin’ (i.e. W/L << 1), then we may use simple projective geometry to show that

the apparent displacements in experiment coordinates are

DigiFlow Menus

– 105 –

1
2

0

1 1
1 2

2
exp

B W n
W W B

L n x

, (14a)

1
2

0

1 1
1 2

2
exp

B W n
W W B

L n z

. (14b)

Here we have defined the experiment coordinate system to be at the mid-plane of the

experiment. If W/B << 1 or (B+½W)/L << 1, then the precise location of the coordinate system

within the experiment is unimportant. Note also that the optical gain provided by increasing B

is greatest for large L.

The above expression, however, ignores the effect of the refractive index change between

the tank and the (presumably) air between the tank and the mask. Taking the refractive index

of air as nair, then this amplifies the slope on exit from the tank by n0/nair. An additional

correction can also be made for the refractive index of the tank wall, nwall. This does not

change the slope within the air, but does provide an additional offset. If the tank wall has

thickness T and we measure B from the outside of the tank wall, then (14) becomes

 0 0

0

1 1
2 2

2 air wall

n n n
W W B T

n n n x

 (15a)

 0 0

0

1 1
2 2

2 air wall

n n n
W W B T

n n n z

 (15b)

in the coordinate system of the textured mask. Similarly, if the experiment is not thin, then the

magnification term projecting this onto the central plane must take into account the refractive

index variations for rays entering and leaving the tank. The net result of this is that

 0 0 0

0

0

1 2 1
2 21 1

2 2
2

1 2 1

air air

wall

exp

air wallair air

wall

n n
L B W T

n n n n n
W W B T

n n n xn n
L W T

n n

,(16a)

 0 0 0

0

0

1 2 1
2 21 1

2 2
2

1 2 1

air air

wall

exp

air wallair air

wall

n n
L B W T

n n n n n
W W B T

n n n zn n
L W T

n n

.(16b)

As stated above, there is normally a constitutive relationship between the density of the

fluid and the refractive index. To a good approximation the relationship between refractive

index and density for salt water is linear (Weast 1981), allowing us to write

0

0n

d

dn
n , (17)

where

 184.0
0

0

d

dn

n
, (18)

and 0 is the nominal reference density (1000kg m3). Substitution into (13) then gives the

relationship between density fluctuations ' and apparent movement of the source of a light

ray

DigiFlow Menus

– 106 –

 0 0 0

0

0

1 2 1
2 21

2 2
2

1 2 1

air air

wall

exp

air wallair air

wall

n n
L B W T

n n n n
W W B T

n n xn n
L W T

n n

,(19a)

 0 0 0

0

0

1 2 1
2 21

2 2
2

1 2 1

air air

wall

exp

air wallair air

wall

n n
L B W T

n n n n
W W B T

n n zn n
L W T

n n

.(19b)

Simply measuring the apparent displacements and inverting (19) then allows us to determine

the perturbation density gradient. This may, in turn, be integrated once to return the density

perturbation itself.

The main difficulty is determining the apparent displacements exp and exp with

sufficient accuracy for the whole process to be meaningful. Often the apparent displacements

are only a small fraction of a pixel. DigiFlow employs a range of techniques to achieve this.

The most accurate, but computationally expensive, use powerful pattern matching techniques

to determine the apparent displacement as accurately as possible: the design of this part of the

system has concentrated more on accuracy than speed. DigiFlow also offers faster (but less

accurate) techniques to provide a reasonable approximation relatively quickly.

5.6.4.1 Qualitative Preview

Toolbutton:

Shortcut:

Related commands: process Analyse_SyntheticSchlierenQualitative(..)

This option provides a qualitative or semi-quantitative preview of an image sequence using

relative simple processing to determine the gradient of the perturbation density field. The

processing used here is similar to that provided during Video Capture (see §5.1.5).

Starting the option provides access to a simple dialog box (see figure 81) for selecting the

input image stream (Experiment selector) and, optionally, a Background Image. If the latter is

not specified, then the first frame of the Experiment file is utilised. Both these selectors have

the standard Sift button (see §4.3).

Figure 81: Dialog for determining which sequence is to be previewed with synthetic schlieren.

DigiFlow Menus

– 107 –

Once the sequence has been identified, an image window is opened to show the preview.

The preview itself is controlled by a second dialog. Some of the controls on this dialog are

reminiscent of those seen in §5.5.1.14 for controlling the animation of sequences. Controls

specific to synthetic schlieren are found in the Processing and Gain groups. The first of these

determines the type of processing to be performed.

Figure 82: Control dialog for qualitative synthetic schlieren preview.

There are four processing options: Direct simply shows the input stream without any

processing, while Difference is the simplest (and computationally fastest) technique that

provides a qualitative output proportional to the magnitude of the gradient in the density

perturbation. The Horizontal gradient and Vertical gradient options perform more a more

sophisticated analysis that returns a semi-quantitative output of the specified component of the

gradient in the density perturbation. Note that these two options distinguish between positive

and negative gradients.

The Gain control determines the relationship between the gradient and the intensity of the

display. The display colour scheme may be changed using Colours, and a different set of input

streams may be used by clicking Selectors.

DigiFlow Menus

– 108 –

 (a) (b)

 (c) (d)
Figure 83: Examples of output from Qualitative Synthetic Schlieren. (a) Direct, (b) Difference, (c)

Horizontal gradient and (d) Vertical gradient.

The Synchronise display check box forces synchronisation such that each and every frame

in the sequence is displayed, even if this slows the update rate below the desired frame rate. If

Synchronise display is cleared and the computer cannot keep up with the desired frame rate,

then frames are skipped to maintain that frame rate.

5.6.4.2 Interpolative

Toolbutton:

Shortcut:

Related commands: process Analyse_SyntheticSchlierenInterpolative(..)

The method of calculating the synthetic schlieren image used in this option is a

compromise between speed and accuracy. While it is based on a similar technology to that

used in the Qualitative Preview version of synthetic schlieren discussed in §5.6.4.1, the

algorithm is tuned to give a wider dynamic range, greater accuracy, and more complete

coverage of data. However, the resulting measurements remain less accurate than those

obtained using Pattern Matching version of synthetic schlieren (see §5.6.4.3).

DigiFlow Menus

– 109 –

The processing here was conceived for masks located behind the experiment containing

lines, however experience has shown that it also provides reasonable semi-quantitative

measurements for other mask geometries (e.g. random dots).

Suppose the changes in the refractive index gradient give an apparent vertical displacement

of the mask by some amount at time t. We shall assume the curvature in ' is small so that

 varies only over length scales large compared to the features contained in the mask.

As we have seen, the intensity of a pixel is related to the mean of the (unknown) intensity

falling on the CCD sensor by

2/

2/

2/

2/

;,
1

xx

xx

zz

zz

ij

i

i

j

j

dxdztzxp
zx

tP . (20)

The combination of optical imperfections, noise and imperfections in the mask will ensure

that p(x,z;t) is a continuous function, even when the mask contains discrete steps. We may

approximate p(x,z;t) using a piece-wise quadratic interpolation in a manner similar to that

employed for numerical solution of the advection equation in control volume techniques. The

idea here is that the approximation Pij(t) = p(xi,zj;t) (approximating the integral in (20)) by the

so-called mid-point rule for numerical integration) has an error O(z3) which is of the same

order as the error in a quadratic interpolation of the intensity (xi,zj). More specifically, if P̂

0,ij(zzj) is the quadratic interpolation of the unperturbed image around (xi,zj), we look to solve

for the value zzj = ij such that P̂0,ij(ij) = Pij(t). Thus the apparent displacement (in the z

direction) of the mask ij is given by the roots of

 P0,0 P + ½(P0,1 P0,-1) + ½(P0,1 2P0,0 + P0,-1)2 = 0. (21)

Here we have used the shorthand P = Pij(t), P0,0 = P0,ij, P0,-1 = P0,i,j-1 and P0,1 = P0,i,j+1. To

avoid ambiguity as to which root of (21) should be taken, we solve (21) only if P0,0 is

intermediate between P0,-1 and P0,1, and the intensity contrast across the three lines is

sufficiently large (i.e. |P0,1-P0,-1| > Pmin). Further, we select the root of (21) with smallest

||, effectively limiting to be less than the spacing of the lines on the mask.

As an alternative to solving the quadratic expression for given by (21), we may utilise a

binomial expansion to show that this process has the same O(z2) accuracy as assuming is

quadratic in P0,ij. This latter approach was used by Sutherland et al. (1999) and gives

0,0 0, 1 0,0 0,1

0,1 0,0 0,1 0, 1 0, 1 0,0 0, 1 0,1

P P P P P P P P
z

P P P P P P P P

. (22)

As with (21), is calculated from (22) only if P0,0 is intermediate between P0,-1 and P0,1, and

there is sufficient intensity contrast across the three lines.

Once has been determined from either (21) or (22), it is mapped from pixel space into

physical space and (19) is applied to determine '/z. Points for which z could not be

calculated (typically points where P/z is too small, as may occur if a line is centred on a

pixel and would lead to an ambiguity in the sign of the displacement) are replaced by

interpolated values using a Gaussian weighting function. The final result is scaled and used to

construct an image representing '/z.

In the present implementation, if the value of determined from (22) exceeds one pixel

then the reference image intensities are themselves displaced so as to avoid extrapolation.

This effectively increases the accuracy and dynamic range of the technique.

DigiFlow Menus

– 110 –

Inputs tab

Figure 84: The inputs dialog tab for interpolative synthetic schlieren.

The Experiment stream, specified using File and optionally sifted with Sift, should contain

an image of a strong texture located behind the experiment. DigiFlow then compares this

input stream with a reference image to determine the apparent displacements. The reference

image may be specified using the optional Background image input stream. If no stream is

specified, then the first frame of the Experiment input stream is used instead.

As noted above, this method was conceived for masks containing lines, in which case

Gradient direction should be set normal to the lines. The most accurate results will be

obtained in this configuration. However, if the mask contains two-dimensional features (such

as random dots), then it is possible to generate Both in-plane components of the gradient.

The Flow geometry group enables internal processing options that attempt to ensure the

result is consistent with the underlying geometry of the flow.

Details of the experimental setup are required in the Lengths group to allow interpretation

of the apparent movements of the dots. The units for these should be consistent with the units

for the density gradient that will be determined. Ultimately, the output will be (1/0),
which has dimensions of 1/length. Specifying the distances here in metres will give units of

m1 for the final result.

Note that a distance of zero is acceptable for Experiment to texture, the distance from the

back of the experiment to the texture mask, but not for Experiment thickness. The Experiment

DigiFlow Menus

– 111 –

thickness should be the internal measurement of the tank, while Experiment to texture should

be measured from the outside of the tank. The Wall thickness should be specified for the wall

closer to the texture, and its corresponding Tank wall material selected.

Camera to texture is the distance between the effective focal plane of the camera and the

texture mask. It is generally sufficient to measure the distance from the base of the lens to the

texture. Experiment to texture is the distance from the back of the experiment to the texture

mask. This distance can be zero for some set ups. Experiment thickness is the width of the

flow through which the light rays experience density fluctuations. This cannot be zero.

The Medium list box allows selection of different media for the experiment. The key detail,

picked up from a DigiFlow data base, is the relationship between refractive index and density

changes. In addition to the normal media, two pseudo media are also included: Unity returns

refractive index gradients rather than density gradients, while (displacements) returns the

calculated apparent displacements (with units of the selected coordinate system) rather than

density gradients.

The coordinate system required to interpret the experiment is specified in the Coordinate

system list box.

Outputs tab

Figure 85: The outputs tab for interpolative synthetic schlieren.

DigiFlow Menus

– 112 –

The most important controls on the Outputs tab are for selecting the main output streams x

Gradient and/or y Gradient. Whether one or both of these is required depends on the selected

option in the Gradient direction group on the Inputs tab. The visual scaling of the images

produced is determined by the Gradient entry in the Saturation values group. This value sets

the gradient that will produce a saturated image. For most image formats, getting this wrong

will require reprocessing of the image due to quantisation errors introduced. For this reason

the use of the .dfi file format is recommended as this does not sacrifice dynamic range and the

scaling may be subsequently changed at a later date.

Advanced control tab

Figure 86: The advanced control tab for interpolative synthetic schlieren.

In most cases the controls on the Advanced control tab should be left on Automatic. The

Interrogation window group controls the limits on the quadratic interpolation that must be

satisfied before the results can be used, and also controls how to fill in any missing values.

The Validation group determines how to check for consistency with neighbouring points.

DigiFlow Menus

– 113 –

5.6.4.3 Pattern Matching

Toolbutton:

Shortcut:

Related commands: process Analyse_SyntheticSchlierenPatternMatch(..)

The most sophisticated (and slowest) of the synthetic schlieren algorithms is based on an

advanced pattern matching algorithm that has its origins in PIV (Particle Image Velocimetry;

see §5.6.5.2).

The mask behind the flow giving the texture to the image is typically constructed from

random features of high contrast. The simplest way of generating this is by printing a pattern

onto overhead projector transparencies and then tiling these up into a sheet of the required

side with clear adhesive tape. The following PostScript file may be used to generate a suitable

pattern. The pattern is a basic square grid of dots, with each of the dots perturbed by a random

amount. The randomness helps prevent aliasing errors and ensures that the pattern is robust

against any defects produced when you overlap slightly multiple tiles of transparency.
%!PostScript

% Generate dot pattern for synthetic schlieren

/mm {25.4 div 72 mul} def

% Set the basic size of the pattern (mean spacing in mm)

/Size 2 def

% Set the size of the sheet

/Sheet 300 Size mul def

% Relative size of dots to their mean spacing

/DotFraction 0.25 def

% Scale for randomnesss

/Randomness 0.6 def

% Draw black background

0 0 moveto

Sheet mm 0 rlineto

0 Sheet mm rlineto

Sheet mm neg 0 rlineto

closepath

0 setgray

fill

% Draw grid of white dots with random perturbations

1 setgray

0 Size Sheet

 {/y exch mm def

 0 Size Sheet

 {/x exch mm def

 gsave

 x rand 0.25e9 div Size mul Randomness mul add

 y rand 0.25e9 div Size mul Randomness mul add

%x y

 translate

 0 0 Size DotFraction mul mm 0 360 arc

 closepath

 fill

 grestore}

 for}

for

% Set number of copies of sheet to be made

/#copies 2 def

showpage

DigiFlow Menus

– 114 –

This PostScript file can be simply copied to any PostScript printer. If a PostScript printer is

not available, an interpreter such as GhostScript/GhostView could be used. The pattern should

be scaled (using the /Size definition) so that the dots are close to the limit of what the camera

can resolve. Some trial and error may be required to determine the optimal size for a given

experimental setup.

Figure 87: The Inputs tab of the synthetic schlieren dialog.

The synthetic schlieren interface is divided into six tabbed dialogs. The first two, Inputs

and Outputs are mandatory and control what is to be processed, and where the results are to be

stored, respectively. The other four tabs, Interrogation, Validation, Quality and User

Interpolation may be used by experienced users to tweak the process to yield better

performance in some situations. The more advanced controls on these tabs are not available

under the Free DigiFlow Licence.

Inputs page

The standard synthetic schlieren process takes two input streams. The first, specified by the

Experiment group, is the video sequence of the experiment itself. As normal, an image

selector is used to specify the stream.. This selector may be specified from a file by clicking

the File button, in which case the standard Open Image dialog box (see §4.1) is produced.

DigiFlow Menus

– 115 –

Alternatively, clicking the Process button will allow a source process to be used (refer to §7

on chaining processes for further details).

The Background input takes a single image (specified in the normal manner). This image

should be of the background texture mask before the experiment introduces any density

perturbations. Typically, this image is taken just prior to the experiment, and contains all the

ambient refractive index variations due to, for example, a background density stratification.

The Mask zeros check box causes DigiFlow to ignore all pixels with an identically zero

intensity. This feature is designed to allow simple masking of images. Such masking may be

used to remove parts of the field of view that do not contain the flow. For example, it could be

a static boundary to the flow, a free surface, or possibly an object moving through the flow. In

each case external processing of the image sequence should be made to apply the mask prior

to starting the synthetic schlieren processing.

There are eight groups of controls on the Inputs tab. The first controls maximum apparent

displacement that will be searched for. The values Max x and Max y are specified in pixels and

are assumed symmetric about zero. These values should be set to represent slightly more than

the maximum expected apparent displacement of the mask. In most circumstances this will be

limited to two or three pixels, and will generally be isotropic (hence specify the same values

for Max x and Max y). Note that the computation required to determine the displacement

increases approximately as the product of these two values, hence specifying excessively large

values is counterproductive.

The Flow Geometry group is used to indicate the basic geometry of the flow under

consideration, and control the invocation of processes optimised for the specific geometry.

The entries 2D and 3D have the obvious meaning. Similarly, Axisymmetric is for flows where

the symmetry axis lies in the mid-plane (normal to the viewing axis) of the experiment, and

Symmetric is for flows where the mid-plane is a plane of symmetry, but the flow is not

axisymmetric.

The Lengths group specifies the geometric setup of the experiment. The distances should

be specified in the same units as the selected coordinate system (see below), or it will be

difficult to interpret the results of the calculation. Note that a distance of zero is acceptable for

Experiment to texture, the distance from the back of the experiment to the texture mask, but

not for Experiment thickness. The Experiment thickness should be the internal measurement

of the tank, while Experiment to texture should be measured from the outside of the tank. The

Wall thickness should be specified for the wall closer to the texture, and its corresponding

Tank wall material selected.

Both input streams may be sifted (§4.3) to extract the desired subregion and times. This

feature is activated using the Sift button associated with each of the input streams.

To provide a simplified interface to the internal workings of the synthetic schlieren

algorithm, DigiFlow provides a range of predefined settings that have the effect of producing

different resolutions and accuracies. The Resolution and Accuracy list boxes both have six

possible settings: Very low, Low, Medium, High, Very high and Best. The choice will depend

on a combination of the intended purpose of the results, and the time available to undertake

the processing. The fastest processing is achieved at the Very low end of both scales, while the

most detailed and accurate measurements are obtained with both Resolution and Accuracy set

to Best. In the latter case, even with relatively basic analogue video equipment, the accuracy

with which the apparent movement of the texture mask may be detected can be better than

1/100 of a pixel, and the spatial resolution of the measurements is a few pixels. By default, the

Resolution and Accuracy controls will be enabled. However, if the Automatic check box for

the Interrogation window group on the Advanced Control tab is cleared, then the Resolution

and Accuracy controls will be disabled.

DigiFlow Menus

– 116 –

To determine the relationship between refractive index and density, DigiFlow requires that

a fluid medium is specified with the Medium list box. This box contains a range of standard

fluids (e.g. Water and Air), plus the special fluid Unity in which all the physical constants are

set to unit values. In the context of synthetic schlieren, DigiFlow extracts the value of

 = (0/n0)(dn/d) (see (17) and (18)) for the selected medium. Additionally, (displacements)

will cause the pattern matching process to return the apparent displacements of the mask

rather than the density gradient.

The final input on this tab is Coordinate System. This specifies the coordinate system that

will be used to relate pixel to world coordinates. The coordinate system is assumed to have

been defined in the mid-plane of the experiment (not the plane of the dots). See §5.2.6 for

further details on setting up a coordinate system.

Outputs page

Figure 88: The Outputs tab of the synthetic schlieren dialog.

The Outputs tab controls the destination and scale of the output from the synthetic

schlieren calculation. This dialog page consists of three image selectors, each with its own

Options and File buttons and Display check boxes. The destination for the output stream is

selected by clicking the File button (thus starting the standard Open Image dialog box; see

§4.2), while the colour scheme and other related details are selected with the Options button

(see §4.4).

DigiFlow Menus

– 117 –

The x Gradient, y Gradient and Density images are centred with a zero value corresponding

to half the intensity range (i.e. 128 for an 8 bit image format). Saturation corresponds to the

values given in the Scales group for Gradient and Density. The gradient images have the units

of ‘per unit length’ (what the unit length is depends on the coordinate system selected), and

represent /0, unless (displacements) was specified for .the Fluid Medium on the Inputs

tab.

The optional Density output (not available with free licences) is calculated by a least

squares integration of the density gradient field. In general, integration of a vector field to find

a scalar potential is not unique, as the vector field will contain both irrotational and rotational

parts. With synthetic schlieren, the density gradient field should be irrotational, which would

make the integration unique, but inevitable measurement noise renders some rotational

component. The integration procedure used in DigiFlow aims to find the scalar potential (here

/0) that minimise the root mean square of this rotational part (effectively minimising the

enstrophy), hence is a least squares solution. The solution process is achieved iteratively using

a multigrid approach that is aware of any missing data or masked regions in the synthetic

schlieren results. (Inevitably, there is some data loss in the neighbourhood of any masked

regions.) The integration procedure leaves one unknown arbitrary constant of integration

which DigiFlow sets by forcing the spatial mean density perturbation to vanish. Of course,

this may not always be appropriate.

The DigiFlow Data format (.dfd) or DigiFlow Pixel format (.dfp) may be specified for any

of these output images so that the data is readable in other applications. However, it is

recommended that the .dfi floating point format is used if you wish to make quantitative use of

the data.

Selecting the Compact check box causes DigiFlow to save an approximation to the

calculated density gradient field by only saving the gradient at the nominal location of the

interrogation windows used to calculate the gradient. DigiFlow will automatically expand out

this approximate gradient field, when it is reloaded, to produce one that is very close to that

saved without the Compact option. The files produced, however, are much smaller.

Figure 89 shows an example of the density gradient fields and the density perturbation.

Note that in all cases they are normalised by the reference density 0. The density gradient

fields therefore have dimensions of per length; it is important that you use the same units for

the Lengths group on the Inputs tab as you use in the chosen coordinate system, or else it will

be difficult to interpret the output!

You may choose not to calculate the density perturbation while doing the synthetic

schlieren computation, but instead calculate it later from the density gradient field. Tools:

Recipies contains a suitable recipe to do this in the Differential group.

 (a) (b) (c)

Figure 89: Example of synthetic schlieren output. (a) (1/0) /x, (b) (1/0) /x and (c) /0 for a

thermal plume erupting from a boundary layer.

DigiFlow Menus

– 118 –

Interrogation page

Figure 90: The Interrogation tab of the synthetic schlieren dialog.

The Interrogation page enables direct control over many of the underlying values of the

synthetic schlieren calculation. For most users, checking the Automatic box yields optimal

performance, with the Resolution and Accuracy controls on the Inputs tab providing all the

performance tuning necessary. Advanced users, however, may wish to fine tune the processing

manually; clearing the Automatic check box enables the remaining controls and disables the

Resolution and Accuracy controls on the Inputs tab.

The Size subgroup controls the Width and Height of the interrogation window. Increasing

the size of the window increases the accuracy, but decreases the spatial resolution and slows

the computation. If the window is too small, relative to the pattern size, then very poor results

are achieved. The Adjust check box specifies whether DigiFlow can adjust the size of the

window if it thinks this is necessary to produce more reliable data.

The Spacing subgroup has the most direct control on the spatial resolution of the synthetic

schlieren computation. This specifies the x and y spacing between points where the pattern

matching process is undertaken. Clearly reducing this value, specified in pixels, increases the

amount of computation, but may not always increase the spatial resolution due to the interplay

with the Size of the interrogation window.

The Difference measure subgroup specifies the type of difference calculation. This is the

function that DigiFlow minimises as it searches for the correct apparent shift. In practice,

DigiFlow Menus

– 119 –

there is little to choose between the three functions. The Absolute option is computationally a

little cheaper, while Correlation is that frequently used in PIV techniques. Table 1 summarises

the various difference measures f that may be used in DigiFlow. Note that in all cases the

summation is over N valid pixels in the interrogation region. The Power option is simply a

generalisation of Absolute and Square. The Normalise check box rescales each of the

measures, based on the strength of the texture in the interrogation region.

f Standard Normalised

Absolute A B

A B

A B

Square
2

A B

2

2 2

A B

A B

Power p
A B

p

p p

A B

A B

Correlation A B
AB

N

2 2

2 2

A B
AB

N

A B
A B

N N

Table 1: The difference measures used in DigiFlow pattern matching.

The Peak fitting transform group determines the method of processing interpolating in the

neighbourhood of the smallest value of the difference measure f (or largest value, for the case

of the correlation measure) in order to provide an improved estimate. In all cases a bi-

quadratic least squares procedure using nine points is employed. However, DigiFlow provides

the option of transforming the difference measure prior to undertaking the fitting. The possible

transformations are shown in table 2. Note that the logarithmic option effectively assumes a

Gaussian form for the difference measure in the neighbourhood of the optimal shift.

 None Linear Square Log

Absolute f f f 2 log(f)

Square f f F log(f)

Power f f 1/p f 2/p log(f)

Correlation f f f 2 log(f)

Table 2: Transformation of the difference measure f prior to computing bi-quadratic least squares fit.

The Subpixel passes subgroup has a pronounced effect on the accuracy, resolution and

speed of the calculation. The radio buttons determine the basic type of treatment to obtain

improved subpixel accuracy: None is the fastest but least accurate. Linear offers a good

compromise between speed and accuracy, while Cubic provides the best results, but is

substantially slower. The Passes edit box controls the number of levels of subpixel treatment.

For Linear a value of 1 to 3 is recommended, while Cubic normally only requires 1.

The Interpolate fields radio group controls how the data, initially obtained only at the

centres of the interrogation zones, is expanded to fill the complete image. The simplest option

of Linear, which uses a bilinear interpolation, tends to end up with an artificial appearance.

The next level of sophistication, Cubic, produces a good balance between speed and accuracy.

DigiFlow Menus

– 120 –

While the resulting fields are continuous, they are not continuously differentiable. This

problem is overcome by the computationally more expensive cubic b-spline and the quintic b-

spline. For most circumstances either the cubic or cubic spline provides the best compromise

between computational efficiency and accuracy.

If the interrogation window Spacing is small to improve the spatial resolution, then it is

recommended that Also distorted is checked. This enables DigiFlow’s unique image distortion

technology to substantially increase the spatial resolution. A further improvement in both

resolution and accuracy may obtained in some circumstances by also checking Also

reverse.However, for high quality images, undertaking the reverse pass may lead to a

deterioration in the quality of the results.

Checking Discard in Big differences will dynamically discard pixels that DigiFlow

determines may not belong to the pattern it is trying to match. While discarding valid pixels

can detrimentally affect the signal to noise ratio, retaining invalid ones can have an even more

serious effect. The Limit controls the level at which pixels are discarded.

For images that have a poor signal to noise ratio, a fluctuating level of illumination, and

strong spatial gradient in intensity, a spurious signal can be obtained from the interaction

between the spatial gradient and the temporal fluctuations. The Mean differences group

controls whether DigiFlow will attempt to correct for this by rescaling the image intensities to

remove this signal. Selecting None will turn off the image rescaling to deal with mean

differences between images, while Global will force the mean intensity of the two images

(excluding any pixels of zero intensity) to be the same. The processing invoked by Local is

similar to that of Global except that it does it locally for individual interrogation windows.

While Local may superficially seem the most attractive, the results are much more sensitive to

noise and should only be used when there is no other solution. The Automatic setting will

attempt to assess which of the other three settings is most appropriate.

The Algorithm control provides access to different internal versions of the pattern matching

algorithm, thus ensuring backward compatibility.

The Enstrophy weighting controls the weighting applied to the condition that the apparent

displacements must be expressed as the gradient of a scalar when determining the optimal

apparent shift of the dots. The way in which this weighting is used depends on the Flow

geometry setting in the Inputs tab.

Setting Predict using last result will suppress the initial pixel pass for points where a result

has been calculated previously. This reduces the time required to converge on a solution.

DigiFlow Menus

– 121 –

Validation page

Figure 92: The Validation tab of the synthetic schlieren dialog.

Clearing the Automatic check box in the Validation group allows direct user control over

the parameters that control validation of the individual apparent displacement vectors. Min

texture prohibits computation when the standard deviation of intensity within the interrogation

window is less than the specified value. Similarly, Min range sets the minimum range

(maximum minus minimum values) the intensity within the interrogation window must have

before computation is permitted. Min curvature imposes a lower limit on how sharp the

difference measure around optimal apparent displacement must be, while Reject difference

imposes an upper bound on the difference measure. If the difference measure exceeds Accept

difference multiplied by the range of intensities within the interrogation window (but is less

than Reject difference, again multiplied by the range within the interrogation window) then it

is subject to additional checks and processing to try to improve and ensure the quality of the

resulting data.

The Outliers subgroup handles the identification and resolution of apparently erroneous

data. For a well set up experiment, there should not be any erroneous data to be corrected.

This feature is enabled by the Remove check box, with Limit applying to the difference

between the value at the point and the mean of the neighbouring four vectors. This limit is

expressed in terms of the apparent pixel displacements. If the Limit is exceeded, then the value

is either Discarded, or relaxed towards a Linear or Cubic interpolation.

DigiFlow Menus

– 122 –

The apparent displacement field visualised by the synthetic schlieren is due to the gradient

of the refractive index field. As such, the apparent displacement field should be irrotational

since curl(grad()) 0. The Projection group attempts to make use of this as part of the

validation process by projecting the measured displacement field onto an irrotational space

when Onto irrotational space is selected. This projection will be made for every iterated value

of the measured displacement field unless the Interpolation step only box is checked. When

checked, the projection will only be applied to displacement fields used to the steps used to

distort the images.

The final group, Means, is enabled by clearing its Automatic check box. The three check

boxes within this allow for the removal of apparent mean gradients in the measurements. The

Remove x mean control scans the data for each y and removes any mean apparent

displacement for that y. The Remove y mean performs a similar calculation for each x, while

Remove global mean simply calculates the mean apparent displacement for all the data, and

subtracts this from the data. In most circumstances it is unnecessary to remove the means, but

there are times when extraneous optical effects, or experimental setups such as having the

camera and texture mask mounted on a traverse, will make this facility desirable.

Quality

DigiFlow determines a range of additional information about the apparent displacement

field that represents the density gradient during the processing of the experimental images.

While for most users this additional information is of little value, the Quality tab makes it

possible to output some of this for advanced users.

This output requires a .dfi file if all the information is to be retained as there are multiple

planes of data available. In particular, these planes contain the following information:

Plane Description

0 Difference measure. This is the value of the difference measure (see Table 1)

for the final match.

1 x curvature. The curvature in the difference measure in the neighbourhood of

the final match.

2 y curvature. The curvature in the difference measure in the neighbourhood of

the final match.

3 State. Indicates the state of the pattern matching. State values are integer

(although stored as floating point) as follows:

0 Good vector

1 No data

2 Insufficient texture

3 Insufficient curvature in difference measure

4 Difference too great – rejected

5 Displacement too great

6 Outlier

7 Interpolated value

8 No match found

1 Value set by user dfc code

2 Value set by user interpolation code

3 Value excluded by user dfc code.

4 Fraction discarded. The fraction of the pixels in the interrogation window that

were discarded due to them being too different between the two images.

5 x vector position. Stores the location (in world units) at which the vector was

DigiFlow Menus

– 123 –

determined.

6 y vector position. Stores the location (in world units) at which the vector was

determined.

7 x displacement. Stores the actual displacement (in pixels) determined.

8 y displacement. Stores the actual displacement (in pixels) determined.

Figure 93: The Quality tab for synthetic schlieren.

User Interpolation

As part of the pattern matching procedure, DigiFlow interpolates the apparent displacement

field determined at discrete points to the entire image plane in order to distort the images. The

performance of the pattern matching depends on the quality of this interpolation, but the

default techniques may not always be optimal. Hence, the User Interpolation tab provides the

user with a way of bypassing the default mechanism and supplying their own customised

scheme.

DigiFlow Menus

– 124 –

Figure 94: The User Interpolation tab for synthetic schlieren.

The tab is activated only if Automatic interrogation is turned off on the Interrogation tab,

and the Use user interpolation check box is checked on the User Interpolation tab. The default

sample code uses a weighted least squares approach to completing the interpolation. This is

more computationally costly than the default method, but provides a more robust method of

handling missing data.

Parameters passed to this code include the interrogation-window apparent displacement

vector uv, the required output resolution nx, ny, the nominal interrogation window size wx, wy

(in pixels), the spacing between the vectors dx, dy (in pixels), the location of the first vector

x0, x1, and the quality measure Quality. The string calltype indicates the point in the

algorithm when the call to the filter is made. This may take one of the values "Pixel",

"SubPixel", "Reverse", "Distorted" or "Final". The experimental image Pa and

background image Pb are also available.

Processing

When OK is pressed, the dialog box will check that all mandatory values have been

entered. If they have not, then the focus will return to the page and control of the first missing

value.

The progress of the processing may be viewed by selecting the Progress window that

appears once synthetic schlieren has started. The contents of this window are updated

DigiFlow Menus

– 125 –

periodically during the processing of each of the images from the Experiment stream. Most of

the time, this window provides information on the apparent vertical shift of the texture mask.

The title bar on this window and the ‘thread message’ panel on the main status bar provide

details of the individual calculations as they are performed.

The basic processing algorithm may be summarised by the following steps:

 Determine optimal pixel shift.

 Determine optimal pixel shift by moving interrogation window around on Experiment

image, measuring the difference between this and the comparable unshifted window on

the Background image.

 For each optimal pixel shift, use a bi-quadratic least squares to obtain subpixel

resolution.

 Repeat for each grid point on this level.

 Refine grid to next level by bi-linear interpolation, in a multi-grid-like process.

 Determine optimal subpixel shift.

 Determine optimal shift in a manner analogous to the pixel shift, but using an

interpolated version of the Experiment image to allow smaller shifts to be probed.

 For each optimal subpixel shift, use a bi-quadratic least squares to obtain an improved

estimate of the optimal shift.

 Determine optimal distorted shift.

 Use the current estimates of the apparent displacement to distort the Experiment image

back to the Background image (i.e. try to undo the apparent movements).

 Repeat the optimal subpixel shift process, using this distorted image.

 The optimal shift from this process should be small (it represents the error in the

previous optimal shift) is used to correct the optimal subpixel shift

 Repeat steps 3 the required number of times, each with a smaller subpixel shift of the

Experiment image.

 Repeat steps 2 and 3, but shifting the Backround image rather than the Experiment image.

 The optimal shift that is produced by this reverse shift is inverted and itself distorted to

shift it back to the Background frame of reference.

 The forwards and distorted reverse shifts are combined to produce the ultimate optimal

subpixel shift.

 The shift is transformed to world coordinates.

 The world coordinate shift is transformed into gradients in the density perturbation.

 The density perturbation is computed by integrating the gradient field.

 The direct integration method used does not require boundary conditions, and the

arbitrary constant of integration is defined so that the mean perturbation vanishes.

During the processing, DigiFlow will display a Progress window that provides feedback on

the performance of the pattern matching algorithm. One of the key components of this is the

DigiFlow Menus

– 126 –

classification of displacement vectors by drawing boxes at their roots if there is some potential

problem. The table below lists these classifications and gives a description of the various

categories and an indication of the control that can affect this.

Symbol Description Advanced Control page

Red cross No valid displacement vector

Blue box The image does not contain

an adequate texture for the

matching to be reliable.

Advanced: Min range
Advanced: Min texture

Magenta box The difference function being

minimised does not have a

well-defined peak.

Advanced: Min curvature

Yellow box The value of the difference

function is too large.

Advanced: Reject difference

Light red The best match is found

beyond the limit of the

permissible shifts.

Inputs: Displacements

Dark green box The optimal match produced

an outlier. This has been

replaced by an interpolated

value.

Advanced: Outliers

Green box Vector is the result of

interpolation from

surrounding vectors.

Light magenta A best match could not be

found.

Inputs: Displacements: Max x

and Max y

5.6.5 Particles
Processing of particles is split between this submenu, which includes particle streaks

(§5.6.5.1) and Particle Image Velocimetry (§5.6.5.2), and the Particle Tracking submenu

(§5.6.6).

5.6.5.1 Show as Streaks

Toolbutton:

Shortcut:

Related commands: process Analyse_ShowAsStreaks(..)

The Show as Streaks option provides a convenient method of reviewing and presenting

image sequences containing particles. Such sequences will often be subsequently analysed in

more detail using either Particle Tracking Velocimetry (PTV) or Particle Image Velocimetry

(PIV). However, it is normally worth reviewing the sequence first as streaks as this will often

give significant insight into the structure of the flow, regions where things are steady, and

where the flow is unsteady, and where the contrast is adequate to proceed with quantitative

measurements.

Two dialog boxes are produced as standard during the Show as Streaks process. The first

(see figure 95) allows selection of the input data stream in the standard manner. Under most

circumstances there will be no need to use Sift to change the timings, as this can be done

subsequently. However, the exception to this is when dealing with image sequences that are

interleaved so that images at different levels in a flow (for example) are stored adjacently and

DigiFlow Menus

– 127 –

only every nth image is at the same level. In this case it may be desirable to set the time step

using Sift.

Figure 95: Dialog box used to specify the input stream for the Show as Streaks facility.

The main control dialog (see figure 96) consists of standard video controls, track bar and

speed control. This dialog sits alongside a floating window containing the processed streaks

image. Note that you may swap between these with the mouse to pan the image around, if

desired. Note that both windows are floating (i.e. they are not required to remain within the

main DigiFlow window).

Figure 96: Dialog controlling the Show as Streaks facility.

The Processing group determines how the displayed image is to be constructed from the

raw image stream. Direct simply shows the raw image, Threshold segments the raw image

into a binary image prior to combining with a stored image (the Threshold group determining

DigiFlow Menus

– 128 –

the intensity level for this split), Maximum intensity will take the greater of the intensity in the

current image and the corresponding pixel in the stored image, Minimum intensity will take the

smaller of the intensity in the current image and the corresponding pixel in the stored image,

and Average will generate the streaks using a simple arithmetic averaging process. In all cases

(except for Direct) the intensity of the stored image is reduced by the amount specified by the

Decay group each time a new image is added, thus providing a fading memory of the flow.

The Reset button clears the stored image, thus resetting the streaks.

Which processing option produces the best results depends in part on the quality of the

original images. For clean images with uniform illumination and good contrast, Threshold is

likely to produce the best results. However, if the images have strong variations in

illumination, such as shown in figure 97, the Maximum intensity option produces more

satisfactory results.

Figure 97: Example image from streaks facility. Here the field of view was 2.52.5m and particles

illuminated by a 5W argon laser. The streaks show barotropic vortices interacting with the baroclinic

hydraulic exchange through a strait containing an island.

The Synchronise display check box forces synchronisation such that each and every frame

in the sequence is displayed, even if this slows the update rate below the desired frame rate. If

Synchronise display is cleared and the computer cannot keep up with the desired frame rate,

then frames are skipped to maintain that frame rate. In most cases streak images work best if

frames are not skipped (i.e. you should normally have Synchronise display checked).

DigiFlow Menus

– 129 –

5.6.5.2 Particle Image Velocimetry

Toolbutton:

Shortcut:

Related commands: process Analyse_PIV(..)

Theory

The Particle Image Velocimetry (PIV) component of DigiFlow has a great deal in common

with the pattern matching synthetic schlieren component (§5.6.4.3), and indeed many of the

unique features in the PIV system owe their development to synthetic schlieren.

The PIV interface is divided into a number tabbed dialogs. The first two, Inputs and

Outputs are mandatory and control what is to be processed, and where the results are to be

stored, respectively. The remaining tabs may be used by experienced users to tweak the

process to yield better performance in some situations. Only the first two tabs are available

under Free DigiFlow licences.

Figure 98: The Inputs tab of the PIV dialog.

Intputs page

The standard PIV process takes two input streams. The first, specified by the Experiment

group, is the video sequence of the experiment itself. As normal, an image selector is used to

specify the stream. This selector may be specified from a file by clicking the File button, in

DigiFlow Menus

– 130 –

which case the standard Open Image dialog box is produced. Alternatively, clicking the

Process button will allow a source process to be used (refer to §6 on chaining processes for

further details).

The second stream, the Earlier Image input, may be tied to the Experiment stream by the

One stream check box, or taken from an independent data source. In either case the interval

between these two streams should be specified in the Interrogation interval group. If One

stream is used, then Interrogation interval is specified in frames. If separate image streams are

used, then the Interrogation interval is specified as the time interval between the two streams.

The Mask zeros check box causes DigiFlow to ignore all pixels with an identically zero

intensity. This feature is designed to allow simple masking of images. Such masking may be

used to remove parts of the field of view that do not contain the flow. For example, it could be

a static boundary to the flow, a free surface, or possibly an object moving through the flow. In

each case external processing of the image sequence should be made to apply the mask prior

to starting the PIV processing.

There are four groups of controls on the Inputs tab. The first controls maximum

displacement that will be searched for. The values x Max shift and y Max shift are specified in

pixels and are assumed symmetric about zero. These values relate to the maximum expected

particle displacement but need to be as large as that shift (they parameterise the initial search

space for the particle displacement, but DigiFlow will search a larger space if necessary). In

most circumstances the default 3 pixels is adequate. Note that the computation required to

determine the displacement (and hence velocities) increases approximately as the product of

these two values, hence specifying excessively large values is counterproductive.

If the velocity field has a significant bias in one direction (e.g. there is a mean flow), then

specifying a nonzero x Bias and/or y Bias will allow greater computational efficiency by

permitting smaller values for x Max shift and y Max shift. The units of x Bias and y Bias are

pixel displacements and have an effect similar to shifting the second image by negative the

specified amount. For example, if there is a mean velocity down and to the right, then you

would specify x Bias as positive and y Bias as negative.

To provide a simplified interface to the internal workings of the PIV algorithm, DigiFlow

provides a range of predefined settings that have the effect of producing different resolutions

and accuracies. The Image quality, Resolution and Accuracy list boxes both have six possible

settings: Very low, Low, Medium, High, Very high and Best. The choice will depend on a

combination of the intended purpose of the results, and the time available to undertake the

processing, and the quality of the original images. The fastest processing is achieved at the

Very low end of both scales, while the most detailed and accurate measurements are obtained

with both Resolution and Accuracy set to Best. In the latter case, even with relatively basic

analogue video equipment, the accuracy with which the particle displacement may be detected

can be better than 1/100 of a pixel in ideal circumstances (e.g. no particles disappearing), and

the spatial resolution of the measurements is a few pixels. By default, the Image quality,

Resolution and Accuracy controls will be enabled. However, if the Automatic check box for

the Validation group on the Advanced tab is cleared, then Image quality is disabled. Similarly,

the Interrogation window group on the Advanced tab is cleared, then the Resolution and

Accuracy controls will be disabled.

The final input on this tab is Coordinate System. This specifies the coordinate system that

will be used to relate pixel to world coordinates. The coordinate system is assumed to have

been defined in the mid-plane of the experiment. See §5.2.6 for further details on setting up a

coordinate system. Note that if you select a pixel coordinate system, then the To World

Coordinates tool (§5.7.6) may be used to retrospectively convert the pixel PIV results to a

DigiFlow Menus

– 131 –

world coordinate system. (It is generally better, however, to compute the PIV using the

appropriate world coordinate system in the first instance.)

Outputs page

The Outputs tab controls the destination and scale of the output from the PIV calculation.

This dialog page consists of two image selectors, each with its own Colour and File buttons.

The destination for the output stream is selected by clicking the File button (thus starting the

standard Open Image dialog box), while the colour scheme to be used with the stream is

(optionally) selected with the Colour button. At least one of the four output streams must be

given a file name before OK will close the dialog box and start the process.

Figure 100: The Outputs tab of the PIV dialog.

The mandatory Velocity output selector will contain an image of the velocity field

calculated. It is recommended that you specify either a DigiFlow Drawing file (.dfd) or a

DigiFlow Image file (.dfi) rather than an industry standard raster image format for this output.

In general, a .dfi file is to be preferred. In a .dfd the velocity data as ASCII data in conjunction

with a series of drawing commands. This format is very convenient if you are using other

software to process the results as reading these files is straight forward. They are, however,

not very compact. Using a .dfi file stores the velocity data as velocity data, but allows this to

be processed by DigiFlow as though it were an image. For example, the time average facility

(see §5.6.1.1) and most of the other manipulation tools can be used to process the velocity

DigiFlow Menus

– 132 –

data. In general, saving the data in .dfi format will be preferable until you have finished all

processing.

The scale length of the velocity arrows is determined by the Velocity scale setting. A unit

value draws the arrows of a length equal to the distance the particles have moved in the time

interval between the two images used in the PIV calculation. Increasing Velocity scale causes

the length of the velocity to increase, etc. This approach allows Velocity scale to be largely

independent of the coordinate system used. For many flows, a value of 2 to 10 is appropriate.

Note that if Velocity scale is negative, then the arrows are drawn in the reverse direction.

The background to the velocity field may be selected through the Vector background

control. Selecting (none) gives a plane white background for the velocity field map, and the

output stream stores only the velocity field itself. When Vorticity is selected for the Vector

background, then the vorticity field is calculated and stored in the output stream; the vorticity

field is also displayed as a colour map behind the velocity field. The Experiment and Streaks

options place an image of the experiment behind the velocity field (also storing it in the output

stream). The Experiment option is self-explanatory, while the Streaks option synthesises a

streak image (see §5.6.5.1 for an example of a streak image) to be displayed.

Selecting the Compact check box causes DigiFlow to save an approximation to the

calculated velocity field by only saving the gradient at the nominal location of the

interrogation windows used to calculate the gradient. DigiFlow will automatically expand out

this approximate velocity field, when it is reloaded, to produce one that is very close to that

saved without the Compact option. The files produced, however, are much smaller. This

option works well with either no background, or using the vorticity field as a background.

However, as the background is compressed in the same way as the velocity field, this option

does not work so well when selecting either the experiment or particle streaks as the

background.

The Save x,y positions is not normally necessary. This will add two data planes to each .dfi

output by the PIV process, with one plane containing the x coordinate of every pixel, and the

other the corresponding y coordinate. Note that the Quality output (see the discussion below

on the Quality tab) also provides access to the location of each of the interrogation vectors.

If Classify vectors is checked, then the velocity vectors produced include an indication of

the quality of the vector. This is indicated by a box or cross drawn at the base of any suspect

vector, as per the table below. Note that the Progress window (which is always produced to

show the progress of the PIV calculation) will also show this information, even if Classify

vectors is turned off. At present, classification will only be indicated on output to .dfd files.

Symbol Description Advanced Control page

Red cross No valid velocity vector

Blue box The image does not contain

an adequate texture for the

matching to be reliable.

Interrogation: Min range
Interrogation: Min texture

Magenta box The difference function being

minimised does not have a

well-defined peak.

Interrogation: Min curvature

Yellow box The value of the difference

function is too large.

Validation: Reject difference

Light red The best match is found

beyond the limit of the

permissible shifts.

Inputs: Displacements

Dark green box The optimal match produced Validation: Outliers

DigiFlow Menus

– 133 –

an outlier. This has been

replaced by an interpolated

value.

Green box Vector is the result of

interpolation from

surrounding vectors.

Light magenta box A best match could not be

found.

Yellow circle At least 5% of pixels

discarded

Interrogation: Big differences

Red circle At least 20% of pixels

discarded

Interrogation: Big differences

The vector field may be superimposed on a range of backgrounds. These are selected by the

Vector background list box. If (none) is specified, then a plain, white background is used,

whereas Experiment leads to the vectors being superimposed on the corresponding

experimental image. Similarly Vorticity draws the arrows on an image of the vorticity field.

The Vorticity output selector is optional, and should normally specify a raster image format

file. The Scale setting controls the rendering of the vorticity as a colour map. The value

specified here will be taken as the saturation limit of the false colour map produced. Thus

decreasing Scale amplifies the vorticity map. Note that this scale is used to determine the

scaling of the vorticity map behind the velocity vectors if Vorticity is specified for Vector

background, regardless of whether a separate vorticity output file is being created. Since

vorticity has dimensions of inverse time (and so does not have a length scale), the scaling of

vorticity is largely independent of the coordinate system selected.

Note that outputting the velocity field to a .dfi file works best when the coordinate system is

essentially aligned with the image. In all cases the velocities are determined on a regular grid

in pixel space. When output to a .dfd file, the velocity vectors will be displayed in world

coordinates with a standard Cartesian grid in physical space; this may mean that the original

pixel coordinates are no longer Cartesian. When output to a .dfi file, the original pixel

coordinates remain Cartesian, and the world system may remain distorted.

Interrogation page

The Interrogation tab is identical to that for synthetic schlieren described in §5.6.4.3. Most

users will not need to disable the automatic settings on any of the controls.

DigiFlow Menus

– 134 –

Figure 103: The Interrogation tab of the PIV dialog.

A unique feature of DigiFlow, available only on fully licensed copies, is the ability to use

dfc macro code to fine tune various aspects of the pattern matching process. The Advanced

dfc group controls the specification of this code. To provide code, select the required category

from the drop-down list then click Edit. This will start up a dfcConsole (see §5.2.10 for

details) to edit the code.

The precise requirements for the dfc code vary depending on the task required of it. In all

cases, information is passed to the code through specific variables. The code can then change

the contents of the variables, but must not redefine their type or location. Consequently,

assignment to one of the arrays passed to the code should be through specified elements (e.g.

A[1,2] := …;) or ranges (e.g. A[:,:] := …;) and not directly to the name (i.e. not A :=

…;). Some example codes for specific purposes are given below.

The easiest way to determine what variables are available in a given code segment is to

include a call to view_variables(..) while developing the code. Note, however, that the

memory space and variables names are shared by all code segments. Thus, a variable defined

by the user in one section of code will be available to other sections of code.

To suppress a given piece of code, either ensure that it is blank or have
Do not use

DigiFlow Menus

– 135 –

as the first line. This will suppress execution of the code. Having quit as the first statement

(without the ‘Do not use’ comment) start the code executing, but stop it again immediately.

While this approach works, there is an added computational overhead to it.

The following variables are passed to the code for the different calls:

For any code

 callFor String Identifies the purpose of the call. See below for

specific calls.

 invokedBy String Specifies the condition under which the call is

made.

 dlg Compound The dialog structure used to define the PIV process

 A
nxny array The image (undistorted) of the flow at the earlier

time

 B
nxny array The nxny image (undistorted) of the flow at the

later time

 hA Handle Handle for the window showing the flow at the

earlier time

 hB Handle Handle for the window showing the flow at the later

time

 Time Compound Contains time information relating to the earlier

time

 nx Integer The width of the image stream being processed

 ny Integer The height of the image stream being processed

 X
nxny array World x coordinate for each pixel

 Y
nxny array World y coordinate for each pixel

 xMin Real The minimum world coordinate in the x direction

(real)

 xMax Real The maximum world coordinate in the x direction

(real)

 yMin Real The minimum world coordinate in the y direction

(real)

 yMax Real The maximum world coordinate in the y direction

(real)

 u
nxny array Current estimate of the displacement in x direction

 v
nxny array Current estimate of the displacement in y direction

 nxZ Integer The number of interrogation regions horizontally the

image

 nyZ Integer The number of interrogation regions vertically in the

image

 xyCentre
nxZnyZ

array

The centres, in world coordinates, of each

interrogation region

 ijCentre
nxZnyZ

array

The centres, in pixel coordinates, of each

interrogation region

 iteration Integer Counter for iterative processes; 1 if not an iterative

process

callFor = “GetImages” – all algorithms

callFor = “PredictDisplacement” – 2014a and later algorithms

callFor = "InterpolateDisplacement" – all algorithms

 invokedBy String One of "Forward", "Reverse", "Distorted",

DigiFlow Menus

– 136 –

"FinalOutliers", "FinalField"

 uInterrog
nxZnyZ

array

Stores the x component of the current displacement

on the coarse grid.

 vInterrog
nxZnyZ

array

Stores the y component of the current displacement

on the coarse grid.

 uField
nxny array Stores the interpolated x component of the current

displacement at the full image resolution..

 vField
nxny array Stores the interpolated y component of the current

displacement at the full image resolution..

 rect Compound The rectangle within U,V to which u,v must be

interpolated.

callFor = “DistortionField” – 2017a and later algorithms

 xDisp
nxZnyZ

array

The x-component of the current estimate of the

displacement field.

 yDisp
nxZnyZ

array

The y-component of the current estimate of the

displacement field.

 xDist
nxZnyZ

array

The x-component of the displacement field used to

distort the images during a distortion pass. On entry,

this will be the same as xDisp. Typically, this hook

is used to filter this distortion field.

 yDist
nxZnyZ

array

The y-component of the displacement field used to

distort the images during a distortion pass. On entry,

this will be the same as yDisp. Typically, this hook

is used to filter this distortionfield.

 xZSize Integer The horizontal size of the interrogation window

used for pattern matchine the distorted image.

 yZSize Integer The horizontal size of the interrogation window

used for pattern matchine the distorted image.

 nMicrosteps Integer The distortion process is achieved by an advection

equation. This specifies the number of intermediate

steps used.

 weightUnfilt

eredDisplace

ment

Real The weighting applied to the current estimate of the

displacement (xDisp) compared with the

displacement field used to distort the image (xDist).

 scaleDisort Real The weighting to be applied to disorting the image.

A value of 1.0 will try to distort the images using

the current estimate of the displacement so that they

match.

 relaxation Real The correction determined with the distortion pass is

applied with a relaxation factor.

callFor = "DifferenceFilter" – 2014a and later algorithms

 angle
nxny array The angle for the major axis to be applied to the

difference filter

 ellipt
nxny array The ellipticity to be applied to the difference filter

callFor = “DistortedImages” – 2012a and later algorithms

 P
nxny array The distorted image at the earlier time

 Q
nxny array The distorted image at the later time

DigiFlow Menus

– 137 –

GetImages – all algorithms

This code segment is called immediately after the pair of images is read in. One possible use

of this code is to pre-process the images to apply a mask, either a static one or one created

dynamically based on the contents of the images. Typically, it will be more efficient to

develop the processing algorithm outside the pattern matching process as debugging it in

context is less straight forwards. (A mask is generally implemented by setting to zero the

pixels that are not to be included in the pattern matching process.)

As an example, the following code was developed to remove the (relatively faint) images

of fixed bubbles behind the illuminated PIV plane.
if (Time.iNow = 0) {

 # This setup is only executed once

 #

 # Recover the region selected for processing

 i0 := dlg.Experiment_Region.xMin;

 i1 := dlg.Experiment_Region.xMax;

 j0 := dlg.Experiment_Region.yMin;

 j1 := dlg.Experiment_Region.yMax;

 # Read in the 'background' image, created by determining the

minimum

 # intensity over time for each pixel in the image

 back := read_image("MinIntensity.dfi");

 back := back[i0:i1,j0:j1];

 # Create a mask highlighting the bubbles

 thresh := 0.015;

 noBubbles := filter_median(back,11,11);

 mask := back - noBubbles > thresh;

 mask := filter_median(mask,3,3);

};

Fix the two input images by removing the bubbles

A -= back;

B -= back;

A[] := where(mask and A < 2*thresh,0,A) + 1/255;

B[] := where(mask and B < 2*thresh,0,B) + 1/255;

Iin this case, the file MinIntensity.dfi was calculated in advance using Analyse: TimeAverage

with Method set to Min.

PredictDisplacement – 2014a and later algorithms

At the start of the processing of each new pair of frames, DigiFlow requires an initial guess

for the displacement field. By default, this is determined by a pixel-resolution pass for the first

velocity field, whereas for subsequent fields it is determined either by the displacement from

the previous calculation, or by another subpixel pass. The code specified to

PredictDispalcement is called after any pixel resolution pass has been complete.

The current displacement field estimate is provided in u[:,:] and v[:,:]. Note that any

assignment statements should be made to u[:,:] and v[:,:] rather than simply to u and v to

ensure the same memory is used.

An example of where this facility is useful is given in the following example. Here, the file

MeanVelocity.dfi contains the mean velocity that is to be used in place of a ‘zero’ prediction for

the velocity field for the first iteration. In most cases, it is unlikely that the mean velocity is a

less good prediction than the previous velocity, unless the successive velocity fields departure

from this mean are poorly or negatively correlated.

Use pre-existing velocity field to make prediction

if (Time.iNow = 0) {

 predFile := "MeanVelocity.dfi";

DigiFlow Menus

– 138 –

 predUV := read_image(predFile);

 predDet := read_image_details(predFile);

 view_variables();

 # Convert world velocities to pixel displacements

 u[] := predUV[:,:,0] * predDet.tStep/predDet.dx;

 v[] := predUV[:,:,1] * predDet.tStep/predDet.dy;

};

Note that the displacement is specified over the entirety of the image plane, not just at the

centres of the interrogation windows.

InterpolateDisplacement – all algorithms

This code segment is called immediately after DigiFlow has interpolated a displacement field

from the resolution of the interrogation grid (uInterrog,vInterrog) up to the resolution of

the image being processed (uField,vField). The default interpolation scheme is set by the

Interpolate Fields group on the Interrogation tab and acts to interpolate the two displacement

components separately.

Displacement fields are interpolated at multiple different points in the pattern matching

algorithm. These are distinguished by the invokedBy string. Both "Forward", "Reverse" are

used when doing reverse passes, "Distorted" indicates a distorted pass (with iteration

giving the distorted pass number), "FinalOutliers" is during the removal of any remaining

outliers, "FinalField" indicates generation of the final displacement field.

DistortionField – 2017a and later algorithms

During the ‘distorted passes’, DigiFlow uses the current estimate of the velocity field to

distort both the images being used for PIV to its best estimate of the state at the mid-point in

time between the two. The DistortionField code segment is called before DigiFlow produces

the distorted pair of images, but after it has determined the displacement field that will be used

to drive the distortion. The code segment can be used to modify this distortion field. Typical

examples might include filtering the distortion field to try to ensure the image distortion is

smooth.

The following code segment is motivated by a desire to use a fine spacing of the

interrogation windows in cases where the particle seeding density and image quality may not

be as high as desired. Here, a low pass filtering of the distortion field will help suppress high-

wavenumber noise being introduced.

Variables on entry

xDist,yDist The default distortion field

iteration The iteration counter

Time The current time information

xDist[] := filter_low_pass(xDist,3,3);

yDist[] := filter_low_pass(yDist,3,3);

DifferenceFilter – 2014a and later algorithms

With algorithms dated 2014a and later, a spatially tapered elliptical filter is applied when

calculating the difference measure between the distorted images. The idea of this is to provide

a greater emphasis for one set of directions compared with others.

By default, the major axis of the elliptical filter is aligned with the current estimate of the

velocity, while the degree of ellipticity is controlled by (u/y)2 + (v/x)2. The sample code

below simply displays the orientation and ellipticity fields.

if (Time.iNow = 0 and iteration = 0) {

DigiFlow Menus

– 139 –

 # Create view handles for diagnostics on first call

 hAngle := view(angle,-pi,pi);

 view_colour(hAngle,"circular");

 view_title(hAngle,"Difference Filter: Angle");

 hEllipticity := view(ellipt,0,5);

 view_title(hEllipticity,"Difference Filter: Ellipticity");

};

view(hAngle,angle,-pi,pi);

view(hEllipticity,ellipt,0,5);

DistortedImages – 2012a and later algorithms

During the ‘distorted passes’, DigiFlow uses the current estimate of the velocity field to

distort both the images being used for PIV to its best estimate of the state at the mid-point in

time between the two. The DistortedImages code segment is called immediately after

DigiFlow produces the distorted pair of images and before it starts the pattern matching

process on the distorted pair. The DistortedImages code can therefore be used to modify the

distorted pair, or to provide diagnostic information about them.

The following code segment is motivated by the observation that for very small particles in

sharp focus can change substantially in overall intensity from one frame to the next. This

change can be due to the fill factor for the image sensor being less than 100%, or due to

particles near the fringe of the light sheet moving in or out of the region of strong

illumination. In either case, it can be desirable to decrease the impact of these extreme

changes without completely eliminating the information provided by the particle. This process

is one of fine-tuning, and should not be used until the velocity field is very close to being

correct and so the distorted images are nearly perfectly matched. The modification made here

to the images is to maintain the structure, but decrease the intensity difference in regions

where this difference is very strong.

Variables on entry

P,Q The distorted images

iteration The iteration counter

Time The current time information

dPQ := P - Q; # Difference between distorted images

if (Time.iNow = 0 and iteration = 0) {

 # Create view handles for diagnostics on first call

 hScat := 0;

 hDist := 0;

 hDist := view(hDist,dPQ,-0.2,0.2); # Display unedited difference

 view_zoom(hDist,0.25);

 view_fit_to_zoom(hDist);

 view_title(hDist,"Difference between distorted images");

};

view(hDist,dPQ,-0.2,0.2); # Display unedited difference

A scatter plot (optional) can provide good diagnostic information

scatter := scatter_to_array(make_array(0,256,256),255*P,255*Q,1,1);

scatter := log(scatter max 1e-2) + 2;

scatter /= max_value(scatter);

hScat := view(hScat,scatter);

view_title(hScat,"Scatter plot of intensities in distorted images");

if (iteration >=2) {

 # Only make adjustments to distorted images if sufficient

 # distorted passes have already been completed

 OK := P <> 0 and Q <> 0; # Mask out any zeros

 thresh := mean(abs(dPQ));

 sPQ := P + Q;

 delta := sign(dPQ)*(thresh + (abs(dPQ)-thresh)/4);

 P[] := where(abs(dPQ) > thresh and OK,(sPQ+delta)/2,P);

DigiFlow Menus

– 140 –

 Q[] := where(abs(dPQ) > thresh and OK,(sPQ-delta)/2,Q);

 # Update difference image as diagnostic

 # Could also update scatter plot

 dPQ := P - Q;

 view(hDist,dPQ,-0.2,0.2);

};

Note that the code assigns new values to the distorted images P[:,:] and Q[:,:], rather than

simply to P and Q. This ensures that the same memory is used for the updated arrays as was

used to pass them to the code. There are both computational reasons for wanting to do this and

it ensures the returned arrays have the same dimensions as the input ones.

Validation page

The Interrogation tab is nearly identical to that for synthetic schlieren described in §5.6.4.3.

Most users will not need to disable the automatic settings on any of the controls. One

difference is that the Projection group contains an additional option, allowing projection of the

velocity field onto either irrotational or incompressible (solenoidal) spaces. The latter is most

likely to be of use when considering two-dimensional flows, as it only attempts to make the

divergence in-plane measured velocity field vanish. In most other circumstances the

projection should be turned off.

Figure 106: The Validation tab of the PIV dialog.

DigiFlow Menus

– 141 –

User filter

The User Filter tab provides the user with the ability to supplement or override DigiFlow’s

normal validation filters. When enabled DigiFlow provides the user’s dfc code with the two

images as the variables Pa and Pb, along with the pixel displacements as the two-dimensional

arrays u and v. The locations of these vectors are supplied in x and y, while the current state of

the vector is indicated by state. Finally, the string calltype indicates the point in the

algorithm when the call to the filter is made. This may take one of the values "Pixel",

"SubPixel", "Reverse", "Distorted" or "Final". The values taken by the state array

reflect DigiFlow’s default assessment of the individual displacement vectors. A list of the

categories is given in the lower half of the User filter tab.

Figure 110: The User Filter tab.

The user code should return a compound variable containing the components .state, .u

and .v, each of which are arrays of the same size as the corresponding arrays provided to the

dfc code. The return values in .state request DigiFlow to treat the displacement vector in the

manner specified in the lower half of the User filter tab. If .state for a given vector is set to

1 then the vector supplied .u and .v will be used in place of that calculated by DigiFlow.

DigiFlow Menus

– 142 –

User interpolation

The User interpolation tab provides a way of customising one of the key steps in the pattern

matching algorithm, namely interpolating the velocity field from the location of the

interrogation vectors to the entire image plane.

Figure 111: The User interpolation tab provides a way of customising the interpolation step whereby

the velocities at the interrogation points are interpolated to the entire image plane.

The controls available on this tab are identical to those for the pattern matching in synthetic

schlieren (see §5.6.4.3). The example given in figure 111 uses a biquadratic fitted using a

least-squares routine for all parts of the PIV process where interpolation is required. Note that

this process only gives approximate interpolation as the least squares solution will not

generally pass through the corresponding mesh points. Substituting the following code will

keep the default behaviour for all except the generation of the intermediate velocity field used

to distort the images:
if (callType = "Distorted") {

 sx := x_size(uv);

 sy := y_size(uv);

 fit_image_b_spline(uv,nx,ny,x0,y0,dx,dy,nxParts:=sx/2,

nyParts:=sy/2,xOrder:=3,yOrder:=3);

} else {

 null;

};

DigiFlow Menus

– 143 –

Here, we detect when the interpolated field is required for image distortion using the

callType variable. If not, then returning a null indicates to DigiFlow to use the default

interpolation. Here, when callType is "Distorted", we use a least squares fit of the velocity

field using cubic b-splines to reconstruct a smoothed high-resolution version of the velocity

field with which to distort the images prior to the next stage in the pattern matching algorithm.

Quality output

The Quality tab provides the option of outputting information that DigiFlow generates to

assess the quality of the individual velocity vectors.

Figure 112: Optional output of information relating to the quality of the velocity vectors.

The optional output stream created by this feature must be saved as a .dfi file. The pseudo

image created contains multiple planes of image data, as indicated in the dialog box. Note that

unlike with a .dfi file containing velocity information, DigiFlow does not format the image in

any particular way for display. Opening a quality .dfi file will simply display the first image

plane. The contents of the quality image is identical to that for Synthetic Schliere, thus the

reader is referred to §5.6.4.3 for further details.

Post processing

Selection of the most appropriate output file format (between .dfd and .dfi) depends on the

type of post processing to be undertaken.

DigiFlow Menus

– 144 –

If the .dfi format is selected, then the PIV velocity files may be fed back into DigiFlow as

multi-plane images containing the velocity field. These can be processed using most of the

standard DigiFlow tools, preserving the nature of their contents. For example, the Analyse:

Time Average facility can act upon a sequence of PIV velocity files to produce the time

average velocity field. Similarly, the various other time series tools described in §5.6.1 can

operate on these images, as can the general manipulation tools Recipe, Transform Intensity

and Combine Images (see §§5.7.1, 5.7.2 and 5.7.3). There are standard recipes in the Recipe

facility to aid with basic manipulations of this data. For example, the recipe

Velocity.Background.Divergence recipe lets you change the background of the velocity field

from the one saved during the PIV processing to display the in-plane divergence field.

Similarly, there are recipes for vorticity, stream function, velocity potential, shear, etc. Note

that for PIV data, velocity gradients are obtained by a finite difference operation of the

velocity field.

Saving the output in .dfd format is appropriate if post processing is to be undertaken using a

third party or user-written program as the .dfd file contains an ASCII representation of the

velocity field. Note that you can always convert a .dfi file into a .dfd file using Edit Stream

(§5.1.6) or one of the other related image manipulation tools by simply specifying a .dfd file

for the output.

Stereo PIV

A single PIV calculation will provide two velocity components parallel to the image plane.

However, if there are a pair of simultaneous recordings of the image plan from somewhat

different angles, then these can be used as a stereo pair to recover three velocity components

in the image plane. The documentation here is not intended to provide a full description of

how to achieve this, but rather to act as a pointer to the separate document,

DigiFlow_StereoPIV.pdf (and DigiFlow_StereoPIV.htm) that provides further information on this

specialist procedure.

There are a number of key steps in obtaining the three-component two-dimensional (3C2D)

velocity field:

1. Capture of a synchronous stereo pair of images of the flow

2. Processing, in pixel coordinates, of the two apparently two-dimensional velocity fields

(one from each of the stereo pair).

3. Determination of the two-dimensional (in-plane) coordinate system for each of the

images in the pair.

4. Determination of the stereo-pair to three-dimensional coordinate system and its

derivative (used for transforming the velocities)

5. Utilisation of the coordinate systems to transform the stereo pair of velocity fields into

the 3C2D velocity field in world coordinates in the image plane.

At present, steps 3, 4 and 5 are handled through macros utilising a tailor-made set of built-in

dfc functions for improved efficiency.

DigiFlow Menus

– 145 –

5.6.6 Particle Tracking Velocimetry

5.6.6.1 Tracking particles

Toolbutton:

Shortcut:

Related commands: process Analyse_PTVTrack(..)

Background

Particle Tracking Velocimetry (PTV) differs from Particle Image Velocimetry (PIV) in a

fundamental way. Whereas PIV (described in §5.6.5.2) relies on pattern matching in an

essentially Eulerian way, PTV seeks to identify individual particles (or other equivalent

features) and follow them in a Lagrangian sense. As PIV is the more widely used of these

techniques, it is worth discussing the relative merits of the two approaches.

The strengths of PIV are that is fairly robust to noise and has excellent velocity resolution

(the accuracy with which displacements may be obtained is a function of the cell size and the

distribution of features within it rather than the pixel resolution). The spatial resolution is

inversely proportional to the cell size: the overall data quality is thus a compromise between

velocity and spatial resolution. The main disadvantages are the considerable time required to

compute the optimal correlation and the inability to cope with any structure across the

illuminated plane (i.e. velocity gradients parallel to the viewing direction). In general the

method does not allow individual particles to be tracked, and hence has no immediate access

to Lagrangian descriptions. However, it is a relatively simple matter to add some degree of

particle tracing once the velocity field is known, and hence access the Lagrangian nature of

the flow.

Particle tracking offers a more fundamental approach to PIV. There are two main

approaches which are exactly equivalent to the manual methods of analysing streak (or

multiple exposure) photographs and multiple (time series) photographs. In the streak

photograph method, the effective camera shutter is opened for a long time during which the

particles move many particle diameters. This long exposure may be produced directly with a

suitably slow shutter speed, or synthesised by combining multiple exposures (e.g. ORing a

sequence of video frames using a digital frame grabber with a shutter speed equal to the field

rate - the DigiFlow facility described in §5.6.5.1 has this as an option). Once the streaks have

been produced, image processing techniques may be applied to locate them and analyse their

shape, orientation etc.

The alternative of utilising a time series of images offers a greater volume of information

on the particle positions as a function of time, especially in the context of digital image

processing where quantisation yields a relatively low spatial and intensity resolution. Knowing

the approximate location of a particle at a relatively large number of times enables a much

more accurate estimation of the position of a particle at a given time, and of its velocity,

provided the sampling frequency is much higher than the highest frequency in the particle

motion. To make use of this information some method must be developed for tracking

particles from one image to the next. In the limit of particles moving only a small fraction of

their diameter between each sample, the process of matching particles in one image with their

position in the next image is straight forward - the particle images closest together in two

adjacent samples will correspond to the same physical particle. However, if the particles may

move many diameters between samples, more sophisticated algorithms must be employed.

The algorithm used in the matching process may utilise spatial and temporal information in

addition to particle characteristics and prior knowledge of the flow. Generally, only some of

these features will be needed to determine which particle image is which particle. For

example, if spatial correlation is not utilised, then two-dimensional projections of three-

DigiFlow Menus

– 146 –

dimensional flows with significant velocity gradients parallel to the direction of viewing, may

be analysed (recall that PIV techniques are unable to cope with such images). Moreover, the

basic approach is not limited to a two-dimensional projection of a three-dimensional flow but

is capable of full three-dimensional analysis. By applying the matching process repeatedly,

time-series for individual particles may be obtained to describe some of the Lagrangian nature

of the flow.

The accuracy with which the velocities may be measured is limited by the accuracy with

which the individual particle images may be located and the time period over which the

velocity may reasonably be evaluated (this must be shorter than the period corresponding to

the maximum frequency in which you are interested). The accuracy of location depends in

turn on the particle size, the bit depth and quality of the images, and the method used to

determine their positions. In general, the velocity resolution will be less than that for the

cross-correlation approach, but is nevertheless excellent in many situations. The spatial

resolution is limited primarily by the number of particles in the flow: the more particles, the

higher the resolution. In practice the resolution of video technology and the frame grabber

imposes the most stringent limitation on the number of particles able to be tracked. Eulerian

as well as Lagrangian descriptions may be obtained, utilising a suitable interpolation method,

if the particle seeding density is sufficiently high.

The techniques and algorithms used by DigiFlow are based on those originally developed

in 1988 and described by Dalziel (1992). These same techniques and algorithms were

incorporated in the DigImage processing system. These algorithms have been refined and

enhanced in DigiFlow to improve computational efficiency and, more crucially, to improve

the overall performance of the particle tracking process. The interface with these algorithms

has been greatly simplified when compared with DigImage, making the tracking process more

generally accessible.

This section outlines and describes the two-dimensional particle tracking technique utilised

by DigiFlow. This method represents an efficient, reliable approach to tracking particles from

a two-dimensional projection of a flow. The computation required to analyse each frame pair

increases only slightly faster than linearly with the number of particles, allowing very high

processing rates.

Particle location

The basic strategy behind the particle location is to scan through the image for blobs that

have an intensity satisfying some threshold requirement. If a blob is found, then its

characteristics are determined and compared against a set of requirements for the blob to be

considered a particle. If the blob satisfies these requirements, it is recorded as a particle, if it

does not, it is discarded.

By scanning through the image with a range of different thresholds, it is possible to pick up

particles with a broad range of intensities, allowing optimal performance. A blob that was

rejected at one threshold may well be picked up as a particle at another threshold.

The particle location procedure ultimately records not only the location of the particle (as

determined by its volume centroid, relative to the threshold, but also a broad range of other

particle characteristics, some of which are used in the subsequent matching process.

Matching algorithm

Once all the particles in an image have been found (at t = tn+1, say), they need to be related

back to the previous image (t = tn, say) to determine which particle image is which physical

particle. In DigiFlow we use a modification of what is known in operations research as the

Transportation Algorithm. This approach was that developed by Dalziel (1992). While the

DigiFlow Menus

– 147 –

problem solved by the transportation algorithm may be represented as a 0-1 totally unimodular

integer linear program, it is more efficient and illuminating to take a graph theory approach.

The idea is to choose a set of associations between two sets of entities, such that the set of

associations is optimal in the sense that it minimises some linear function of the associations it

includes. For the particle tracking, one of the sets is the set of particles P at t = tn and the other

the set of particles Q at t = tn+1. We shall start by assigning a label to all the particles images

in the two images. At t = tn the particle images are labelled pi for i=1 to i=M, while at t = tn+1

they are labelled qj for j=1 to j=N. Each pi or qj contains not only the location of the particle,

but other characteristics such as size, shape, intensity, and any other desired piece of

information. We now define a set of association variables ij. If ij is equal to one, then we

will say that pi at t = tn is produced by the same particle as qj at t = tn+1. If ij is zero, then pi

and qj represent different physical particles.

For the time being we shall assume that there is one and only one physical particle for each

of the particle images. We shall consider groups of particles later in this discussion. For the

present it is obvious that, for given pi, at most only one value of j can give ij equal to one,

otherwise the physical particle must be two places at once! Identical arguments apply for each

pj. If M is equal to N, it may be possible for there to be exactly M = N values of ij equal to

one. However, this will seldom happen in real experiments, where there will normally be

fewer than M = N values of ij equal to one. Moreover, the number of particles images at the

two times will not always be equal.

There are many reasons why the number of particles in the image may be different at t = tn

and t = tn+1. The simplest is that the particle may have moved outside the region of the flow

being tracked, either by moving outside the bounds of the tracking region, or by moving out of

the illuminated region (e.g. moving out of a sheet of light). To overcome this problem we

define 0j and i0 as dummy particles at times t = tn and t = tn+1. Unlike ordinary particles,

more than one value of j or i may give a nonzero value of 0j or i0 (respectively). In this case

a nonzero value of i0 indicates that particle pi at t = tn has been lost from the image by

t = tn+1, either by moving out of the image or for some other reason. Similarly, 0j = 1

represents a particle qj present at t = tn+1 which was not there at t = tn.

In order to determine the optimal set of nonzero ij, we must first define the functional to

be optimised. The only restriction this method puts on the functional is that it is linear in the

associations, ij, and so may be represented by Z, the sum over i and j of ijcij. Elements of cij

represent the cost of associating particle pi at t = tn with particle qj at t = tn+1. The optimal

solution will be chosen to minimise the objective function Z.

Typically the costs cij will be specified using some function of the particle positions,

particle characteristics, temporal history and the physics of the flow. Conceptually the

simplest model is to set cij equal to the separation between particle pi and particle qj (c0j and

ci0 may be set to the distance to the boundaries of the observed region, or the maximum

allowable distance a particle may be allowed to travel between tn and tn+1). The optimal

solution will then try to minimise the particle displacements, allowing only associations which

do not exceed the cost limits placed by c0j and ci0. The costs cij could equally as easily be the

squares of the displacements, yielding a type of least squares optimal solution.

If we are trying to measure the fluid velocity (rather than Brownian motion, say), then a

more appropriate set of cost functions would include some fluid dynamics. This may be

achieved at the most basic level by predicting the positions the particles at t = tn will have at

t = tn+1 using their velocity (and possibly acceleration) at t = tn. The costs cij may then be

some function of the separation between the predicted position of pi and the position of qj. If a

particle at t = tn has only just entered the image, then we are unlikely to have more than a

DigiFlow Menus

– 148 –

rough estimate for its velocity and so are unable to predict accurately where it might be at

t = tn+1. To enable matchings to still occur to such particles, we must reduce the costs of

associations with them and allow matchings over larger distances than for particles for which

we have a velocity history (we may also, however, add some fixed cost for this new member).

While the cost reduction – and associated increase in the allowable separations—when there is

no velocity history may produce some mismatching, the requirement for a much more exact

match would not then be satisfied at t = tn+2, and so the mismatch would not continue. During

subsequent analysis, if we accept only paths which passed through three or more samples

during the tracking phase, then we will eliminate any mismatches due to the less stringent

matching requirement for a particle with no velocity history.

Additional factors such as the particle size, intensity, shape or even colour may easily be

brought into the costing function. Every added component in a well-chosen functional will

increase the probability of a correct matching, but at the expense of increased computation.

Fortunately, provided the particle seeding density is not too dense, the extra criteria are

unlikely to add significantly to the quality of the results. Experience has shown that the

tracking results are relatively insensitive to the exact function used for the costs cij. Any

mismatches which arise due to a short coming in the costing procedure will be short lived

(they will fail to match on the next step) and may be trapped during the subsequent analysis

phase through acceleration checks.

The basic cost in DigiFlow is given by

 max 0, ,ij i f i f i j f

f

c p p p q , (23)

where (pi) is a fee determined by previous history of pi. The summation is over a list of

properties f determined by the location process. These properties include location, threshold

(intensity) and size, but in some cases a broader range can be used.

For each particle property there is a unit cost f(pi), a threshold f and a cost function

f(pi,qj). The cost function f(pi,qj) depends on the instantaneous properties of the particles pi

and qj, whereas the unit cost f(pi) may depend on whether or not the history of pi is known. A

typical example of f(pi,qj) is that for the particle’s location,

2

,x i j i i jp p t x u x , (24)

where xi and ui are the particle location and velocity at t = tn, while xj is the particle location at

t = tn+1. The corresponding unit cost is

2

1

2

2

2

3

1
if no previous matches

1
if one previous match

1
if more than one previous match

x i

L

p
L

L

, (25)

where L1, L2 and L3 are the maximum matching distances for the first, second and subsequent

matches the particle pi may make. The cost of a change in threshold is similar,

 2

, jijiT TTpp , (26)

where Ti and Tj is the threshold identifying the particle at tn and tn+1, respectively. Here the

corresponding unit cost T(pi) is divided into only two costs depending on whether or not a

particle has a history.

DigiFlow Menus

– 149 –

The fee (pi) is typically taken as zero if the particle has a valid velocity history, and

positive if it does not (the ‘joining fee’). The purpose of this fee is to promote the preferential

matching of particles with a valid velocity history. In contrast, (pi) is reduced when there is

no velocity history to allow matches further a field.

This strategy to assigning costs has proven simple yet flexible and provides a framework

that is relatively easy to understand. This model is more sophisticated than that used in

DigImage in that particle properties such as intensity and size play a more prominent role in

DigiFlow. Tests have shown that this provides a substantially improved matching

performance when there are very high particle number densities.

Particle tracking streams

The DigiFlow PTV facility takes an input stream, showing the experiment, and produces an

output stream that contains the particle locations, particle properties, and the inter-frame

particle associations.

Figure 113: The PTV tab controlling the input and output streams.

The Input stream may be in any valid image format. This is specified in the normal way

through clicking File to specify the source if the stream is to be taken from a movie or

sequence of images. In such cases the stream may be trimmed for length, a subregion selected,

etc., using the Sift button (see §4.3). If the image source is from an upstream process, then this

should be specified using the Process button.

The Output stream should be specified as a .dft file. This special file format contains all the

particle data and its associations. These .dft files may be viewed using the normal DigiFlow

tools; in such cases, the particle data is rendered back as an image. However, these files are

really intended for use with the other PTV tools within DigiFlow which can access their

contents directly.

The output stream is specified in the standard way through the File button. While Options

may be set, there is not generally any benefit to be gained from doing so.

DigiFlow Menus

– 150 –

The Progress window group controls what is displayed as the particle tracking proceeds.

The information selected here can help assess the performance of the particle tracking, and

provide a guide to any adjustments to the Cost policy that may be required. In all cases the

velocity of matched particles will be displayed, using white for particles that have been

matched over three or more intervals in time, yellow for particles matched over two intervals,

and cyan for particles matched only once. An example of the Progress window is shown in

figure 114.

Figure 114: Enlarged example of the Progress window for particle tracking with all the optional

output switched on and Streaks selected as the backdrop. Here Vector scale is set to 4.0, so the

arrows are four times the length of the actual displacements. The white arrows are particles that have

been matched more than two times, the yellow arrows particles that have been matched twice and

cyan arrows particles that have been matched only once. Dark green squares are old particles that

have not been matched, with dark green circles showing their predicted position. Dark green

diamonds are new particles that have not been matched. Dark magenta circles are the predicted

positions of particles that were matched, and light green arrows are the gridded velocity field.

If Show unmatched old is checked then particles at the earlier time step that are not

matched to the later time step will be highlighted by a square box drawn in dark green around

them, and by a circle (also in dark green) at their predicted location. Similarly, if Show

unmatched new is checked, then any particles in the later time step that were not matched will

be highlighted by a diamond drawn in dark green around them. (If the dark green diamond

coincides with a dark green circle then the corresponding particle was not matched due to its

change in intensity, area or one of the other image attributes.)

Checking Show predictions for matched will cause dark magenta circles to be drawn

around the predicted position for particles that were matched. Any difference between these

circles and where the particle is actually located may help diagnose why mismatches occur.

DigiFlow allows particles to go to ‘sleep’ for one frame but for them to still be matched

across this period of sleep. The Show sleeping matches check box causes such matches to be

shown in the Progress window..

At each time step DigiFlow calculates an approximate gridded version of the velocity field.

The primary use of this is as an estimate for the velocity of particles with no prior history. By

checking Show grid velocity this grid will be displayed in the progress window in light green.

DigiFlow Menus

– 151 –

The initial size of the arrows for plotting the velocity is set by Velocity scale. A unit value

causes the arrows to be drawn at the same length as the displacements they represent.

The vector and particle information shown in the Progress window is displayed on top of

an image of the experiment. The Backdrop list selects exactly how this image is constructed.

Selecting Streaks will use a decaying series of images superimposed to give an impression of

the particle motion, while Old time and New time will show one or the other of the two images

being processed.

The Image spacing is shown here for information only. If the particle tracking is to be

undertaken on a sequence of images that do not contain time information, then the default

spacing will be 1.0 seconds. This spacing may be changed, however, in the Sift dialog (see

§3.6).

Particle location policy

The location of particles is of central importance to the performance of PTV. In DigiFlow,

this process is controlled by the Location policy tab.

Figure 115: Parameters controlling the PTV particle location policy.

Best results can be achieved from high quality images that have bright, clear particles

approximately two or three pixels in linear dimensions, on a uniformly black background.

Such experiments, however, can be difficult to achieve in practice. The particle location

strategy used in DigiFlow builds on the experience with DigImage to provide a robust,

accurate and efficient method of getting the best possible results from the available images.

DigiFlow provides a preview of the located particles to aid the process of setting the

various parameters. This preview is activated by clicking the View button. Placing the cursor

over the preview will provide the normal feedback of the intensity at the location of the

cursor, while the , and buttons provide the ability to zoom in, zoom out and resize the

preview window. The preview window contains white plus (+) marks indicating the particle

locations superimposed on top of an image of the image (see figure 116). Additionally, a

DigiFlow Menus

– 152 –

subset of the rejected ‘blobs’ are indicated by magenta boxes (blobs too big), yellow circles

(inappropriate particle shape, controlled by Maximum correlation and Maximum edge to area

ratio) and cyan diamonds (mismatch between area and volume centroids, controlled by

Maximum mismatch). The preview window is terminated by a second click of the View

button. The location of the preview image within the time series is determined by the Frame

control.

Even if the preview is not generated the Number of particles box will show the current

estimate for the number of particles within the frame. This count is updated automatically

whenever one of the location control parameters is changed. Note however, that if a control is

changed while DigiFlow is still processing the last lot of changes, then the count (and

preview) may not reflect the latest changes.

The best results can generally be obtained by directly probing a high quality raw image

stream. However, for inexperienced users or less than ideal image streams, optimising the

settings for this can be difficult. For this reason, DigiFlow provides the possibility of

preprocessing the images to provide a more uniform and consistent structure to the images.

This preprocessing necessarily destroys some of the information contained within the original

images, but the algorithms are designed to keep this to a minimum.

The preprocessing is controlled through the Preprocess list box. As noted above, the

greatest accuracy can be achieved by selecting (none) to suppress preprocessing, although for

a given image stream this may not be appropriate. For inexperienced users the min-max filter

option is recommended. This nonlinear filter attempts to remove background variations on

scales larger than the particles, thus effectively resulting in the particles appearing on a

uniform black background for subsequent location. A different form of preprocessing is

available by selecting (background). This activates the controls on the Background

Illumination tab (see below) which allows an image of the experimental setup without particles

to be removed from the experimental images.

The starting point when changing the locations parameters is normally setting the range of

intensities through which the threshold will be scanned. This is achieved using the Threshold

group. The location process begins by looking for particles satisfying the threshold Maximum,

gradually decreasing this in Number discrete steps down to Minimum. The Greater check box

will cause DigiFlow to search for bright particles on a dark background, while clearing the

check box sill invert the incoming image stream, thus allowing it to be treated in the same

way. The Quadratic check box controls the distribution of thresholds between the two limits.

For many experiments, having Quadratic checked works best.

DigiFlow Menus

– 153 –

Figure 116: Preview window showing the particles that have been located.

The Blob validation group provides the information necessary to decide whether or not a

given blob that has been located should be treated as a particle. The left-hand column is pretty

much self-explanatory. Blobs smaller than Minimum area will be ignored at a given threshold,

but they may well be picked up as particles at a later (lower) threshold. Blobs exceeding

Maximum area will be discarded. The reason for having limits on both linear dimensions and

particle area is to help ensure the particles are roughly circular and ensure that they may be

located with subpixel accuracy. The upper limits are provided to prevent spurious features

within the image from being picked up accidentally. The Maximum x size and Maximum y

size not only set the upper size limits, but also provides the length scale for the filter that is

used when the min-max filter is selected for Preprocessing.

The mean intensity of a blob relative to the threshold at which it is identified must exceed

Minimum excess, which ensures the image is sufficiently well defined. The location assigned

by DigiFlow to a particle satisfying all other criteria is the volume centroid, where the third

dimension is the intensity relative to the threshold. However, DigiFlow also calculates the

area centroid; the maximum difference between the locations of these two centroids is

determined by Maximum mismatch.

Other aspects of the geometry are tested using Maximum correlation, which is the

correlation coefficient of the pixels within the blob. In general a value close to 1 or -1

indicates that the blob is linear rather than circular in nature. Similarly, Maximum edge to

area ratio compares the square of the number of pixels marking the boundary of the blob with

the number within the blob. A large value for this ratio indicates either linear blobs or blobs

with very convoluted boundaries. As an indication, a large, circular blob would have this ratio

equal to (2r)2/(r2) = 4, a square would have a ratio of 16, while a line of length L and a

single pixel wide would have the ratio equal to 4L. The default value is somewhat higher than

this to allow a broader range of particles to be tracked.

The Reset button will restore all of these parameters to their default values.

In addition to providing a preview of the particles found, the View button also provides a

plot of the size distribution of the particles identified.

DigiFlow Menus

– 154 –

Figure 117: Histogram showing particle number and area for given categories of particles identified

by the Locaion policy.

Background illumination

The controls on the Background illumination tab are enabled by selecting (background) in

the Preprocess list on the Location policy tab. The Background illumination tab provides a

convenient method of correcting your experimental images for a non-uniform, non-zero

background illumination in the experimental images.

Typically all that is required is a single image. This can be an image of the experimental

setup with no particles present, or may be constructed from the experimental setup itself. If

the particles are brighter than the background then a typical strategy for the latter is to work

out the minum intensity for each pixel using the min feature in Analyse: Time Average (see

§5.6.1.1). The rationale behind this is that a given pixel will be at its darkest when no particle

is present. (If the particles are darker than the background, then use max instead of min.)

DigiFlow Menus

– 155 –

Figure 118: The Background intensity tab controls the removal of background variations in the

intensity.

When Image is selected, the background image is specified as either a single image or as a

sequence of images; which is determined by the Sequence check box. In most situations a

sequence is unnecessary, but if there are moving parts, or significant predictable changes in

illumination, then a sequence may be desirable.

If Calculate is specified, then a background illumination image is constructed from the

experimental input in the manner described above. Rather than using every image in the input,

it is frequently only necessary to use a subset of the images. The nSamples control specifies

the maximum number of samples that should be used. These will be evenly distributed over

the duration of the experimental image sequence. Note, this control shoul not be used when

the experimental image sequence is obtained from a process rather than a file. The

background image generated in this manner is not saved; moreover, it is not available until the

particle tracking process starts, and so it can be more difficult to set the particle location

parameters. For these reasons it will normally be more convenient to manually construct the

background image using Analyse: Time Average (see §5.6.1.1), should you need one.

DigiFlow Menus

– 156 –

Costing policy

Figure 119: Parameters controlling the costing policy for particle tracking.

As noted earlier, the matching process is governed by the cost assigned to each of the

possible associations between the sets of particles identified at different times. The Costing

policy tab defines the various factors that go into determining the cost. Each of the parameters

is described in turn below, followed by a brief guide on strategies for adjusting them, should

this prove necessary.

The most important parameters in most cases are those in the Maximum matching distance

group. The three distances given here determine the maximum distance (in pixel separation)

between the predicted position of a particle and where one is actually found. As any prediction

of a particle without a history the First match value should normally be larger than the other

two. For flows with low accelerations the Second match and Later matches should be similar

or even the same. These maximum separations will be realised only if the particles do not

incur other costs in the Attribute costs group (see below). (For users familiar with DigImage,

the Later matches is similar to [;USPM Maximum matching distance] and First match is

similar to [;USM Max new paths error] when expressed in pixels.)

The Other costs group contains other costs that are used to modify the matching process.

The Joining fee (range 0 to 1) is applied only to particles that do not have a history. Increasing

the Joining fee does not affect the Maximum matching distance for the First match, but does

decrease the probability that an association with the particle will be permitted.

The Attribute costs group is used to increase the cost of an association if the attributes of

the particle images concerned differ. Two sets of values are specified: one for the First match,

and a second for Later matches. In each case, no cost is incurred if the attributes differ by less

than Threshold.

The Threshold change cost and Threshold, and the Area change cost and Threshold work

in a similar way to the distance cost, although the measure of the area change is

DigiFlow Menus

– 157 –

2|Ai Aj|/(Ei + Ej), where Ai and Aj are the areas and Ei and Ej the number of edge points for

the old and new particles, respectively.

In most circumstances the default values (which can be restored using the Reset button)

will work well. However, in some flows it might be necessary to adjust things either to reduce

the number of spurious matches, or to allow DigiFlow to lock on to particles that are moving

very rapidly.

Prediction policy

The prediction policy (see figure 120) determines how velocity information is incorporated

into the distance function (24). Velocity weighting determines how much of the velocity from

the last match for a particle is used to predict its new position, and the Acceleration weighting

does a similar thing with the particle Lagrangian acceleration (when there is sufficient history

to evaluate this). This particle-based velocity is not the only potential source of velocity

information. DigiFlow also calculates a grid velocity which is based on the average particle

velocities within grid cells covering the domain. The Grid weighting determines how much of

this is incorporated into the prediction. In particular, if V is the velocity weighting and G is the

grid weighting, then for a particle with a velocity history the velocity the velocity used in (24)

is

 ui = Vui
n + (1V)Gug, (27)

where ui
n is the particle velocity from the previous time step and ug is the grid velocity. When

there is no velocity history then

 ui = Gug. (28)

Figure 120: The controls for the prediction policy.

The above strategy for determining the velocity may not be appropriate if the mean velocity

is significantly different from zero. In this case we may enable use formula and specify (in

pixel units) a background velocity field using u Formula and v Formula. The resultant

prediction is then given by

DigiFlow Menus

– 158 –

 ui = Vui
n + (1V)(Gug + (1G)uf), (29)

when there is a history, and

 ui = Gug + (1G)uf (30)

when there is not. The u Formula and v Formula are specified in terms of its location x, y (in

pixels) and the time t. A typical example of the use of this function would be for flow in a

flume, where the two formulae would simply represent the mean flow.

When there is insufficient particle information to evaluate the grid velocity at a given point,

DigiFlow will a memory of the last calculated grid at that point. This memory fades in a

manner determined by Grid memory. If Use formula when no history is not set, then the grid

velocity will decay towards zero by taking the product of Grid memory and the current grid at

each time step.

In some cases it may be desirable to feed in the predicted velocity from a sequence of .dfi

files. These may, for example, be the result of a previous attempt at PIV or PTV (using the

PTV Grid velocity feature of §5.6.6.5). Such a two-stage process can help DigiFlow latch on

to particles in problematic regions of high gradients or in high-speed flows. Note that once

DigiFlow has latched on to the particles they will be treated in much the same way as normal.

This feature is enabled via the Use velocity file checkbox. The supplied velocity information

may be a single .dfi describing a steady mean flow (in which case clear the Sequence check

box), or it may be a time-varying sequence. Note that in both cases it is essential that the

velocity information is provided for the same region as the tracking and that the same time

spacing is used. It is also normally best if the velocity information is provided in pixel

coordinates. The Weighting control within the Predict with velocity file determines the relative

importance of the supplied velocity file and the normal gridded velocity, described above.

Image sequences of high-speed flows sometimes consist of repeated short bursts of images

where the image spacing within the burst is shorter than that between bursts. PIV often uses

this technique with two closely spaced images in each burst. The Reset paths group is

implemented to aid the tracking of sequences containing bursts of images with a different time

interval between the bursts than between the images within the burst. For most cases, Periodic

reset should be unchecked, meaning that the spacing between all images are the same and that

matches should be made over each image pair in turn. Checking Periodic reset will force all

paths to be broken (i.e. no matches allowed) at intervals specified by Interval (in frames). Not

only will the paths be discarded, but also the gridded velocity field will be discarded. Thus,

effectively, the particle tracking will start again from scratch. Note that utilising a Periodic

reset on a flow that has a continuous record will degrade the results from the particle tracking.

Moreover, the smaller the Interval, the poorer any velocity calculations will be. (It will also be

necessary to ensure that the time used to calculate the velocity does not exceed the period of

data between each reset.) For the case of PIV sequences with two images in each burst, then

set Interval to two.

The default values may be restored using the Reset button.

Tracking

During the tracking process, DigiFlow will display three windows. The Experiment will

display the raw experimental image being processed, while the Particles image will display

each of the identified particles as a dot. The colour of each dot is related to the threshold at

which the blob in the experimental image was considered to be a particle.

Perhaps the most useful window is the Progress window. This window displays a variety

of information about both the velocity field and the performance of the tracking process.

Details of the different arrows and symbols used was given earlier in this section, with an

DigiFlow Menus

– 159 –

example shown in figure 114. Statistics of the number of particles matched are also given in

the title bar of the window.

Occasionally an obviously incorrect vector will be produced. If such a vector is yellow,

then it is of little concern: the matching criteria for particles without a velocity history are

necessarily less stringent, a feature that is likely to lead to the occasional mismatch. Such

vectors are unlikely to persist, however, as the implied velocity history is much less likely to

lead to a match on the next step.

There will be times, however, when spurious vectors persist. The table below lists potential

problems and remedies.

Description Remedy

Very few particles have vectors Check that location policy is reliably picking

up particles on successive frames.

 If the intensity of the particles is fluctuating a

lot, try reducing the Cost of a Threshold

change, or increasing the Threshold before a

cost is incurred. This problem is most likely

to occur when the particles are extremely

small.

 If the particles are moving relatively far and

fast between frames, try increasing the

Maximum matching distance group.

Spurious white vectors persist. DigiFlow may be identifying too many

particles, some of which are really just noise.

Check the Location policy.

 Check that matches are not being made too

readily. Try reducing Maximum matching

distance group.

 Try increasing the Cost or reducing the

Threshold for Threshold changes.

Calculating particle velocity

Once the tracking has been completed, it is often desirable to calculate the particle

velocities. The velocities may be calculated from a particle path in a number of ways. At the

simplest level, the location of particle i on two consecutive frames, xi
(n1) and xi

(n), can be used

to estimate the velocity as

 ui
(n½) =(xi

(n) xi
(n1))/t,

where t is the spacing between two frames. Although this approach provides the highest

possible frequency response, it is also the most subject to noise. If the error in the positions of

the particle is x, then the error in the velocity is u = 2x/t. The simplest way of decreasing

the error is to perform the calculation over a larger interval. If

 ui
(ns/2) =(xi

(n) xi
(ns))/(st),

then the error is reduced to u = 2x/st, provided the velocity is constant within the interval.

For most purposes it is better to decrease the interval between frames (decrease t) and

then use a least squares fit to a sequence of s particle positions. The simplest alternative is to

fit a line. Since the frame interval is constant, the estimate of the velocity is therefore

DigiFlow Menus

– 160 –

2

00

2

0

)(

0

)(

0

1

1
1

s

j

s

j

s

j

jn

i

s

j

jn

i

s

j

i

jjs

jsj

t

xx

u . (31)

This velocity is then assigned to the least squares estimate of the particle’s position in the

middle of the time interval. Key to the use of the least squares approach is its effect on the

error in the velocity estimate. As shown by Dalziel (1992), the error estimate is reduced to

 tsss

 x

u

2/1

12

12
.

Increasing s leads to a reduction in the error estimate for the velocity, but only provided the

velocity remains approximately constant over the interval st. Increasing s and decreasing t

can achieve this, although there will normally be limits imposed by the camera frame rate that

limits s. However, the interval st may be increased further if the model for the particle path

remains reasonable; fitting a quadratic rather than linear function can achieve this.

Post processing

In addition to the post-processing features described in the following sections, DigiFlow

provides a dfc macro interface to access the .dft particle tracking data. The following segment

of code illustrates some of the core functions. This code is intended for a scenario when there

are only a small number of particles. It produces a scatter plot of the vertical velocity against

the vertical position of the particles.
Determine the tracking file
file := "PTV####.dft";

file := ask_string("Name of .dft files (including hashes)?",file);

Get basic details of the file

det := read_image_details(file);

Rather than utilising a coordinate system, use a known one-to-one

relationship between the pixel size and the size of the imaged region

Here a 1:1 magnification is being used

pMax := 5.0; # Maximum expected velocity in pixels/s

pixSize:= 7.4; # micrometres

wMax := pMax*pixSize;

zMax := pixSize*(det.ny-1);

Create the drawing for the scatter plot

hD := draw_start();

draw_set_axes(hD,0,wMax,0,zMax);

draw_x_axis(hD,"$w (\mu$m$s^{-1})$");

draw_y_axis(hD,"$z (\mu$m)");

draw_colour_scheme(hD,"single cycle - half brightness");

draw_mark_size(hD,1);

draw_font(hD,0.5); # Make font smaller for the size labels

Open the ptv data to reconstruct the paths

hP := ptv_open(file,coordSystem:="(pixel)"); # Returns handle of window

showing PTV input

for fNow:=det.fFirst to det.fLast {

 # Calculate the velocities using least squares over five frames

 ptv := ptv_velocity(fNow,5);

 # Also read the information for the particles at this time

 part := ptv_read_particles(file,fNow);

 # ptv and part will be null if there is no data

 if (is_array(ptv)) {

 # Scan through the list of particles

 for k:=0 to y_size(ptv)-1 {

 id := int(ptv[4,k]); # The unique track number for this particle

DigiFlow Menus

– 161 –

 # Select colour and mark style based on track number

 iCol := 0.9*(int(id/9) mod 16);

 iStyle := id mod 9;

 draw_line_colour(hD,iCol);

 draw_text_colour(hD,iCol);

 draw_mark_type(hD,2+iStyle);

 x := ptv[3,k]*pixSize;

 y := ptv[1,k]*pixSize;

 draw_mark(hD,x,y);

 # Find info for this particle

 this := ptv_particle_details(part,id);

 if (fNow = this.startFrame+3) {

 # Write details on third occurrence

 area := this.area*pixSize^2;

 dia := 2*sqrt(area/pi);

 draw_text(hD,x,y,"$ d ="+nice_number_string(dia)+"\mu$m");

 };

 };

 };

};

Tidy up the access to the PTV data

ptv_close();

close_view(hP); # Remove window showing PTV input

Show the plot

hV := view(hD); # Returns window handle

view_title(hV,"Vertical velocity scatter plot");

oFile := ask_string("Name to save plot to (blank to

suppress)?","wScatter.dfd");

if (is_null(oFile)) {

} elseif (length(oFile) > 0) {

 write_image(oFile,hD);

};

Tidy up

draw_destroy(hD); # Free drawing memory

A key feature of this code is the use of the unique particle id assigned to each particle track

to relate the velocity information provided by ptv_velocity(..) (the first index of the

returned array set to 4) to extract further details from the .dft tracking file. In particular,

ptv_read_particles(..) is used to determine all the particle information at a given time,

and then ptv_particle_details(..) is used to extract the details for a specific track. Here

we calculate the effective particle diameter from the area returned for the particle.

Further details of the individual functions can be found by accessing the dfc help system.

See §5.2.10 and §5.9.2 for details.

5.6.6.2 PTV Basic statistics

Toolbutton:

Shortcut:

Related commands: process PTVBasicStatistics(..), ptv_open(..),

ptv_close(..), ptv_tracks(..), ptv_velocity(..)

Basic velocity statistics for the particles are available through this feature. The statistics are

weighted by the number of particles, rather than the region of space in which particles were

found.

The controlling dialog takes the normal form with the .dft tracking data being specified in

the PTV data input stream. The Basic Statistics output takes the form of a single .dfd (or .emf

or .wmf) output plot.

The particle tracking process is undertaken in pixel space. However the results will

generally be required in world coordinates. In DigiFlow the transformation between the two is

made during the analysis stage by selecting the appropriate Coordinate system.

DigiFlow Menus

– 162 –

The method of calculating the velocity, and the number of time intervals across which the

calculation is made, is determined by the Velocity group. Typically a value of 4 or more

should be used for the Length entry in conjunction with the Linear or Quadratic methods. It is

recommended that the Extremes option only be used for testing purposes as this provides the

least accurate approach.

Figure 121: Dialog controlling the calculation of basic PTV statistics.

5.6.6.3 PTV autocorrelation

Toolbutton:

Shortcut:

Related commands: process PTVAutocorrelation(..), ptv_open(..),

ptv_close(..), ptv_tracks(..), ptv_velocity(..)

Since particle tracking is an inherently Lagrangian process, it makes sense to analyse the

particle tracks in a Lagrangian framework. The Lagrangian autocorrelation functions are one

such way. Particle velocities are calculated for each point along a path using the methods

outlined in §5.6.6.5 and then related to the velocity at another time along the same particle

path to generate the autocorrelation coefficient

 2/12222

ttuttuNtutuN

ttututtutuN
tR

jjii

jiji

ij

 ,

where the summation is over the N particles paths at least t long occurring at any time t in a

specified interval. Here the indices i and j refer to the velocity components u or v.

DigiFlow Menus

– 163 –

Figure 122: Control of the autocorrelation facility.

The PTV data input selector takes a series of .dft particle tracking files and extracts the data

from them. The start and end points, and the spacing of output, can be set by the Sift button

(see §4.3).

Output of the Autocorrelation is in the form of a .dfd drawing file, an .emf file, or a .wmf

file. If you want access to the actual track data, then the .dfd option is preferred.

The particle tracking process is undertaken in pixel space. However the results will

generally be required in world coordinates. In DigiFlow the transformation between the two is

made during the analysis stage by selecting the appropriate Coordinate system.

The method of calculating the velocity, and the number of time intervals across which the

calculation is made, is determined by the Velocity group. Typically a value of 4 or more

should be used for the Length entry in conjunction with the Linear or Quadratic methods. It is

recommended that the Extremes option only be used for testing purposes as this provides the

least accurate approach.

The autocorrelation function will be calculated for all separations t up to the maximum

specified by Max path length, although the calculation will proceed only as far as particle

paths of that length are still found.

Normally the results of this calculation will be the autocorrelation functions, selected by

Correlations in the Plot group. However, it can be valuable to determine the standard

deviations (velocity fluctuations) of the data as the conditional sampling associated with the

very long particle paths can lead to a bias in the statistics. Select Standard deviations to see

this data.

DigiFlow Menus

– 164 –

5.6.6.4 PTV vectors

Toolbutton:

Shortcut:

Related commands: process Analyse_PTVVectors(..), ptv_open(..),

ptv_close(..), ptv_tracks(..), ptv_velocity(..)

Particle tracking data begins as Lagrangian particle paths. Typically these are randomly

distributed in space and variable length in time. The .dft file potentially contains particles that

exist for only a single frame, and others that are part of paths spanning many frames. The PTV

vectors facility provides the ability to review the contents of the .dft file, filtering out the paths

that are too short.

Figure 123: Dialog controlling the production of particle tracking vectors.

The PTV data input selector takes a series of .dft particle tracking files and extracts the data

from them. The start and end points, and the spacing of output, can be set by the Sift button

(see §4.3).

Output of the Velocity vectors or particle tracks is in the form of a .dfd drawing file, or a

.wmf or .emf file. If you want access to the actual track data, then the .dfd option is preferred as

this will contain all the paths individually listed. The Draw axes check box determines

whether the drawing includes axes or only the vectors/tracks. Note that specification of an

output stream is optional. If not specified, the output will be displayed on the screen while it is

computed, but will be discarded at the end of the processing.

The particle tracking process is undertaken in pixel space. However the results will

generally be required in world coordinates. In DigiFlow the transformation between the two is

made during the analysis stage by selecting the appropriate Coordinate system.

The output can contain either velocity vectors (select Vector) or the particle tracks (select

Track) at each time, where the vectors/tracks are determined only for particles that extend for

at least Path length intervals in time (half before and half after the current time). When Track

is selected, the Arrow head check box determines whether or not an arrow head is draw; arrow

heads are always drawn when Vector is selected.

DigiFlow Menus

– 165 –

5.6.6.5 PTV grid velocity

Toolbutton:

Shortcut:

Related commands: process PTVGridVelocity(..), ptv_open(..), ptv_close(..),

ptv_tracks(..), ptv_velocity(..)

Mapping particle velocities to grid

For some purposes, it is desirable to transfer the randomly distributed particle paths, and

their associated Lagrangian velocities, onto a regular grid. The basic approach for doing this is

using a weighting kernel to distribute the particle velocities onto the grid. Suppose ui,

i=0,1,…n1 are the particle velocities known at locations xi, then we may estimate the

velocity U at some location X by

1

0

1

0

n
i

i

i

n
i

i

L

L

x X
u

U
x X

, (32)

where (|xi – X|) is the weighting function. We select (r) to provide finite support over some

length scale L. This approach was pioneered in DigImage.

By ensuring (r) and its derivatives are continuous, then we may use the same form to

provide velocity gradients by analytically differentiating the kernel. For example, U/x is

given by

1 1

0 0

1 1

0 0

n n

i

i i

n n

i i

x x

x

u
U

U , (33)

an approach that has had much use in the family of numerical techniques known as Smoothed

Particle Hydrodynamics (SPH, e.g. Monaghan 1992) and offers substantially better

performance than finite difference on the gridded velocities. Following the work with SPH,

we use the axisymmetric cubic spline

2 3

3

3 3
1 1

2 4

1
2 1 2

4

0 2

r r r

L L L

r r r

L L L

r

L

. (34)

This is plotted in figure 124.

DigiFlow Menus

– 166 –

-2

-1

0

1

2
-2

-1

0

1

2

0

0.25

0.5

0.75

1

-2

-1

0

1

2
Figure 124: The axisymmetric cubic spline used to distributed particle data to the grid.

Grid velocity dialog

Figure 125: Dialog controlling the process of gridding the particle tracking data.

The PTV data input selector takes a series of .dft particle tracking files and extracts the data

from them. The start and end points, and the spacing of output, can be set by the Sift button

(see §4.3).

Output of the Velocity vectors, and optional background image, is in the form of a .dfd

drawing file, an .emf file, a .wmf file, or a .dfi image file. If you want access to the actual track

data, then the .dfd option is preferred as this will contain all the paths individually listed. The

Draw axes check box determines whether the drawing includes axes. Using a .dfi file will

allow the resulting velocity fields to be manipulated by the various image processing tools

available within DigiFlow. Note that specification of an output stream is optional. If not

specified, the output will be displayed on the screen while it is computed, but will be

discarded at the end of the processing.

DigiFlow Menus

– 167 –

The particle tracking process is undertaken in pixel space. However the results will

generally be required in world coordinates. In DigiFlow the transformation between the two is

made during the analysis stage by selecting the appropriate Coordinate system.

The method of calculating the velocity, and the number of time intervals across which the

calculation is made, is determined by the Velocity group. Typically a value of 4 or more

should be used for the Length entry in conjunction with the Linear or Quadratic methods. It is

recommended that the Extremes option only be used for testing purposes as this provides the

least accurate approach. The length scale of arrows used for the velocity is determined by

Velocity Scale. A unit value will cause the arrows to represent the actual distance moved

between two consecutive frames.

The grid velocity can represent either the instantaneous velocity field, or a temporal mean

of the selected interval. The choice of which is determined by the Grid type group. With an

Instantaneous grid, it is possible to employ a moving average, either to filter out the higher

frequency components, or (for a flow that is steady in the Eulerian frame) to increase the

available data for the gridding process.

The resolution of the grid and length scale of the kernel function are fixed by the Grid

resolution group. Decreasing the Filter length can lead to improved spatial resolution,

provided it remains sufficiently large to include an adequate number of particles for each of

the nx by ny grid points.

The velocity field may be rendered by itself, or superimposed upon a background image.

This is controlled by the Vector background list box in conjunction with a Scale factor.

Post processing

Selection of the most appropriate output file format (between .dfd and .dfi) depends on the

type of post processing to be undertaken.

If the .dfi format is selected, then the PTV gridded velocity files may be fed back into

DigiFlow as multi-plane images containing the velocity field. These can be processed using

most of the standard DigiFlow tools, preserving the nature of their contents. For example, the

Analyse: Time Average facility can act upon a sequence of PTV gridded velocity files to

produce the time average velocity field. Similarly, the various other time series tools described

in §5.6.1 can operate on these images, as can the general manipulation tools Recipe,

Transform Intensity and Combine Images (see §§5.7.1, 5.7.2 and 5.7.3). There are standard

recipes in the Recipe facility to aid with basic manipulations of this data. For example, the

recipe Velocity.Background.Divergence recipe lets you change the background of the velocity

field from the one saved during the PTV gridding process to display the in-plane divergence

field. Similarly, there are recipes for vorticity, stream function, velocity potential, shear, etc.,

and for adding scales and other similar graphical manipulations. Note that for PTV data,

velocity gradients are as part of the gridding process by analytical differentiation of the

weighting kernel rather than by a finite difference operation of the velocity field. This retains

more of the velocity information available from the randomly distributed particles.

Saving the output in .dfd format is appropriate if post processing is to be undertaken using a

third party or user-written program as the .dfd file contains an ASCII representation of the

velocity field. Note that you can always convert a .dfi file into a .dfd file using Edit Stream

(§5.1.6) or one of the other related image manipulation tools by simply specifying a .dfd file

for the output.

5.6.7 Optical flow
The idea behind Optical Flow is that illumination is a conserved quantity that is advected

by some velocity field.

DigiFlow Menus

– 168 –

5.6.7.1 Follow

Toolbutton:

Shortcut:

Related commands: process Analyse_FollowOpticalFlow;
follow_optical_flow(..).

This menu item provides a basic algorithm for extracting the velocity field from an optical

flow. The key idea is that if illumination is conserved then we can write an advection equation

for it of the form

 0
P P P

u v
t x y

. (35)

If we then assume that the velocity field (u,v) is constant over some region S containing

intensities P0, P1, … PN, then we may write this as the over determined system

0 0
0

1 1 1

NN N

P P P
x y t

P P P
u

x y t
v

PP P

tx y

. (36)

We can then estimate (u,v) as the least squares solution to (36). In reality, finite difference

approximations to the spatial and temporal gradients of the illumination are used, and the

noise in the signal, plus the need for the least squares problem to be well conditioned, places a

practical lower limit on the size of the region S, while an upper limit is imposed by the

velocity field not really being constant.

This process, which is sometimes referred to as ‘feature tracking’, can be used in a variety

of contexts. With relatively slow flows containing particles, it provides a computationally

cheap method of obtaining an estimate of the velocity field, although the resulting velocity

field is less accurate than that obtained by other methods. The process can be particularly

valuable for looking at the flow and distortion of dye fields, although the user must be aware

that it is not necessarily the fluid velocities that will be returned.

Note, the Tools: Recipes: Slave Process (§5.7.5) facility provides a cut-down version of

this facility for providing an estimated velocity in real time. This cut-down version is provided

through the dfc function follow_optical_flow(..).

DigiFlow Menus

– 169 –

Inputs

Figure 126: The inputs tab for Follow Optical Flow.

The Inputs tab bears some similarity to that for PIV (see §5.6.5.2) with either one or two

input streams. If One stream is chosen, then the Interrogation interval group allows the

number of frames between the first and second frame of each pair being processed. When the

input is as two streams, the interval between each stream must be specified in seconds.

The Conserve light checkbox forces the mean intensity of each of the interrogation

windows (the region given by S above) to be constant, Allow offset enables the temporal

derivatives to be made in a semi-Lagrangian manner, and Central differencing makes the

spatial derivatives a central second order approximation.

The Window size group controls the size of the interrogation window, which DigiFlow

adjusts dynamically to give the best compromise between noise level, robust data, and the

resolution of velocity gradients. This automatic adjustment is guided by minimum and

maximum sizes for the base windows which DigiFlow applies to all interrogation points.

DigiFlow will cause a window to increase above this base size, up to Max local size if the

magnitude of the smallest (normalised) eigenvalue of the least squares problem falls below

Eigen threshold (this indicates the least squares solution may be ilconditioned). If a bigger

fraction of the windows are grown due to this criterion than Max frac grown, then DigiFlow

will cause the base window size to increase (up to Max base size). If fewer windows are

grown than the fraction Min frac grown, then DigiFlow will cause the base window size to

decrease (down to Min base size).

DigiFlow Menus

– 170 –

The Coordinate System controls the conversion between pixel coordinates and any world

coordinate system, while Vector spacing determines the spacing (in pixels) between the

centres of the interrogation windows.

Outputs

Figure 127: The outputs tab for Follow Optical Flow.

The principal output of Follow optical flow is the velocity field. This is specified by the

Velocity selector. As with the PIV system, a scale for the arrows used to display this is

specified by Velocity scale, and a background image may be placed behind the arrows with

Vector background (the scale of which is controlled by Field scale, when appropriate). The

Compact output check box forces the resolution of the output to be reduced so that data is

saved only at the locations of the interrogation windows.

The Quality selector optionally stores information about the performance of the process. In

particular, the first image plane gives the size of the minimum eigenvalue of the least squares

process, while the second image plane gives the size of the window actually used.

DigiFlow Menus

– 171 –

5.7 Tools

5.7.1 Recipe
Toolbutton:

Shortcut:

Related commands: process Tools_TransformRecipe(..)

This process provides a simplified entry point to many commonly used image processing

procedures. Internally, this facility uses the same mechanism as Transform intensity and

Combine images described in §§5.7.2 and 5.7.3, but the interface here presents the user with a

broad list of pre-written processes rather than requiring the user to enter their own code.

Figure 128 Transform an intensity using a recipe of transformations.

Depending on which recipe is selected, either one or two input image selectors are

required. The Input selector is required for all functions. This selector determines the timing

and other key features. The second stream, With, is required only for a subset of the functions.

For some functions this will represent a single image, while for others it will be a sequence.

The title of the group is changed to reflect these differences. The controls associated with the

With selector are disabled when it is not required.

Both input selectors have the normal mechanism for their specification and the range of

controls. This may be taken from a file using the File button, or from another Process. The

input stream may be sifted (§4.3) to extract the desired subregion and times. This feature is

activated using the Sift button (see §4.3) associated with the input streams.

The Output group specifies the destination of the transformed image using the Save As

button. If this process is acting as the source for another process, the Save As button is

suppressed (refer to §7 for further details). The colour scheme and other output options to be

used for the output stream are set by clicking the Options button. Although the output image

DigiFlow Menus

– 172 –

will typically have a bit-map format, this is not always the case. Indeed, this tool can be used

to transform a bitmap into a drawing, as will be illustrated below.

The Controls for this process centre on identifying the transformation. The predefined

transformations are sorted by Category and Group. Each individual Recipe has a description

that will be displayed beneath the selection lists. Some recipes will require one or more user-

specified parameters. The required type for these parameters depends on the function selected.

Some recipes produce images, and others produce drawings. The simplest way to determine

which is by clicking the Preview button.

User-defined recipes

Users can add their own custom recipes to the list by creating a file named User_Recipes.dfc

either in the current directory, or in the directory in which DigiFlow is installed. (A copy in

the current directory will have precedence over one in the DigiFlow directory.) A typical entry

for a single-stream recipe in this file would look like
Recipe.User.Stretch.Linear.Descr := "Stretch the intensity by a

factor";

Recipe.User.Stretch.Linear.Code := {P*p0};

Recipe.User.Stretch.Linear.Prompt0 := "Factor";

Recipe.User.Stretch.Linear.Param0 := 2;

Recipe.User.Stretch.Linear.Check := {if (p0 = 1) {"No point

multiplying by one"} else {null};

This would appear under Categgory User, Group Stretch, Recipe Linear. Here the recipe

requires one parameter, producing the prompt Factor in the interface. The default value of this

parameter is set by the .Param0 variable, and the parameter is provided to the code as the

variable p0. In this case, since a .Check variable is specified, the value of the parameter is

checked. If the .Check code returns a string, then this is displayed as a warning message.

If two input streams are required, then the variable xxx.With should be defined, containing

either "sequence" or "single", depending on whether a sequence or only a single image is

to be recovered from the With stream. The image recovered from the With stream is provided

to the .Code in the variable Pb (or, for image planes in Qb – refer to §5.7.2 for further details).

The facilities available within the code segment .Code are exactly the same as those

available in the Transform intensity and Combine images tools described in §§5.7.2 and 5.7.3.

Up to 6 prompts may be requested, their types (integer, floating point or string) being

determined by the type of the default value in the .Paramn variable. Note that the description

and code may be specified interchangeably as strings, code segments or memos.

The database of built-in recipes may be found in DigiFlow_Recipes.dfc in the DigiFlow

installation directory.

5.7.2 Transform intensity
Related commands: process Tools_TransformIntensity(..)

This process allows the transformation of the intensities of an image stream using a

sequence of user-specified operations. This produces a very versatile tool, but one which

requires some experience to master. A simplified interface to the same underlying mechanism

is provided in Transform recipe described in §5.7.1.

DigiFlow Menus

– 173 –

Figure 129: Transform an intensity using a mathematical expression.

A single image selector provides the input stream in the Input group. This may be taken

from a file using the File button, or from another Process. The input stream may be sifted

(§4.3) to extract the desired subregion and times. This feature is activated using the Sift button

(see §4.3) associated with the input streams.

The Output group specifies the destination of the transformed image using the Save As

button. If this process is acting as the source for another process, the Save As button is

suppressed (refer to §7 for further details). The colour scheme and other output options to be

used for the output stream are set by clicking the Options button. Although the output image

will typically have a bit-map format, this is not always the case. Indeed, this tool can be used

to transform a bitmap into a drawing, as will be illustrated below.

The Controls for this process centre on the transformation itself.

The Transformation edit box is used to specify the intensity mapping function using dfi

code.

The basic image from the input stream is supplied in the array variable P. For simple

images this will be a two-dimensional array. However, for more complex image formats (such

as velocity fields stored in .dfi files), P will contain more than two dimensions. In such cases

DigiFlow will also provide the same data split into its individual component two-dimensional

arrays in the compound variable Q. For example, if the input stream contains a velocity field

generated by the PIV facility (see §5.6.5.2) then Q.u and Q.v will contain the two components

of the velocity field, and (depending on the options selected during the processing) Q.Scalar

DigiFlow Menus

– 174 –

may contain the vorticity field. Full colour images are supplied as their red, green and blue

components with a three-dimensional P array: P[:,:,0] contains the red component,

P[:,:,1] contains the green component, and P[:,:,2] contains the blue component. For

convenience, these are also supplied as Q.Red, Q.Green and Q.Blue. The button may be

used to search for or provide information on specific DigiFlow functions.

DigiFlow also provides time information about the input stream through the Time

compound variable. Typically this contains Time.fNow and Time.tNow giving the current

frame number and time (in seconds) relative to the start of the entire input stream. An

additional variable Time.iNow gives an iteration counter that is the frame number relative to

the start of those that are actually being processed. Details of the entire input stream are

provided through Time.fFirst, Time.fLast and Time.tFirst, Time.tLast that provide

details of the first and last frame/time that exist in the input stream. Moreover, Time.fFrom,

Time.fTo and Time.tFrom, Time.tTo provide information about which part of the stream is

being processed.

The main variables available are listed in the Variables list box. This list does not,

however, include any additional modifiers for the individual data plane variables beginning

with Q. These modifiers include the description, scaling and (where appropriate) spacing of

the data. A more comprehensive list may be viewed by clicking the Variables button. For

further details, refer to the PIV data example below.

Note that regardless of the format of the input selectors, all processing is performed in

floating point arithmetic and normally the images will be scaled between an intensity of 0.0

for the darkest parts and 1.0 for the brightest parts. By default, when the image is saved to an

8 bit format, intensities less than 0.0 will be mapped to 0 and those greater than 1.0 mapped to

255. Refer to §8 for further details on the interpreter within DigiFlow to evaluate expressions.

The Preview button allows you to preview the result of the transformation before applying it

to the whole image sequence.

DigiFlow Menus

– 175 –

Figure 130: Example of previewing an image.

Note that the result of Transformation need not be an image, but can be a DigiFlow

drawing. In this case the return value from code specified for the Transformation must be the

handle to the drawing object (i.e. the handle returned by draw_start(..)). In this case, the

output stream must have a format capable of containing a drawing.

If this feature is started from a dfc macro, then the code specified for the Transformation

has access to functions and variables defined in that macro. In the case of variables, the !

global access prefix must be specified.

A number of examples of transformation code are given below.

Rescaling an image
One of the simplest examples is rescaling an image so that its intensities always span the

range 0 to 1, regardless of the input values.
Find limits

vMin := min_value(P);

vMax := max_value(P);

Rescale

(P-vMin)/(vMax-vMin);

This particular code segment would have problems if the image was all the same intensity

as then vMin and vMax would be equal which would lead to division by zero. This problem

could be overcome in a number of different ways. The most straightforward is illustrated

below:
Find limits

vMin := min_value(P);

vMax := max_value(P);

Rescale

if (vMax = vMin) {

 0.5

} else {

DigiFlow Menus

– 176 –

 (P-vMin)/(vMax-vMin);

};

Filtering
One process used frequently in image processing is filtering. In DigiFlow a number of

functions are provided specifically in support of this. In the context of the Transform intensity

facility, all that is necessary is to specify the appropriate filter, if it exists. For example
filter_low_pass(P,5);

will implement a low-pass convolution filter with a 55 kernel. In particular, the intensity of

each pixel will be replaced by the mean of it and its 24 nearest neighbours. The function

filter_convolution(..) provides a more general alternative in which the convolution

kernel is specified explicitly, allowing a broad range of filtering operations. (The

filter_low_pass(..) function is effectively a call to filter_convolution(..) with all

the kernel elements equal to 1/n2, where n is the specified size of the kernel.)

Built in nonlinear filters include erosion (filter_min(..)) and dilation

(filter_max(..)).

Using DigiFlow’s Fast Fourier Transform function allows the construction of filters in the

wavenumber domain. For example, a low-pass filter could be constructed using the following

Transformation code:
spec := fft_2d(P[0:128,0:128]);

k := sqrt(spec.kx^2 + spec.ky^2);

spec.re := where(k < 16,spec.re,0);

spec.im := where(k < 16,spec.im,0);

image := inverse_fft_2d(spec);

image.re;

Here, we make use of the wavenumber arrays returned by fft_2d(..) rather than having to

work out the ordering in which the function returns the data. The where(..) function then

simply sets all entries with wave numbers in excess of 16 to zero. Note that the fft functions

can cope with arbitrary numbers of pixels, but are most efficient for powers of two and other

small primes.

Contouring
Often we would like to contour an image for one reason or another. Suppose we just want

to draw the contours in place of the image, then we could use the following code to step

through the various contour levels, drawing only those contours that were at least 100 pixels

long (thus discarding any high frequency ‘noise’):
Create image for output

out := make_like(P,0);

Loop through thresholds

for thresh:=0.1 to 1 step 0.1 {

 # Find contours of this threshold and draw on blank image

 this := contour_image(P,thresh,fill:=thresh,minLength:=100);

 # Superimpose new contours on output image

 out := this max out;

};

Return output image

out;

Obviously we could have superimposed the contours on the input image. Using other options

in the contour_image(..) function would allow us to apply a low pass filter to the contours.

Similarly, we could fit a parametric curve to the contours, or perform a FFT and filter them

to return a Fourier Descriptor of the enclosed region. This could be achieved by
this := pixel_contour(P,threshold:=0.9,minLength:=500);

if (this.found) {

 # Compute fourier descripter

 fft := fft_row(this.xy[0,:],this.xy[1,:]);

 fft.re := where(abs(fft.kx)<8,fft.re,0);

DigiFlow Menus

– 177 –

 fft.im := where(abs(fft.kx)<8,fft.im,0);

 cont := inverse_fft_row(fft.re,fft.im);

 out := scatter_to_array(P,cont.re,cont.im,fill:=0);

} else {

 out := P;

};

out;

In this example we only find a single contour, the result of which is shown in figure131. The

code could easily be modified to loop and so find all contours satisfying the length criterion.

Note that the scatter_to_array(..) function may leave some gaps in the curve rendered as

the curve is drawn using individual points rather than lines.

Figure 131: Eighth order Fourier Descriptor showing in black the region of the sheep’s back with an

intensity in excess of 0.9.

Fractal box count
Suppose we are interested in the fractal dimension of a contour from an LIF image (which

may have been processed using the facility described in §5.6.3.2). In this case we would

probably wish to have a log-log plot of the number of boxes verses the box size as the output.

This may be achieved as follows:
Extract fractal data

boxes := fractal_box_count(P,0.5);

Fit least squares line

fit := fit_expression("1;ln(size);","size;",

boxes[:,0],boxes[:,1],"ln(n);","n;");

curve := exp(evaluate_expression(fit,boxes[:,0]));

Axes limits

minSize := min_value(boxes[:,0]);

maxSize := max_value(boxes[:,0]);

minNum := min_value(boxes[:,1]);

maxNum := max_value(boxes[:,1]);

Create drawing

hDraw := draw_start(640,480);

draw_set_axes(hDraw,minSize,maxSize,minNum,maxNum,

xLog:=true,yLog:=true);

draw_x_axis(hDraw,"Box size");

draw_y_axis(hDraw,"Number of boxes");

draw_create_key(hDraw,0.8*minSize+0.2*maxSize,

0.6*minNum+0.4*maxNum,"Key");

Draw data

draw_mark_type(hDraw,"plus");

draw_line_colour(hDraw,"red");

DigiFlow Menus

– 178 –

draw_mark(hDraw,boxes[:,0],boxes[:,1]);

draw_key_entry(hDraw,"Box counts");

Draw fit

draw_line_colour(hDraw,"blue");

draw_lineto(hDraw,boxes[:,0],curve[:]);

draw_key_entry(hDraw,"Fit: slope="+(-fit.coeff[1]));

draw_end(hDraw);

hDraw;

Here we see the key element for producing a drawing: the code returns the drawing handle

rather than an image.

Note that this code does more than the bare minimum. Not only does it plot the (hopefully

power law) relationship between the number and the size of the boxes to cover the contour,

but it also generates a least squares fit to that and plots it. Moreover, the key that is generated

will inform the user of the slope (the fractal dimension) of that fit.

Changing background to velocity data
Suppose we have an image stream containing velocity and vorticity data, but we wish to

change the background of the vectors to be speed rather than vorticity. In this case the

following code could be used:
out.u := Q.u;

out.v := Q.v;

out.Scalar := sqrt(Q.u^2+Q.v^2);

out;

In this example, we have extracted the velocity data without change. Note that we have

used Q.u for the x velocity. The name ‘u’ comes from the description of the ‘u’ data plane

stored in the input stream. We could equally have used the generic Q.u name instead. For the

output image, we cannot use the ‘u’ name, but must resort to the generic ‘u’ name for the data

plane, as we have not yet got a description for this plane. Similar arguments apply to the other

two data planes. Indeed, we need to be a little bit careful as at present the output will inherit

the ‘Vorticity’ description from the input, even though the output contains speed rather than

vorticity.

This naming problem, along with an associated scaling one is handled as follows. If no

other details are given, then the output will inherit the details from the corresponding input

plane (i.e. the speed output plane will be called ‘Vorticity’ and have the same scaling as the

vorticity). However, overrides can be specified. If we wish to do this for the above example

we may specify a new description and scaling for the speed plane as follows:
out.u := Q.u;

out.v := Q.v;

out.Scalar := sqrt(Q.u^2+Q.v^2);

out.Scalar_Descr := "Speed";

out.Scalar_Black := 0.0;

out.Scalar_White := max_value(out.Scalar);

out;

Manipulations that you might want to apply to the velocity data include setting a different

plot spacing and scale. This may be achieved in the above example by setting values for

out.u_xStep, out.u_yStep, out.u_Scale, etc. Of course, you can also change the

description for the velocity data, should you so wish.

Note that the input values of these additional controls are available through Q.u_Scale,

Q.u_xStep, Q.u_yStep, … Q.Scalar_Black, and Q.Scalar_White. The input description is

also available through Q.u_Descr, …, Q.u_Descr. Other features of the input image such as

information about its coordinate system are available through Q.dx, Q.dy, Q.xOrigin,

Q.yOrigin, Q.xUnits, Q.yUnits and Q.CoordName. These variables, however, are not listed

in the Variables list box; a more comprehensive list may be viewed by clicking the Variables

button.

DigiFlow Menus

– 179 –

Returning images
Images and drawings may be returned in a variety of ways from the code. In all cases, the

final computed or referenced value represents the image returned, but this may be an array, a

drawing handle, or a compound variable. The table below gives the possibilities and their

interpretation by DigiFlow.

Return type Components Interpretation

2D array Simple image. Colour scheme and scaling

determined by dialog settings.

3D array If the input is a 3D array, then the output will be

interpreted in the same manner. For example, a

3D array output from full colour input will be

taken as a full colour image, whereas a 3D array

output from a velocity field input will be

interpreted as a velocity field.

Compound .Image (array)

.Black (numeric)

.White (numeric)

.ColourScheme (string)

.LUT (string or array)

Simple image, but with the code optionally

specifying the intensity to set to black (.Black or

.black) and white (.White or .white), and the

colour scheme to be used (.ColourScheme or

.colourScheme or .LUT). Only the specification

of the image (.Image, .image or .im) is

mandatory.

Compound .Red (array)

.Green (array)

.Blue (array)

.Red_Black (numeric)

.Red_White (numeric)

.Green_Black

(numeric)

.Green_White

(numeric)

.Blue_Black (numeric)

.Blue_White (numeric)

Full colour image. The arrays specified for .Red,

.Green and .Blue must all be two-dimensional

and of the same size.

The optional .Red_Black, .Red_White, etc., set

the intensities to be interpreted as black or white

for each of the three colour components.

Compound .u (array)

.v (array)

.Scalar (array)

.u_Scale (numeric)

.u_xStep (numeric)

.u_yStep (numeric)

.u_ColourScheme

(string)

.Scalar_Black

Vector field, specified in .u and .v arrays, with

an optional background image specified in the

.Scalar array. Both (all three) arrays must be the

same size.

The spacing between the vectors is determined by

.u_xStep and .u_yStep, whereas the scale of the

vectors is given by .u_Scale. The default colour

for the arrows (black) may be changed by

.u_ColourScheme.

The black and white values of the optional

background image, and the associated colour

DigiFlow Menus

– 180 –

(numeric)

.Scalar_White

(numeric)

.Scalar_ColourScheme

(string)

scheme, may be changed by .Scalar_Black,

.Scalar_White and .Scalar_ColourScheme,

respectively.

Drawing

handle

 The drawing will be used. If the output is a raster

image, then the drawing will be converted into a

bitmap before saving.

5.7.3 Combine images
Related commands: process Tools_CombineImages(..)

This process allows multiple input image streams to be combined in arbitrary ways to

produce an output image stream. This facility may be viewed as an expanded version of the

Transform intensity described in §5.7.2. This produces a very versatile tool, but one which

requires some experience to master. A simplified interface to the same underlying mechanism

is provided in Transform recipe described in §5.7.1.

DigiFlow Menus

– 181 –

Figure 132: Combine image streams in an arbitrary way.

Up to 26 image selectors (fewer if operating on a free licence) provide multiple input

streams in the Input group. These are visible three at a time, with the Next and Previous, First

and Last buttons providing the ability to move along the list of selectors. Each image stream

may be enabled or disabled through the Use check box, and each is assigned a two-letter

name. For accessing the basic image the first letter is always P, while the second increases

alphabetically from a, for the first stream, through to z, for the last possible stream. As we

will see later, individual data planes for images with multiple planes of data may be accessed

using Qa, Qb,… Qz, and drawings through hDa, hDb,… hDz. The Reset button will clear the

inputs of all selectors, and clear the Use check box for all except the master stream (stream a).

The individual input streams may be taken as either dynamic or static. A dynamic stream,

indicated by checking Sequence, will have one image read from it for each frame processed.

In contrast, a static stream will read the input image only once at the start of the process.

Timing details may be set for both dynamic and static streams using the Sift buttons (see

§4.3) to activate the standard Open Image dialog (§4.1). For a static stream, the effect of this

is merely to select which image from a sequence is used as the static image.

DigiFlow Menus

– 182 –

Using the Save As button, the Output group specifies the destination of the combined

image streams. If this process is acting as the source for another process, the Save As button

is suppressed (refer to §7 for further details).

Timing details for the output stream are determined by the master input stream. This stream

is selected using the Master radio button associated with each input stream. Note that while

only one input stream can provide the master timing details, the process will be terminated

when the first of the dynamic input streams runs out of images.

The Controls for this process comprise two code groups. The first code group, Static, may

be used to define functions and manipulate the static input streams using their respective

variables (e.g. Pb). This code is executed only once (except in so far as user defined functions

– §8.9 – may be executed many times). Images from either static or dynamic streams may be

referenced in the code, with those belonging to the dynamic stream corresponding to the first

images in such streams. Any return value from this code will be discarded, but any variables

created by the code will be available to the later Varying code.

The second code group, Varying, is executed once for each frame of the dynamic input

stream in order to compute the output stream. This code may access any of the available

images (i.e. whether they are from static or dynamic streams), as well as any variables or

functions defined in the Static code. The final code statement provides the return value that is

stored in the output stream.

The output from the Varying code may be an array, a drawing handle, or a compound value

containing a number of different components. The various options here are identical to those

for Tools Transform Intensity and are described at the end of §5.7.2.

As noted above, the basic image from the input streams is supplied in the array variables

Pa, Pb, … For simple images these will be a two-dimensional arrays. However, for more

complex image formats (such as velocity fields stored in .dfi files), Pa, Pb, … will contain

more than two dimensions. In such cases DigiFlow will also provide the same data split into

its individual component two-dimensional arrays in the compound variables Qa, Qb,… For

example, if the first input stream contains a velocity field generated by the PIV facility (see

§5.6.5.2) then Qa.u and Qa.v will contain the two components of the velocity field, and

(depending on the options selected during the processing) Qa.Scalar may contain the

vorticity field. Full colour images are supplied as their red, green and blue components with a

three-dimensional Pa array: Pa[:,:,0] contains the red component, Pa[:,:,1] contains the

green component, and Pa[:,:,2] contains the blue component. For convenience, these are

also supplied as Qa.Red, Qa.Green and Qa.Blue. The button may be used to search for or

provide information on specific DigiFlow functions.. The button may be used to search for

or provide information on specific DigiFlow functions. If the input stream(s) contains a

DigiFlow drawing (typically one or more .dfd files), then DigiFlow provides the drawing is

available through its handle hDa, hDb, … hDz in addition to a bitmap version of it in the array

variable P. Additional drawing commands may be added to the drawing handle, or it may be

incorporated into a compound drawing using draw_embed_drawing(..).

DigiFlow also provides time information about the input stream through the Ta, Tb,…

compound variable. Typically this contains Ta.fNow and Ta.tNow giving the current frame

number and time (in seconds) relative to the start of the entire input stream. An additional

variable Ta.iNow gives an iteration counter that is the frame number relative to the start of

those that are actually being processed. Details of the entire input stream are provided through

Ta.fFirst, Ta.fLast and Ta.tFirst, Ta.tLast that provide details of the first and last

frame/time that exist in the input stream. Moreover, Ta.fFrom, Ta.fTo and Ta.tFrom,

Ta.tTo provide information about which part of the stream is being processed.

DigiFlow Menus

– 183 –

The main variables available are listed in the Variables list box. This list does not,

however, include any additional modifiers for the individual data plane variables beginning

with Qa, Qb,… Use the Variables button to generate a complete list of all the variables

available and their contents. (This button loads all the image data then calls the

view_variables(..) function.)

If this feature is started from a dfc macro, then the code specified for the Static and Varying

code segments have access to functions and variables defined in that macro. In the case of

variables, the ! global access prefix must be specified. The Preview button allows you to

preview the result of the transformation before applying it to the whole image sequence (see

Figure 134).

Figure 134: Preview for Tools: Combine Images.

As is standard with DigiFlow, all the input streams from integer format image files are

interpreted as floating point values between 0.0 for the darkest parts and 1.0 for the brightest

parts. By default, when the image is saved to an 8 bit format, intensities less than 0.0 will be

mapped to 0 and those greater than 1.0 mapped to 255.

Note that the result of Varying need not be an image, but can be a DigiFlow drawing. In

this case the return value from code specified for the Varying must be the handle to the

drawing object (i.e. the handle returned by draw_start(..)). In this case, the output stream

must have a format capable of containing a drawing. See the end of §5.7.2 for a complete list

of the output options.

A number of non-trivial examples are given below.

Aligning images

In some circumstances it may be necessary to force alignment of images. This may be due

to vibration of the camera, for example. Processing in this case would require two input

DigiFlow Menus

– 184 –

streams: the images to be aligned, and a reference image. If the misalignment is small, then

the following code could achieve the desired effect. Suppose that we have some reference

point located near the bottom left corner of the image. These reference points may be found by

looking for some blobs with an intensity exceeding some predefined threshold. If the images

to be processed are presented to input stream Pa and the reference image to Pb, then we can

divide the task into two parts. The Static code would find the reference locations of the

points, while the Varying code would not only find the current location of the points, but also

shift the image accordingly. To save replication of code, we choose to define a user-defined

function within the Static code that is responsible for finding the current location of the

reference points:
function FindRef(Image,thresh) {

 # Find all the blobs

 blobs := find_blobs(Image,thresh);

 # Search for the largest blob.

 # Volume is stored in blobs[4,:]

 iBlob := max_index_x(blobs[4,:]);

 ret.x := blobs[0,iBlob];

 ret.y := blobs[1,iBlob];

 ret;

};

ref := FindRef(Pb[0:10,0:10],0.15);

For the Varying code we then use
now := FindRef(Pa[0:10,0:10],0.15);

dx := ref.x - now.x;

dy := ref.y - now.y;

shift(Pa,dx,dy);

Here the shift(..) function will only move the image to pixel resolution.

If you require subpixel resolution then use shift_interpolated(..) instead. Note,

however, that the latter function must have arrays for the shift indices. This could be achieved

using the following code segment for Varying code instead:
now := FindRef(Pa[0:10,0:10],0.15);

dx := make_like(Pa,ref.x - now.x);

dy := make_like(Pa,ref.y - now.y);

shift_interpolated(Pa,dx,dy);

Here we use the make_like(..) function to convert the shift increments into arrays for

feeding into shift_interpolated(..).

Velocity fluctuations

Suppose we are interested in examining the velocity fluctuations relative to some mean

velocity field. In the simplest case we would look at the difference between the current

velocity field and a time average field. Suppose the time varying velocity field is available

through the Pa source stream, and the mean velocity field (perhaps computed by the Time

Average facility described in §5.6.1.1) is specified as the Pb stream with the Sequence box

cleared. In this case we need not specify any Static code. For the Varying code we could

specify:
out.u := Qa.u - Qb.u;

out.v := Qa.v - Qb.v;

out.Scalar := Qa.Scalar - Qb.Scalar;

out;

In this particular case, since all three data planes are being treated in the same way and we

are not changing the description of scaling of the data planes, we could treat all three planes

simultaneously and simply use Pa – Pb. Validity of this, however, depends on the contents of

the scalar field.

DigiFlow Menus

– 185 –

5.7.4 Accumulate
Toolbutton:

Shortcut:

Related commands: process Tools_Accumulate(..)

The operation of this menu item is similar to that of Tools: Recipe (see §5.7.1), but rather

than taking a stream and returning one output image for each input image, here only a single

output image is created. The simplest form of an accumulation is the mean of the image

stream, but this tool is more flexible (but slightly slower) than the Analyse: Time Average

(see §5.6.1.1). The dialog controlling Tools: Accumulate is almost identical to that of Tools:

Recipe, with each accumulation recipe being assigned to a Group within a Category. Some of

the accumulation recipies also require Parameters to control their action.

Figure 135: The Accumulate dialog.

User-defined recipes

Users can add their own custom recipes to the list by creating a file named

User_Accumulate.dfc either in the current directory, or in the directory in which DigiFlow is

installed. (A copy in the current directory will have precedence over one in the DigiFlow

directory.) A typical entry for a single-stream recipe in this file would look like
Accumulate.User.Statistics.NumberOverThreshold.Descr := "Count the

number of images exceeding a threshold";

Accumulate.User.Statistics.NumberOverThreshold.Accumulate := {

 if (Time.iNow = 0) {

 acc := make_like(P,0);

 thresh := p0;

 };

 acc += P > thresh;

DigiFlow Menus

– 186 –

};

Accumulate.User.Statistics.NumberOverThreshold.PostAccumulation :=

{acc;};

Accumulate.User.Statistics.NumberOverThreshold.Prompt0 :=

"Threshold";

Accumulate.User.Statistics.NumberOverThreshold.Param0 := 0.5;

Accumulate.User.Statistics.NumberOverThreshold.Check := {if (p0 <

1) {"Must have positive threshold."} else {null};

This would appear under Categgory User, Group Statistics, Recipe NumberOverThreshold.

Here the recipe requires one parameter, producing the prompt Threshold in the interface. The

default value of this parameter is set by the .Param0 variable, and the parameter is provided to

the code as the variable p0. In this case, since a .Check variable is specified, the value of the

parameter is checked. If the .Check code returns a string, then this is displayed as a warning

message.

If two input streams are required, then the variable xxx.With should be defined, containing

either "sequence" or "single", depending on whether a sequence or only a single image is

to be recovered from the With stream. The image recovered from the With stream is provided

to the .Code in the variable Pb (or, for image planes in Qb – refer to §5.7.2 for further details).

The facilities available within the code segment .Accumulate are exactly the same as those

available in the Transform intensity and Combine images tools described in §§5.7.2 and 5.7.3.

Typically the code will start with an if statement, checking Time.iNow, to set things up on the

first iteration. Once all the frames have been processed, the .PostAccumulation code is run

to form the final output.

Up to 6 prompts may be requested, their types (integer, floating point or string) being

determined by the type of the default value in the .Paramn variable. Note that the description

and code may be specified interchangeably as strings, code segments or memos.

The database of built-in recipes may be found in DigiFlow_Accumulate.dfc in the DigiFlow

installation directory.

5.7.5 Slave process
Toolbutton:

Shortcut:

Related commands: process Tools_SlaveProcess(..)

Unlike most of the other features in DigiFlow, a Slave process is intended to provide a

mechanism for extracting information directly from an input stream (including live video) for

direct inspection by the user. The range of uses for this mechanism is continuously expanding

and includes processes ranging from velocity calculation to aids in setting up and focusing a

video camera.

Figure 136: Dialog controlling a slave process.

DigiFlow Menus

– 187 –

As with the recipes described in §5.7.1, the interface provides a hierarchical interface to a

series of macros providing the desired output. However, unlike a recipes feature, a slave

process does not have an explicit image stream for the source of its data. Rather, it taps on to

the image stream being displayed in the window that had the focus at the time the slave

process was started. This master image may be a movie opened by File: Open Image, the

output of another process, or live video. If the selected process is not too computationally

expensive, then it will take the information from this stream and process it to produce output

each time the master image is updated. When the master image is live video, then the output

may be less frequent, but can be tailored to make use of adjacent frames, for example.

To specify a slave process, ensure the desired master image stream is the active window

before selecting the slave process menu item. Slave processes in each Category are divided

into one or more Group, each of which contains a selection of Recipes. Once the required

recipe is selected, then the Parameters group may allow specification of optional parameters

to provide some control over the process.

User-defined recipes

Users can add their own custom slave processes to the list by creating a file named

User_SlaveProcess.dfc either in the current directory, or in the directory in which DigiFlow is

installed. (A copy in the current directory will have precedence over one in the DigiFlow

directory.) A typical entry for a single-stream recipe in this file would look like
Slave.User.Filter.LowPass.Descr := "Low pass filter";

Slave.User.Filter.LowPass.Code :=

 {hS := get_active_view();

 im := get_image(hS);

 if (not(is_null(im))) {

 hV := view(im.image);

 view_colour(hV,im.lut);

 };

 while (not(is_null(im))) {

 out := filter_low_pass(im.image,p0);

 view(hV,out);

 im := get_image(hS);

 };

 close_view(hV);

 };

Slave.User.Filter.LowPass.Prompt0 := "Length";

Slave.User.Filter.LowPass.Param0 := 3;

Slave.User.Filter.LowPass.Check := {if ((p0 <= 0) or ((p0 mod 2)

<> 0)) {"Length must be positive odd integer"} else {null};};

This would appear under Categgory User, Group Filter, Recipe LowPass. Here the recipe

requires one parameter, producing the prompt Length in the interface. The prompt is specified

by the .Prompt0 string and the default value of this parameter is set by the .Param0 variable.

The type for the returned parameter must be the same as that of its default value. The specified

parameter is passed to the .Code as the variable p0. In this case, since a .Check variable is

specified, the value of the parameter is checked. If the .Check code returns a string, then this

is displayed as a warning message.

Unlike a recipe that needs to deal with only a single image (or single pair of images), a

slave process needs to handle a continual stream of images, and look after both their

extraction from the master image stream and their display in a suitable format. Typically the

code for a slave process starts by determining the source for the master stream by a call to

get_active_view(). The macro get_image(..) is then used to simplify the extraction of

the images from the master stream, whether it be a standard image stream or live video. In

both cases, get_image(..) waits efficiently for a new image to be available. In the above

DigiFlow Menus

– 188 –

example, a window (view) is created to contain the output, then further image are extracted

repeatedly from the master stream until either the slave process or the master image stream is

terminated.

5.7.6 To world coordinates
Toolbutton:

Shortcut:

Related commands: process Tools_TransformToWorld(..)

Transforms an image stream to make the associated world coordinate system orthogonal.

Figure 137: Transform an image stream to world coordinates.

A single image selector provides the input stream in the Input group. This may be taken

from a file using the File button, or from another Process.

The Output group specifies the destination of the transformed image using the Save As

button. If this process is acting as the source for another process, the Save As button is

suppressed (refer to §7 for further details).

The Controls for this process include the specification of the Coordinate System to be used

to map the image. The limits on the coordinates corresponding to the left (x min), right (x

max), bottom (y min) and top (y max) of the output image, the size of which is specified by

the Width and optional Height if the aspect ratio is not to be preserved.

Any pixels in the output image not corresponding to a point in the source image is filled

with Fill Intensity, 0.0 representing the minimum value, and 1.0 the maximum.

For multi-plane images containing vector fields, the conversion process will also rescale

the vector fields so that they are converted from pixel to world coordinate systems. Note that

this only applies if the input stream is in pixel coordinates. This feature is of particular value if

PIV velocity fields are computed in pixel coordinate yet are later required in world

coordinates.

DigiFlow Menus

– 189 –

5.8 Window

The Window menu follows the standard Windows format and will not be given in detail

here.

5.9 Help

Documentation for DigiFlow resides largely in this manual plus the dfc Help facility

described in §4.5. This manual is distributed as both html format in DigiFlow.htm, and as an

Acrobat file in DigiFlow.pdf.

5.9.1 Help (browser)
Toolbutton:

Shortcut:

Related commands:

Clicking on the Help entry in the Help menu will start up an instance of Internet Explorer

and, where possible, take you to the table of contents in the html version of the DigiFlow User

Guide. Selection the function key f1 at any point will have the same impact, but where

possible will jump to the most relevant section of the guide.

5.9.2 dfc Help
Toolbutton:

Shortcut:

Related commands:

This will start up the dfc Help facility described in §4.5.

5.9.3 Auto help
Toolbutton:

Shortcut:

Related commands:

When checked, a browser window containing DigiFlow.htm is opened and automatically

scrolled to the relevant section for each action undertaken within DigiFlow.

5.9.4 About DigiFlow
Toolbutton:

Shortcut:

Related commands:

The Help About DigiFlow option brings up a screen that gives you DigiFlow version and

build date information (see figure).

DigiFlow Menus

– 190 –

Figure 138: The About DigiFlow dialog.

DigiFlow Techniques

– 191 –

6 Techniques

6.1 Determining black

There are a number of ways of determining the intensity to which black digitises. When

working with two light sources for LIF the easiest way is to take three calibration images. The

first image will have the left-hand light source only, the second the right-hand light source

only, and the third with both light sources turned on. By then using Tools: Combine Images

with these three images forming the Pa, Pb and Pc input streams, the following code will

determine the black value and test the hypothesis of linear dye response simultaneously:
Image:=Pa+Pb-Pc;

black := mean(Image);

message("Black:"+black);

Image;

This code first evaluates the difference between the sum of the images due to the left and

right hand light sources separately, and the image due to the two light sources working in

tandem. If black were to digitise the some value rblack, then we would expect the resultant

Image to be rblack. Inspection of the resultant image will highlight any defects in the images

or assumptions, while the message box produced will give the black value.

An alternative method of determining black relies on the fact that it should have the same

digitised value regardless of the camera aperture. Begin by acquiring two images of the same

scene using different f-stops on the camera. The image with the wider aperture (smaller

f/number) should not quite saturate; the second image should be with the lens stopped down

by one f-stop. The scene should contain a broad range of intensities. Again using Tools:

Combine Images, with the two images as Pa and Pb, use the following code to first generate a

scatter plot, then fit a least squares regression to that line, and finally determine the intercept

between this and a line of unit slope.
Create scatter plot, scaling intensities from 0-1 to 0-255.

Image := make_array(0,256,256);

Image := scatter_to_array(Image,255*Pa,255*Pb,fill:=1,flags:=1);

Find the centroid of the scatter plot

y := y_centroid(Image)/255;

x := x_index(y)/255;

Fit line to plot, but only to central part of data

fit := fit_expression("1;x;","x;",x[50:250],y[50:250]);

Look for root of x = a + bx => x = a/(1-b)

rblack := fit.coeff[0]/(1-fit.coeff[1]);

Generate the fitted line

f := evaluate_expression(fit,x);

Create a plot

hDraw := draw_start(640,480);

draw_set_axes(hDraw,0,1,0,1);

draw_x_axis(hDraw,"Bright image");

draw_y_axis(hDraw,"Dim image");

draw_create_key(hDraw,0.1,0.6,"Key");

draw_mark(hDraw,x,y);

draw_key_entry(hDraw,"Scatter plot",line:=false,mark:=true);

draw_line_colour(hDraw,"blue");

draw_lineto(hDraw,x,f);

draw_key_entry(hDraw,"Fitted curve",line:=true);

draw_text(hDraw,0.2,0.8,"Black:"+rblack);

draw_line_colour(hDraw,"green");

draw_line(hDraw,0,0,1,1);

draw_key_entry(hDraw,"Unit slope",line:=true);

draw_end(hDraw);

Return the drawing handle as the "image"

hDraw;

DigiFlow Techniques

– 192 –

The result of this code is shown in figure 139 below.

0.0 0.2 0.4 0.6 0.8 1.0

Bright image

0.0

0.2

0.4

0.6

0.8

1.0

D
im

 i
m

ag
e Key

Scatter plot
Fitted curve

Black:4.315697234902829E-002

Unit slope

Figure: 139 Scatter plot used to determine ‘black’.

DigiFlow Chaining processes

– 193 –

7 Chaining processes

A powerful feature of DigiFlow is the ability to chain multiple processes together, thus

creating an efficient way of automating complex algorithms for processing image streams. In

addition, piping images allows the full resolution of the image stream to be used, without the

need to map the stream into some image format with a lower intensity resolution for each

pixel.

The procedure for creating a process chain begins by identifying the process producing the

output that is ultimately required, and work backwards from that point. For example, you may

wish to determine the standard deviation of fluctuations in concentration from an image

stream that contains corrected intensity images of a flow. The final process in this case is the

Time Averaging found in §5.6.1.1.

In the Sequence group, click the Process button to indicate that the input image stream

will be taken from another process. This starts the Image Source dialog.

Figure 140: The image source dialog for connecting processes together.

This dialog contains three list boxes. The first, labelled Category, reflects the menu items

controlling processes, with the addition of (from file) that allows the image stream to be taken

from a standard file (enables the corresponding File button in the parent dialog). The Process

list box then lists the various processes available within the Category list, and the Output list

box indicates the one or more image streams produced. The source process is specified by the

combination of items selected in these three list boxes.

Clicking Dialog (or OK if this is the first time the Image Source dialog has been started for

this image stream and source process combination) will then start up the dialog box for the

source process. In this case the Transform Intensity dialog described in §5.7.2.

DigiFlow Chaining processes

– 194 –

Figure 141: Transform intensity dialog as part of a process chain.

When a process is acting as a server for another process, the normal Save As button is

disabled and the destination preview window indicates that the result will be piped into

another process. The remainder of the dialog is unchanged. Once the image source has been

specified using the File button, the timings and region may be set with the Sift button (§4.3).

Alternatively, the chain may be extended by selecting another process with the Process

button.

Exiting this dialog with the OK button returns to the parent dialog (here the Time Average

dialog).

DigiFlow Chaining processes

– 195 –

Figure 142: Time average dialog at the root of a chain.

This dialog, at the root of the processing chain, requires the destination for the Output

image stream to be specified. The input image stream (the Sequence group) now has the File

button disabled and indicates the source process in the preview pane. Once the specification of

the dialog is complete, pressing OK will start the process.

DigiFlow Interpreter basics

– 196 –

8 Interpreter basics

DigiFlow contains a sophisticated mathematical interpreter capable of operating directly on

numbers, arrays and/or entire images, and of controlling and automating complex processes.

This interpreter is used widely within DigiFlow to provide the user with the maximum power

and flexibility. The language utilised by this interpreter is often referred to as dfc code within

this manual.

This section outlines the basic syntax, operators and execution control statements

understood by the interpreter, and provides the key elements required to enter expressions and

code segments in dialog boxes associated with the menu-driven processes provided by

DigiFlow. Discussion of the broad range of basic and advanced functions and the use of the

interpreter as a macro or command language are deferred until §9. Techniques used to access

built in DigiFlow processes and write complete macros are described in §10. However, only

brief details of the individual functions are given in this manual. More comprehensive

documentation is to be found in the DigiFlow dfc Help facility described in §4.5.

Note that the interpreter is case sensitive with all pre-defined constants, functions,

operators and variables specified by lower case names. Variables supplied by DigiFlow to

represent a data stream or the result of a specific manipulation normally begin with an upper

case character.

8.1 Syntax

The basic syntax of DigiFlow dfc code has some similarities with other high level

languages such as C, Pascal or Matlab, but also has a number of significant differences.

Of key interest to experienced programmers is that the assignment statement is :=, similar

to Pascal, with C-like +=, -=, *= and /= variants. The conditional assignment operator ?= will

only make an assignment if the target variable (on the right-hand side) does not already exist.

Statements terminate with a semicolon (;), and blocks of code are delimited with braces

({…}).

Array and list indices utilise square brackets ([…]), with parentheses ((…)) being used for

function arguments and mathematical brackets. Square brackets ([…]) can also be used to

construct arrays, whereas double angle brackets (<<…>>) can be used to construct a

compound variable.

Exponentation uses a caret (^), while mod, div, max and min are all binary operators.

Logical true takes the numeric value of unity, while false is mathematically zero. Logical

negation not(..) is a function, while the binary comparative operators are =, <>, >, >=, < and

<=. Loops take the form for i:=0 to 100 step 2 {…}; or while (condition) {…};.

Conditional execution uses if (condition1) {…} elseif (condition2) {…} else

{…};. Note that for both while and if that the condition must be delimited by brackets.

Variables may be integer, logical, real, array (of real values), string, compound or list (of

arbitrary types). A compound variable is similar to a structure in other languages, but is more

flexible, whereas a list is effectively an array that can contain a mix of variables of any or all

types. Arrays can be constructed using make_array(..), or directly using square brackets,

e.g. [1 2 3] or [1,2,3]. Components within compound variables are separated with a dot

and can be constructed using double angle brackets (e.g. this :=

<<time:=3.0,frame:=6>>).

Standard strings are specified using double quotes as "This is a sample string". To

include double quotes within the string, double the quote up, i.e. "To use ""quotes""

within a string." However, there is a maximum length to a standard string of 256

characters. Longer strings should be specified as a memo, delimited as {/A memo can hold

DigiFlow Interpreter basics

– 197 –

a string of arbitrary length. All DigiFlow functions where the 256

character limit on a standard string is likely to be limiting can accept

memos as well as or instead of strings./}. Both strings and memos (and also blocks

of code) may be concatenated using the + operator. Concatenating a numeric value with a

string will cause the numeric value to be converted into a string before the concatenation.

Similarly, concatenation of a string or a numeric value with a memo will result in a memo.

For example, "File"+123 will yield the string "File123". More control over the format

when converting a numeric value to a string is achieved using make_string(..). The

function replace_hashes(..) provides a convenient method for constructing file names

with a fixed number of digits including leading zeros.

A key difference compared with languages such as C or Pascal is that variable typing is all

dynamic and determined by the assignment statement. A given symbol/name may change

between any one of the basic types during the execution of code. Expressions involving mixed

type are often permitted, with the result being, generally, what is expected. For example, if

arr is an array, then the expression arr + 3 will add three to every element in arr.

By default, all user-defined functions are pure functions in that changes to any of the

parameters are discarded with the return value being the way of returning all information to

the calling code. The return value is the result of the last statement to be executed. It is not

necessary for this statement to have a corresponding assignment. For example, the definition

function Three() {ret := 3;}; and function Three() {3;}; will both return the

integer three.

8.2 Variables

DigiFlow allows the use and creation of variables within all code segments. Variable

names may use any alphanumeric character, plus the underscore. Names must not start with a

numeric character. Variable names are case-sensitive.

8.2.1 Simple variables
There are four basic types of variable: integer, floating point, array and string. Additionally,

there are a number of special purpose variable types, specifically memo, code and null. The

last of these, null, is simply a place holder with no value, while memos provide a container

for blocks of text that are too long to fit in standard strings. Code variable are a specialist form

of memo that contain executable code.

Normally, declaration statements are not required to create a basic variable: it need simply

occur on the left-hand side of an assignment statement (§8.3). However, in some cases an

array of a particular size may be required, and in such cases the make_array(..) function, or

one of the other more specialist array constructors (e.g. make_like(..), random_array(..),

gaussian_array(..), x_index(..), y_index(..)) should be used on the right-hand side of

an initial assignment statement. Similarly, a list can be created and initialised using

make_list(..).

Both arrays and lists of strings can also be constructed in line using square brackets. If the

contents between the square brackets are purely numeric, then an array is constructed. If the

contents includes any strings, then a list is created. For example, [99, 98, 97, 96] will

construct a one-dimensional array with four real elements (there are no integer arrays). In

contrast, ["dog", "cat", "mouse"] produces a list with three string elements. The elements

of a list need not all be of the same type, thus ["two", 3, "four"] is valid. Further

information about arrays is given below in §8.4 and lists in §8.5.

A null value can be obtained either by assignment of null, or as the return value of certain

functions (sometimes representing an error condition).

DigiFlow Interpreter basics

– 198 –

Memo variables can be constructed using the following syntax: MyMemo := {/The memo
is contained between an openning brace-slash pair, and a corresponding

closing slash-brace pair./};. Whereas standard strings in DigiFlow have a fixed

maximum length, memos can be of arbitrary length. In many places, strings and memos may

be used interchangeably.

Blocks of code are delimited by braces, whether as part of a control structure (e.g. a for

loop or if block) or when being assigned to a variable. For example MyCode := {a += 5;};

execute(MyCode); creates the code variable MyCode then executes it.

For mathematical computations, type conversion will take place automatically as and

where it is appropriate. For example, multiplying an array by a scalar will produce an array.

Division of two integers will produce a real (floating point) value (integer division is achieved

using the div operator).

8.2.2 Compound variables
Compound variables are similar to “structures” or user-defined “types” in other languages.

Compound variables may be used to store more than one value of the same or different types.

They are distinguished by having a dot (.) within their name. The part of the name to the left-

hand side of the dot is the name of the compound variable, while the part of the name to the

right-hand side is the name of the component: name.component. Each component may itself

be any DigiFlow variable type, including arrays, lists and compound variables.

Whereas in most languages, the components contained within a compound variable need to

be declared in advance, this is not true for DigiFlow. Here a compound variable is created by a

standard assignment statement, and as many component variables as required may be added.

Moreover, each of these component variables may themselves be compound variables.

The following example illustrates the use of simple and compound variables.
Start := 0; # Assignment to a simple variable

Using.Code := {1 – P}; # Create a compound variable

 # and component variable

Using.File := "Test.dfm"; # Add a second component variable

Using.File_Time.FromStep := 0; # Component variable Time is a

 # compound variable

Using.File_Time.ToStep := 1;

...

Result := MyProc(Start,Using); # Pass both simple and compound

 # variables to a function.

If an existing simple variable appears on the left-hand side of a compound variable

assignment, then the original contents of the simple variable will be discarded and a new

compound variable of the same name created. In particular,
Var := "simple"; # Simple variable

Var.Handle := 1; # The string "simple" is discarded

Both simple and compound variables may be passed to functions or returned from

functions (see §8.9). Compound variables are of particular value dealing with the processes

that can be started from menu items (see §10.1.1).

In some circumstances, it can be convenient to assign multiple parts of a compound

variable in a single statement. This is particularly true when calling a function which takes a

parameter as a compound variable, but where you do not have such a compound variable

setup already. Consider the assignments
This.time := 1.0;

This.frame := 25;

This.file.name := "Test.dfi";

This.file.sequence := false;

These may be reduced to the single compound statement:
This := <<time:=1.0; frame:=25; file:=<<name:="Test.dfi";

sequence:=false;>> >>;

DigiFlow Interpreter basics

– 199 –

The compound variable constructors, the << … >> pairs, are used to bracket the values to be

combined into a single compound variable. As illustrated in the above example, the

compound constructors may be nested.

8.2.3 Type query functions
The type of a given variable may be determined through one of the inquiry functions

is_array(..), is_list(..), is_code(..), is_compound(..), is_integer(..),

is_memo(..), is_null(..), is_numeric(..), is_real is_string(..).

8.3 Assignment

Assignment takes place once all the operations and function evaluations are complete, if

there is an assignment operator and variable at the start of the expression (e.g. a := b+c;). If

there is no assignment, the result will be discarded, or, if it is the last result in a segment of

code, it will be returned to the routine calling the interpreter.

The various assignment operators are listed below:

Assignment

Operator

Description Example

:= Standard assignment. The result of the

expression on the right-hand side is stored

in the variable on the left-hand side.

MyArray := (Pa + Pb)/2;

+= Increment assignment. The result of the

expression on the right-hand side is added

to the contents of the variable on the left-

hand side and the result stored back on

the left-hand side.

Count += 1;

This is equivalent to:

Count := Count + 1;

-= Decrement assignment. The result of the

expression on the right-hand side is

subtracted from the contents of the

variable on the left-hand side and the

result stored back on the left-hand side.

Total –= a;

This is equivalent to:

Total := Total – a;

*= Multiple assignment. The result of the

expression on the right-hand side is

multiplied by the contents of the variable

on the left-hand side and the result stored

back on the left-hand side.

Value *= 2;

This is equivalent to;

Value := Value*2;

/= Fraction assignment. The contents of the

variable on the left-hand side is divided

by the result of the right-hand side and the

result stored back on the left-hand side.

Test /= f;

This is equivalent to:

Test := Test/f;

?= Conditional assignment. An assignment is

made only if the target variable does not

already exist. If the target variable does

exist, then its contents remain unchanged.

This ?= default;

The above is equivalent

to

Tmp := default;

if (not(exists("This")))

{This := default;};

8.4 Arrays

All array variables are inherently four-dimensional, although in most cases only the first

one or two dimensions are used and some cases the dimensions may be collapsed to make a

vector (scalar). Use of specific elements within an array, and assignment to specific elements

of an array may be performed as shown below. Note that an assignment statement specifying

DigiFlow Interpreter basics

– 200 –

specific array elements requires the array to exist already. If the target array of an assignment

does not already exist, then the assignment can only specify the entire array.

Arrays are generated as the result of expressions and as the return value of many dfc

functions. DigiFlow also includes two functions specifically designed to construct arrays:

make_array(fill,nx,ny,…) and make_like(template,value). In the first case, between two

and five parameters may be specified to the function, the first giving the value the array

should be initialised with, and the remainder giving the dimensions of the array (up to four

dimensions can be specified, although only the first dimension is mandatory). The fill

parameter must be either an integer or floating point scalar value. The second constructor,

make_like(..), takes the specified template (which must be an existing array) as a guide to

the dimensions of the array that is required, and initialises it with value. Unlike fill in

make_array(..), the value passed to make_like(..) may be an array, the values of which

will be packed into the new array (e.g. the function may be used to convert a two-dimensional

array into a one-dimensional array, or vice versa), filling any extra values in the new array

with zeros, or discarding any surplus values from value if the total number of elements do not

coincide. If value is a scalar (integer or floating point value), then it is simply replicated to

each of the elements in the newly constructed array.

Array Description Example

a For array variables in expressions, the

entire array will be utilised. For arrays

on the left-hand side of assignment

statements, the old contents of the

variable will be discarded and

replaced by the result of the

expression.

Average two images

This := (First + Second);

a[i,j] Access to the i,jth element of the array

a. Specification in an expression will

return a floating point scalar.

Specification on the left-hand side of

an assignment will cause only the i,jth

element to be updated. If the right-

hand side returns an array, then the

corresponding i,jth element from the

right-hand side is used. If the right-

hand side returns a scalar, then this

value is used.

Location of centre

i := x_size(Background)/2;

j := y_size(Background)/2;

Intensity at centre

iCentre := Background[i,j];

DigiFlow Interpreter basics

– 201 –

a[i0:i1,j0:j1] Access to the sub-array of a spanning

from i0 to i1 and j0 to j1. Specification

in an expression will return an array

of size (i1 i0 + 1)(j1 j0 + 1).

Specification on the left-hand side of

an assignment will cause only this

sub-array to be updated. If the right-

hand side returns an array, then the

corresponding sub-array of elements

from the right-hand side is used. If the

right-hand side returns a scalar, then

this value is used. If one or both limits

are omitted, then the corresponding

limit to the dimension will be used.

Hence a[:,:] corresponds to the

entire two-dimensional array.

Men intensity in window;

Average := mean(

Image[100:200,

100:200]);

Increase gain

Image[100:200,100:200] *=

2/Average;

a[i0:i1:si,j0:j1:sj] As with the above form, but access

elements at intervals of si and sj in the

two dimensions. Note that si, sj can be

negative if the corresponding limits

are in reverse order. In this case the

order of elements will be reversed.

reduced := this[::2,0:10:5]

a[k] Access to the kth element of a one-

dimensional array. If a is specified in

an expression, then this will return a

floating point scalar. Specification on

the left-hand side of an assignment

will cause only the kth element to be

updated. The right-hand side must

evaluate to a scalar numeric value.

Red := LUT[0:255,0:0];

Red[0] := 0;

a[k0:k1] Access to the one-dimensional sub-

array spanning from the k0th to the

k1th element of a one-dimensional

array. It does not matter if the array is

a column or a row.

Green := LUT[1:255,1:1];

Green[0:128] := 0.5;

a[k0:k1:sk] As with the above form, but access

elements at intervals of sk. Note that sk

can be negative if k1 < k0.

reverse := this[nx-1:0:-1]

a[] The entire array with all its

dimensions. This is equivalent to

a[:,:,:,:]. If on the right-hand side

of an expression, then it is simply

equivalent to specifying a. However,

if on the left-hand side, the array

elements are replaced by the right-

hand side, maintining the size and

shape of the array.

Assign to all elements of

array

this[] := 5;

Replace array with scalar

this := 5;

DigiFlow Interpreter basics

– 202 –

[v0,v1,…] When at the end of a variable name, a

[..] pair indicates array indices (or a

range of indices) used to access an

element (or range of elements) from

an array. However, if not at the end of

a variable name, then a [..] pair is

used to construct an array from the list

of numeric values it encloses. If the

data is all on the same line, or there is

only one data item per line, then a

one-dimensional array is constructed.

If there is more than one item per line

and more than one line, then a two-

dimensional array is constructed. For

more general input, refer to

read_data(..).

Dash := [2,2,4,2];

Additionally, it is possible to use an array containing integer values as an index into

another array. For example,
x := x_index(10);

y := [1 4 5];

x[y] := 0; # Zero some elements

z := x[y+1]; # Extract some elements

returns one-dimensional arrays in x and z. These contain [0 0 2 3 0 0 6 7 8 9] and [2 0

6], respectively. If the index array is two-dimensional, then it may be used to access multi-

dimensional source/target arrays. For example
x := x_index(10,10) + y_index(10,10)/10;

y := make_array(0,3,2);

y[0,:] := [5 2];

y[1,:] := [3 6];

y[2,:] := [9 4];

z := x[y];

gives z as [5.2 3.6 9.4]. An array index of this form always returns or absorbs a one-

dimensional array. Similar functionality may also be obtained using indirect(..),

sample_values(..) and scatter_to_array(..).

One-dimensional array indices can be used for each of the dimensions of the source/target

array to extract or assign over an ordered two-dimensional space. Moreover, one-dimensional

array indices may be used in conjunction with index spans or fixed index values. For example,
x := x_index(10,10) + y_index(10,10)/10;

i := [1 4 5];

z := x[i,2:3];

gives z as the two-dimensional array [[1.2 4.2 5.2][1.3 4.3 5.3]]. Although the above

example is used with an array index on the right-hand side, a similar arrangement can be used

for a combination of normal and array indices on the left-hand side of the assignment.

8.5 Lists

A list is similar to an array in that it contains multiple values which are accessed by

specifying different indices or ranges of indices. However, unlike an array, a list can contain a

mix of different data types. For example, a[0] might contain an integer, a[1] might contain a

string and a[2] might contain an array, a compound value or indeed another list.

All list variables are inherently two-dimensional, although in most cases only the first

dimension is used. Use of specific elements within a list, and assignment to specific elements

of a list may be performed in the same way as for regular arrays. As with arrays, an

DigiFlow Interpreter basics

– 203 –

assignment statement specifying specific list elements requires the list to exist already.

However, unlike arrays, computations cannot be performed simultaneously on the entire list,

although lists can be passed as arguments to functions, etc.

Lists are generated as the result of the return value of some dfc functions (they cannot be

the result of expressions other than a simple assignment). DigiFlow also includes a function

specifically designed to construct arrays: make_list(fill,nx,ny). As with make_array(..),

the list is initialised to the value specified in fill; this may be any data type, including a list.

The second, and optionally the third, parameter then specifies the dimension(s) of the list.

Some restrictions apply to list elements containing arrays, compound values or lists. In

particular, the list syntax does not allow direct access to components of such values, although

the list may contain an array, compound value or list in its entirety. For example
List := make_list(null,3);

cValue.string := "Valid example";

cValue.version := 1;

List[1] := cValue;

…

this := List[1];

message(this.string);

List[1].string := "Replacement string";

A := x_index(100);

List[2] := A;

B := List[2][10:20];

is valid, while
List := make_list(null,2);

List.version[1] := 1; # List is a list, not a compound value

message(List.string[1]); # List is a list, not a compound value

is not.

The rules governing indices for lists is the same as those for arrays, with the one difference

that lists are limited to two dimensions only. Thus, techniques such as array spans and index

arrays can be applied to lists.

8.6 Operators

A complete list of the operators understood by DigiFlow is given below, grouped in order

of the precedence (i.e. the order in which they are computed). For arrays, all operations are

computed element by element. Hence, two arrays multiplied together produce and array where

each element is the product of the two corresponding elements in the two source arrays (i.e.

not matrix multiplication).

Group Operator Description Examples

Association

 (…) Brackets. Terms within innermost

brackets computed first.

Unary

 – Negative. –a returns the negative of a.

Power

 ^ Exponentation. a^b raises a to the

power of b.

3^2
p^(1/2)

Term

 * Multiplication. a*b multiplies a by b. 3*2

2.1*sin(x*pi)

 / Division. a/b divides a by b. 1/2

exp(r/p)

DigiFlow Interpreter basics

– 204 –

 div Integer division.

a div b returns the integer part of a/b.

p div 16
f div (1 + g)

 mod Modulo division.

a mod b returns a – c where c is the

largest integer multiple of b less than or

equal to a.

q mod 10
(i+1) mod n

Sum

 + Addition. a+b adds a and b. Also used

to concatenate strings, memos or code

variables.

3 + p/2
log(1+x)

 – Subtraction. a–b subtracts b from a. 1.9 – p
pi*sin(x)–pi/2*cos(x)

 min Minimum. a min b returns the lesser of

a or b.

 max Maximum. a max b returns the greater of

a or b.

Group

 = Equality. a = b returns true (1) if a and b

are equal, or false (0) if unequal.

 <> Inequality. a <> b returns false (0) if a

and b are equal, or true (1) if unequal.

 > Greater than. a > b returns true (1) if a is

greater than b, or false (0) if a is less

than or equal to b.

 >= Greater than or equal to. a >= b returns

true (1) if a is greater than or equal to b,

or false (0) if a is less than b.

 < Less than. a < b returns true (1) if a is

less than b, or false (0) if a is greater

than or equal to b.

 <= Less than or equal to. a <= b returns true

(1) if a is less than or equal to b, or false

(0) if a is greater than b.

Logical

 and Logical and. a and b returns true (1) if

both a and b are true.

 Or Logical or. a or b returns true (1) if

either a or b are true.

 eor Exclusive or. a eor b returns true (1) if

only one of a and b is true.

 xor Identical to eor.

8.7 Constants

Constant Value Description
true 1 Logical true. In arithmetic operations, true takes the value of

unity.
false 0 Logical false. In arithmetic operations, false takes the value of

zero.
pi Approximately 3.141592653…

DigiFlow Interpreter basics

– 205 –

null no value Used to indicate that no value is specified. This may be tested

by the is_null(..) function. Some functions (e.g.

read_image(..)) return a null to indicate failure. Null values

cannot take part in any expression except as the parameter to

the is_null(..) function.
wait_for_ever 1 This constant is intended for use as a timeout parameter in some

of the thread and timing related functions (e.g.

kill_thread(..)). Specifying this value will cause the

corresponding function to wait for completion.
do_not_wait 0 This constant is intended for use as a timeout parameter in some

of the thread and timing related functions (e.g.

kill_thread(..)). Specifying this value will cause the

corresponding function to return immediately and not wait for

completion.

8.8 Execution control

Control Description Example
comment Comment. Ignore all text up to

the end of the line.

a := 3; # Initialse

if (condition) {code}; If statement. The code is

executed only if condition

returns a nonzero scalar value.

For array conditions, the

where(..) function should be

used.

if (Failed) {

 P := P^2;

};

if (condition) { code1

} else { code2 } ;

If statement with else clause. If

condition is a nonzero scalar

value, then code1 will be

executed, else if condition is a

zero scalar value, then code2

will be executed. For array

conditions, the where(..)

function should be used.

if (is_array(Image)) {

 view(hView,Image);

} else {

 close_view(hView);

};

if (condition1)

{ code1 }

elseif (condition2)

{ code2 }

elseif (condition3)

{ code3 }

…

else { coden } ;

Compound if statement. The

code associated with the first

condition evaluating to a

nonzero scalar will be executed.

If all conditions produce zero

values, then coden will be

executed (if specified). Note

that the else statement is

optional.

if (Result = 5) {

 OK := false;

} elseif (Result = 6) {

 Test := 8;

} else {

 Test := 9;

};

while (condition)

{code};

Execute the code repeatedly

while condition evaluates to a

nonzero value.

i := 0;

while (Image(i,10)< p) {

 i += 1;

};

DigiFlow Interpreter basics

– 206 –

for var := start to end

{code};

Execute code repeatedly with

var taking successive scalar

values from start to end,

incrementing by one on each

successive iteration.

for k:=0 to 255 {

 LUT(k,0) := k/255;

 LUT(k,1) := 1 -

k/255;

 LUT(k,2) := k/255;

};

for var := start to end

step incr {code};

Execute code repeatedly with

var taking successive scalar

values from start to end,

incrementing by incr on each

successive iteration. Note that

start, end and incr may be

either integer or floating point

values.

for i:=0 to 100 step 10 {

 sum += v[i,0];

};

for var := array

{code};

Execute code repeatedly with

var taking each element from

array in turn..

for this := val[:,3] {

 m := f*log(this);

};

for var := list {code}; Execute code repeatedly with

var taking each element from

list in turn..

for this := files[:] {

 det :=

read_image_details(this);

};

execute(code) Executes the code, string or

memo stored in a variable. This

includes compiled code (see

below).

Code := {A := B + 1;};

execute(Code);

string := "cos(A)";

q := execute(string);

try_execute(code) Similar to the execute(..)

statement, except that if the

code contains an error it does

not prevent the dfc code from

continuing to run. In particular,

try_execute(..) returns a

logical that indicates if the code

rand without error (true) or not

(false).

Code := {A := B +/ 1};

ret := try_execute(Code);

The return value (ret)

will be false since Code

contains an error

exit; Leave the current execution unit

(e.g. a function or for loop).

quit; Terminate the current code.

exit_digiflow(); Terminate DigiFlow with a zero

exit code.

exit_digiflow(exitCode

[,delay]);

Terminate DigiFlow with the

exit code exitCode. It is

normally necessary for there to

be a small delay between

issuing this command and

starting to terminate DigiFlow

to allow the current code

segment to complete. The

default delay is 2 seconds, but

may be changed with the

optional delay.

DigiFlow Interpreter basics

– 207 –

compile(code[,run]); Compiles code to an

intermediate level that provides

approximately a factor of two

improvement in performance

for loops containing simple

operations. The return value can

be run multiple times, or the

code may be executed directly

by specifying the optional run

parameter.

Note that the use of array

operations, rather than loops,

will almost always execute very

substantially faster.

Code := {for i:=0 to

x_size(P)-1 {P[i] /=

I;};};

Comp := compile(Code);

execute(Comp);

reverse_polish(code); Execute the specified code

using dfcRP, the DigiFlow

reverse polish interpreter. (The

example here is directly

equivalent to that used in the

compile(..) example. Note

that compile(..) can also be

used to improve the

performance of dfcRP code.

reverse_polish({0)P

x_size(1 – 1 \i {I] I

/= P[});

in_parallel(parallel) On multiprocessor systems,

determines whether DigiFlow

should try to execute parts of its

code in parallel (when possible)

to improve performance.

is_parallel() Indicates whether parallel

execution has been requested.

8.9 User-defined functions

The DigiFlow interpreter accepts user-defined functions. The syntax of the definition is

 function func(a,b,…) { statements… };

where func is the user-specified name of the function and a,b,… are the one or more formal

arguments. The statements to be executed when the function is invoked are enclosed by the

pair of braces.

By default, variables used within the function (including the formal arguments) are local to

the function. If you wish to read (or write to) a variable that exists in the parent context, the

name of the variable should be preceded by an exclamation mark (e.g. to access the variable p

from the parent context, use !p). Note that ! will provide access to variables in all ancestor

contexts of the function (i.e. the variable need not be in the immediate parent). Global

variables (e.g. pi) are always available for use in an expression and do not require the

ancestor access prefix; any attempt to write to a global variable will throw an error.

The return value is the result of the last statement executed. To return a specific value, this

need simply be the content of the last statement. Note that either simple variables (§8.2.1),

compound variables (§8.2.2) or lists (§8.5) may be returned.

DigiFlow Interpreter basics

– 208 –

By default, the return value of a function (the last value of the function computed) is copied

across before the local function variables are destroyed. This behaviour is not always optimal.

For example, with the function
function UnitArrays(nx,ny) {

 a.x := x_index(nx,ny)/(nx-1);

 a.y := y_index(nx,ny)/(ny-1);

 a;

};

a copy of the compound variable a has to be made. This requires time and increases the peak

memory requirements. As an alternative, the return value can be specified as @name, as in the

modified example
function FastUnitArrays(nx,ny) {

 a.x := x_index(nx,ny)/(nx-1);

 a.y := y_index(nx,ny)/(ny-1);

 @a;

};

In this case the contents of the variable a is taken over by the return value of the function,

improving performance. Note, however, that the syntax @name will not work if the return

value is itself an expression, a number or a string.

The return value of a function need not be used by the calling code. Invoking a function

without an assignment statement simply executes the function and discards any value

returned.

In the function declaration it is possible to specify default values for the formal arguments,

thus making their specification optional in the call to a function. For example, in
function RescaleImage(im,Scale:=1,Black:=0) {

 Scale*(im-Black);

};

The im parameter is mandatory, while both Scale and Black are optional. If Scale is not

specified, then it takes the value 1. Similarly, if Black is not specified, the value defaults to 0.

The function may then be called in one of the following ways:
Q := RescaleImage(P);

Q := RescaleImage(P,2);

Q := RescaleImage(P,Scale:=2);

Q := RescaleImage(P,2,0.03);

Q := RescaleImage(P,Scale:=2,Black:=0.03);

Q := RescaleImage(P,Black:=0.03);

When a parameter is not specified, the default value is that given by the corresponding

assignment statement within the parameter list in the function declaration. Thus the above

function calls are equivalent to
Q := RescaleImage(P,1,0);

Q := RescaleImage(P,2,0);

Q := RescaleImage(P,Scale:=2,0);

Q := RescaleImage(P,2,0.03);

Q := RescaleImage(P,Scale:=2,Black:=0.03);

Q := RescaleImage(P,1,Black:=0.03);

In most circumstances, the last of these in its original form, i.e.
Q := RescaleImage(P,Black:=0.03);

should be avoided: you should only exclude parameters from the end of the list. As an

alternative, a null could be specified for Scale, with the declared function resolving the

appropriate default in that case. In particular,
function RescaleImage(im,Scale:=1,Black:=0) {

 if (is_null(Scale)) then {Scale := 1};

 Scale*(im-Black);

};

then allowing a call of the form
Q := RescaleImage(P,null,Black:=0.03);

DigiFlow Interpreter basics

– 209 –

By default, variables, constants and expressions are passed to functions by value. This

means that the formal parameter is treated as a local variable within the function and any

changes you may make to it are not reflected in the value of the actual parameter in the code

calling the function. In this model, the only way of returning information to the calling code is

through the return value.

DigiFlow also supports a mechanism for passing arrays and compound variables by

reference. Although problems can arise using this mechanism, it can greatly improve the

efficiency of functions by reducing the amount of copying the interpreter must do.

To invoke passing a variable by reference, the names of the formal arguments must be

prefaced by an @ character in the formal parameter list. For example, the code segment
function Try(@test) {

 test[1] := 2;

};

This := [0 0];

Try(This);

completes with This equal to [0 2].

While this can speed up execution, especially if passing large arrays, the precise behaviour

is complex. It is therefore recommended that you obey the following guidelines when using an

@name:

 If @name refers to an array or list, it should only appear on the right-hand side of an

assignment statement, although array elements or subarrays can be on the left-hand side

of an assignment (as in the above example). Thus
function Assign(@array) {

array := 0;

};

is not acceptable whereas
function Assign(@array) {

array[:] := 0;

};

will behave predictably.

 If @name refers to a simple scalar (integer, floating point or string), it will always be

passed by value.

 If @name refers to a compound variable, it may appear on either the left- or right-hand

side of an assignment statement. If it appears on the left-hand side, then the assignment

must be to only one of the component variables. In this case, the modified component

will be passed back to the calling routine.

As the components of compound variables may be of any type without affecting the above

guidelines, it is recommended that compound variables be used to improve execution speed

where appropriate. In general, however, it is better to write pure functions that only return

information via their return value. This return value, of course, may be any type of value, thus

allowing full flexibility.

As with other DigiFlow functions, user-defined functions may be used with or without

keywords.

8.10 User input and ouput

The interpreter supports a variety of functions for interacting with the user during

execution. These include the input functions ask_string(..), ask_list(..),

ask_integer(..), ask_real(..), ask_yesno(..), ask_image(..), ask_file(..),

DigiFlow Interpreter basics

– 210 –

ask_directory(..) and ask_printer(..). These functions are all modal (i.e., they take the

focus away from the rest of DigiFlow and you will not be able to do anything else until you

have closed the associated dialog). However, most also have modeless equivalents that allow

you to continue working on other things before dealing with the dialog. In particular,

ask_yesno_modeless(..), ask_integer_modeless(..), ask_real_modeless(..),

ask_string_modeless(..), ask_list_modeless(..), ask_image_modeless(..),

ask_file_modeless(..), ask_directory_modeless(..), and message_modeless(..).

Alongside these are the mouse input functions get_mouse_click(..),

get_mouse_line(..), get_mouse_rect(..), and get_mouse_box(..) with

get_mouse_position(..) detailing the current location of the mouse. (The functions

mouse_get_mode(..) and mouse_set_mode(..) can be used to determine or set whether the

mouse is acting normally, scrolling/panning, measuring, etc.) At a more basic level,

get_key(..) can be used to determine the state of a key on the keyboard.

User output is provided through message(..), beep(..) and status_bar_message(..).

A different approach to user input and output is through opening a console. This can be

opened with open_console(..). Input and output via the console can then be achieved using

read_console(..) and write_console(..). When finished, the console may be closed

using close_console(..). Note that the functions open_file(..), write_file(..) and

close_file(..) may also be used with a console.

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow. See also §9.7 on file handling.

8.11 Input of code from files

In many cases it is desirable to be able to store interpreter code in a file for later use.

DigiFlow supports the use of such code through the include(s) command. Here, s represents

a string variable or string constant specifying the file name. Upon execution, include(s) is

replaced by the contents of the file named by s. This file may contain one or more statements,

function definitions, etc., and may be called either as a statement (with no return value), or as

a function within an expression. Note that, unlike a normal user-defined function, variables

used and declared within the file have the same scope as though they were included explicitly

within the parent code. In this way the include(s) statement is similar to (but more flexible

than) the ‘include’ directive used in many programming languages.

If the string s does not specify a file extension, then .dfc will be assumed. Moreover, if the

file is not found in the current working directory, the dfc search path (see get_dfc_path(..)

and set_dfc_path(..)) will be used. If the file is still not found, then the DigiFlow program

directory will be tried.

To improve execution speed, the file specified by include(s) is read in only once within a

given process, and stored for any subsequent use. This behaviour reduces the need to define

functions in static code expressions to handle dynamic data streams.

The function get_file_variables(..) will execute the dfc code in a file in a similar way

to include(..), but will return all the variables created in executing as a compound variable.

The file specified in calling this function is executed as though embedded in a user defined

function (i.e. it will need to make use of the ! global specifier to access variables from the

calling context).

If you wish to include and execute code that might fail or might contain errors, then

try_include(..) will include and execute the code, but return a logical variable that

indicates if the code ran successfully (true) or failed (false).

DigiFlow Interpreter basics

– 211 –

8.12 Debugging

DigiFlow provides a number of useful debugging tools for identifying problems in user-

supplied code. These tools include retrospective error handling, output messages, and

interrogation of the variables defined at a given time.

8.12.1 Error handling
Inevitably there will be times when user dfc code encounters a problem. Although it may

not always succeed, DigiFlow will attempt to identify this problem and terminate the process

in a clean manner. In doing so, it will produce the diagnostic dialog shown in figure 143.

Figure 143: The dfc error diagnostics dialog.

The basic error message is displayed in the two top edit boxes of the dialog, while the code

causing the problem is displayed in the Code box. The particular statement at fault (or one

very close to it) is left highlighted in this box.

The Variables list gives information about all the variables defined at the time of the error

occurring. The type contents of each variable are given in the Kind and Value boxes,

respectively. For arrays and drawings, the View button may be used to give a graphical

representation. If you require more detailed access to the variables, click the Variables button

at the bottom of the dialog. This will start up the View Variables dialog (see §8.12.2). Finally,

the Functions box lists any user-defined functions in the current context.

DigiFlow Interpreter basics

– 212 –

8.12.2 View variables
When debugging code it is often useful to interrogate the contents of all variables at a given

point in the calculation. This may be achieved by a call to the view_variables(..) function.

Calling this function from within a dfc code segment will produce the dialog shown in figure

144.

Figure 144: The view_variables(..) dialog.

Selecting a variable from the Variable list will display its contents in the Value box. If the

variable is a compound variable, then the names of its components will be displayed in the

Sub variable list. Selecting a name from the Sub variable list will refine the Value displayed.

Similarly, if the selected Sub variable is itself a compound variable, the components will be

displayed in the Sub sub variable list.

If the variable selected is an array or a drawing object, then a graphical representation of it

will be displayed in the View box. To obtain a larger version, click on the View button. For an

array, the scaling of the image is controlled using Auto scale in conjunction with Black and

White. The View button will produce an enlarged version of the image in its own window,

whilst , and zoom in, zoom out and change the colour scheme, respectively.

Note that variables beginning with a dollar ($) symbol are system variables and are not

available for direct use by the user. In the example shown in figure 144 these system variables

contain the root copy of the drawing identified by the user variable hDraw.

The view_variables(..) function has one optional logical parameter: if true (the

default), then the dialog will be displayed. If false, then the dialog will not be displayed.

DigiFlow Interpreter basics

– 213 –

Related to this is the return value of the function: true if Close is clicked, or false if Not

Again is pressed. This provides a convenient method of switching off the

view_variables(..) output, as illustrated in the following code segment:
debug := true;

for i:=0 to 100 {

 ### Statements

 debug := view_variables(debug);

};

Here, the variable debug is initially set to true, thus enabling view_variables(..). This

state will continue until Not Again is clicked, effectively setting debug to false. Of course, it

is possible for the code to subsequently set debug back to true and thus turn the viewing of

variables on again.

8.12.3 Messages
The most basic approach to debugging is to write out information to the user/developer as

execution of code proceeds. DigiFlow provides two main mechanisms for this: the

message(..) function, and writing out to a console. While the message(..) function

provides the simplest route, it can be annoying to the user to have to respond to each and

every message produced from within a loop. In contrast, by using the open_console(..) and

write_console(..) functions (or the equivalent open_file(..) and write_file(..)

implementations) a continuous stream of data will be written to a console window. For

example, the code
hFile := open_file();

x := make_array(0,128);

x := x_index(x);

for k:=0 to x_size(x)-1 {

 write_file(hFile,"Now at",k,x[k]);

};

produces the console window shown in figure 145.

Figure 145: Example of output to console window.

For short messages, it may prove convenient to write them to the status bar with

status_bar_message(..). This technique can work well for something running in the

background, but it can be confusing if more than one macro is trying to do the same thing!

DigiFlow Interpreter basics

– 214 –

Another option, which has some advantages but tends to be a bit more cumbersome, is to

write text either to the window (view) title using view_title(..), or to write the text to its

own view window. Both these possibilities are illustrated in the following code:
hV := new_view(256,64);

view_title(hV,"View to contain text messages");

view(hV,"This is an example of text to a view.");

The output produced by this is shown in figure 146. Note that unlike the console, a second

view(..) statement specifying text replaces the original text rather than appending it to the

view.

Figure 146: Example of text written to a view.

8.12.4 Queries
The ability to determine the intermediate results within a statement without affecting the

result of that statement may sometimes be useful while debugging. DigiFlow supports this

through the query operator ?. This operator has no effect on the sequence of execution, but

simply causes the result of the statement or sub-statement immediately following it to be

displayed in some manner. The following illustrates by way of example the effect of the query

operator.

Example Result
?5 + 3 5
?(5 + 3) 8
?a := 5 + 3; 8
sqrt(?16) 16
?sqrt(16) 4
?img[0,0] The contents of the first element of the array.
?img The whole of the img array.

By default, query operators are ignored in standard interpreter contexts. That is, they have

no effect on the code and produce no output. To turn on the output, simply call

allow_query(). In the standard context, this will then generate a message box for each query

as it is processed. Query output may be turned off again by allow_query(false). When

running in the dfcConsole (see §8.12.7), the output of queries is written to a dedicated

window.

8.12.5 Break points
Another valuable debugging tool in DigiFlow is the provision of break points which allow

monitoring of code execution without otherwise affecting that execution. A break point is

specified by the ampersand character &, and may inserted into any point in the code. The

interpreter’s response to the break point depends on the environment in which DigiFlow is

running.

In a standard interpreter context, breaks will have no effect unless first enabled by a call to

allow_break(..). If called in a standard interpreter context, then will invoke the

view_variables(..) function. Clicking Not Again to exit view_variables(..) will

suppress the action of further break points unless another call to allow_break(..) is made.

DigiFlow Interpreter basics

– 215 –

If called in the dfcConsole, then execution will stop and the view_variables(..)

functionality is again available. The execution or otherwise of breaks is controlled by a check

box.

8.12.6 Tracing execution
Sometimes, the best way of locating a bug is to keep track of exactly where execution is

taking place in the code. The function trace(..) turns on a facility to do this. Tracing can be

provided either to a specified file, or to a console window (which is opened automatically).

The trace will write to the file (or console window) each statement as it is executed. This

logging continues for the period of time specified in the call to trace(..) (the default is 10

s). Note, however, that trace(..) is only available for dfc code executed through the

dfcConsole.

8.12.7 dfcConsole
The dfcConsole, described in §5.2.10, provides a powerful interactive tool for both editing

and debugging dfc code.

DigiFlow Interpreter basics

– 216 –

Figure 147: The dfcConsole for writing and debugging dfc code.

This resizable window contains an edit control allowing interactive editing of the dfc code

to be run, alongside a series of controls allowing control over the execution environment and

providing timely information.

The Execute group may be used to selectively execute code. If there is no text selected,

then Line(s) will execute the current line. If there is an active selection, then Selection will

execute the selected code, and Line(s) will execute not only the selected text, but all the lines

on which some text is selected. Regardless of the selection, All will cause the entire code to be

executed. Note that <alt><enter> is equivalent to clicking Line(s).

All the control buttons are disabled while the code is executing with the exception of Stop

in the Execute group. Clicking the stop button will abort the currently executing code,

while the pause button will temporarily suspend execution. Checking Breaks (&) causes

DigiFlow Interpreter basics

– 217 –

break points, indicated by an ampersand in the code (see §8.12.5) to be executed as and when

they aroe found by the interpreter. If cleared, then the break points are ignored. Note that the

status of the Breaks (&) dialog may be changed by the user as the dfc program runs.

The Interpreter group controls the internal state of the DigiFlow interpreter. Reset will

clear all variables and functions from the interpreter, while View displays the variables and

objects defined within the interpreter using the view_variables(..) interface. If an error

occurs, then Last Error will redisplay the last error message.

The Code group controls the action of the edit control containing the code.

For further details, refer to §5.2.10.

DigiFlow Functions

– 218 –

9 Functions

This section describes the more advanced functions available within DigiFlow. Like the

functions described in §8.9, these functions can be called with or without key words. For

example,

view(hPic,Image,0.0,1.0);

will display on the window identified by hPic the array Image, taking a value 0.0 to represent

“black” and 1.0 to represent “white”. The same command may be written more clearly as

view(hView:=hPic,array:=Image,black:=0.0,white:=1.0);

or with its arguments in a different order as

view(array:=Image, hView:=hPic,white:=1.0,black:=0.0);

Note, however, that the third of these options (i.e. the arguments not in their natural order) can

incur a significant computational overhead, and is therefore discouraged except in

circumstances where the reordering improves readability.

Similarly, many of the functions can accept arguments with a range of different types, and

may have optional arguments. For example,

view(hView:=hPic,array:=Image);

will have the same effect as the earlier example, except that the black and white levels are not

specified by the user (the default values are in fact 0.0 and 1.0, respectively). In contrast,

view(hView:=hPic,hDraw:=myDrawing);

will view a drawing previously created by the drawing routines described in §11. DigiFlow

determines the action to be taken by the type of data it is provided with, hence

view(hPic,Image);

and

view(hPic,myDrawing);

would perform the same action as their counterparts with key words. Using the key words,

however, improves the clarity of the resulting dfc file by underlining the role played by each

of the arguments.

DigiFlow has a vast array of predefined functions. Full details of all of these are available

via the interactive help system found under Help: dfc Functions… and at the button of

dialogs that make use of dfc code.

The following subsections give an overview of the functions available, but do not provide a

complete list. In all cases the name of the function is self-explanatory, although of course the

parameters and return value may need some explanation.

DigiFlow functions may be used with or without key words. If key words are given, then

the order of the arguments does not matter. However, if keywords are not given, the

arguments must be in the order stated here. For example,

This := where(Image>0.5,1.0,0.0);

will set This to an array of zeroes and ones, depending on whether the array Image is greater

than or less than 0.5. The same command may be written as

This := where(mask:=(Image>0.5),vTrue:=1.0,vFalse:=0.0);

or with its arguments in a different order as

This := where(vFalse:=0.0,vTrue:=1.0,mask:=(Image>0.5));

DigiFlow Functions

– 219 –

Note, however, that the third of these options (i.e. the arguments not in their natural order) can

incur a significant computational overhead, and is therefore discouraged except in

circumstances where the reordering improves readability.

A complete list of all functions known to DigiFlow at time of writing is given in §9.32.

9.1 Basic mathematical functions

DigiFlow supports a full range of basic mathematical functions. Some of these have more

than one variant. For example, sin(..) returns the sine of an angle specified in degrees,

while sin_rad(..) expects the angle to be in radians. Similarly for cos(..), tan(..), and

their inverses asin(..), acos(..) and atan(..). These are in turn supported by

degrees_from_radians(..) and radians_from_degrees(..).

Both natural and base ten logarithms are supported through ln(..) and log(..),

respectively, with the former’s inverse exp(..).

Other basic functions include abs(..), sign(..), sqrt(..), int(..), real(..) and

not(..).

Additional transcendental functions include bessel(..), erf(..) and erfc(..).

round(..), floor(..)

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

9.2 String functions

The string functions bear some resemblance to those found in some dialects of Basic. The

list of possible functions include upper_case(..), lower_case(..), length(..),

search_string(..), left_string(..), right_string(..) and mid_string(..).The

maximum length of a standard string is given by max_string_length(..); the functions

noted here can be applied to memos when longer strings are required.

Other string manipulation functions include remove_spaces(..) and

scrunch_string(..) for creating shorter strings with undesirable characters removed, while

replace_hashes(..) allows hash characters ("#") in a string to be replaced by a number

(useful when constructing file and directory names). Values complying to dfc syntax may be

retrieved from a string using read_this(..), or dfc code in a string may be executed with

execute(..) or try_execute(..).

The command line used to start DigiFlow is available through

command_line_arguments(..).

There are also a set of more specialist string functions for converting numeric data to

strings. The simplest of these is make_string(..), which provides Fortran-like control of the

string formatting, while remove_trailing_zeros(..) can help clean up a string.. More

specialist functions include fit_as_text(..), which converts the result of a least squares fit

into a LaTeX-compatible attractive text string, and nice_number_string(..) that creates a

LaTeX-compatible attractive version of a number.

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

9.3 Array functions

To supplement standard array access using syntax of the form var[i0:i1:is], and the

constructor (make_array(..), make_like(..)) and conditional (where(..)) functions,

DigiFlow provides other methods of accessing arrays such as extract(..), indirect(..),

sample_values(..) and look_up_table(..). Creating an array containing a row or column

repeated is achieved through x_replicate(..) and y_replicate(..). Specialist array

DigiFlow Functions

– 220 –

constructors include x_index(..), y_index(..), z_index(..), t_index(..),

identity_matrix(..), random_array(..) and gaussian_array(..).

Matrix support is provided through the likes of transpose(..), matrix_multiply(..),

least_squares(..), eigen_system(..), eigen_values(..), solve_linear(..),

solve_svd(..) and singular_value_decomposition(..). Other basic manipulation

functions include roll(..), flip_horizontal(..), flip_vertical(..),

rotate_clockwise(..) and rotate_anticlockwise(..).

In addition to the standard arithmetic operators (that function on and between arrays in the

obvious way), there are a special set of functions that provide the possibility of combining

arrays of different dimensions. The cropped_ set of functions (cropped_add(..),

cropped_sub(..), cropped_sub_reversed(..), cropped_mul(..), cropped_div(..),

cropped_div_reversed(..), cropped_power(..), cropped_power_reversed(..) and

cropped_assign(..)) perform the indicated operation only on the portion of the arrays that

overlap/intersect. Simlarly, the wrapped_ set of functions (wrapped_add(..),

wrapped_sub(..), wrapped_sub_reversed(..), wrapped_mul(..), wrapped_div(..),

wrapped_div_reversed(..), wrapped_power(..), wrapped_power_reversed(..),

wrapped_assign(..) and wrapped_extract(..)) perform the indicated operation by

wrapping the larger array around the smaller array.

Other array-specific functions include sort_array(..), which is an array-specific version

of sort(..)

9.4 Type manipulation functions

This group of functions has the ability to manipulate the types and sizes of values.

The make_array(..) and make_like(..) functions are particularly valuable for

constructing and reshaping arrays, with make_list(..) playing the same role for lists. The

where(..) function provides a convenient method of conditionally accepting values (a little

like an if statement for arrays), while make_string(..) provides a way of converting

numeric data to a string using a particular format. At a more primitive level, char(..) and

ascii(..) work on a single character basis. A read_data(..) statement in conjunction with

an end_data statement provides a convenient method of entering arrays of data in-line in

place of the normal [value0, value1, …] syntax. (A related approach is used for the drawing

functions draw_begin_lineto(..), draw_begin_mark(..) and draw_begin_vector(..)).

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

9.5 Information functions

This group of functions returns structural information about the value containing in a

variable or expression. These include the type tests is_integer(..), is_real(..),

is_numeric(..), is_string(..), is_array(..), is_list(..), is_compound(..),

is_code(..),is_memo(..) and is_null(..). Other special information functions include

is_drawing(..), is_view(..), is_live_view(..) and is_running(..) to determine

information out specific objects. The function exists(..) determines whether a variable of a

specified name exists, while the functions x_size(..), y_size(..), z_size(..) and

n_size(..) return size information on an array. For compound variables,

n_components(..) returns the number of subvariables contained.

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

DigiFlow Functions

– 221 –

9.6 Variable functions

In addition to being able to manipulate variables through the assignment statement,

DigiFlow provides set_variable(..), get_variable(..) and get_component(..) to

create or retrieve variable values based on string arguments. While the first two of these work

directly on the dfc interpreter’s current context, the third recovers information from a

compound variable. The function component_names(..) can be used to recover a list of

names of components in a compound value, while exists(..) can be used to determine if a

given variable exists. (Note: exists(..) should not be used in code to be compiled with

compile(..).) The functions set_global(..) and get_global(..) manipulate the global

(root) interpreter context, and should be used only with great care, as should the functions

set_configuration(..) and get_configuration(..).

The functions get_user_variables(..), get_local_variables(..) and

get_file_variables(..) can provide a snapshot (as a compound value) of the current state

of variables in the interpreter, while list_local_variables(..),

list_user_variables(..), list_global_variables(..), list_system_variables(..)

and list_components(..) recover the names of all the relevant variables.

9.7 File handling

DigiFlow provides a variety of standard file functions for handling input and output from a

dfc file. As is common with many languages, a file handle is provided by opening the file, and

this handle must be used for all subsequent access to the file. The file will be closed either

when the close_file(..) command is executed or the file becomes out of scope. A file

becomes out of scope when the execution unit it was opened in is terminated. For example, a

file opened within a function will be closed automatically when that function terminates.

Files are opened by open_file(..). A console window may be opened either with

open_file(..) or with open_console(..). The handle returned by open_file(..) is then

passed to the other file manipulation functions write_file(..), write_array(..),

read_file(..), read_line(..), read_array(..), flush_file(..) and close_file(..)

(for a console, write_console(..), read_console(..) and close_console(..) may be

used instead).

Information about files may be obtained with file_details(..), is_file_local(..)

and computer_for_file(..), while files may be copied using copy_file(..) or

copy_file_wait(..), moved with move_file(..), and deleted using delete_file(..).

The current directory may be determined with current_directory(..), and changed by

change_directory(..), while new directories are created with create_directory(..) or

removed by destroy_directory(..). Note that DigiFlow retains a current directory

separately for each dfc code being run, as well as a separate current directory for the main

DigiFlow process. The DigiFlow directory structure may be probed using

start_directory(..) and digiflow_directory(..) with the variants

start_directory_url(..) and digiflow_directory_url(..) providing an alternative

view of the path for networked drives. The name of the DigiFlow executable itself can be

determined from digiflow_executable(..).

One of the simplest ways of reading data from a file is with read_array(..), although the

functions read_into_array(..) and read_table(..) provide an alternative when only

partial data exist (read_into_array(..)) or the data is of mixed types (read_table(..)).

Support for binary files is provided through open_binary_file(..), read_binary(..),

write_binary(..), set_file_pointer(..) and set_file_end(..). A binary file may be

closed using close_file(..) as normal.

DigiFlow Functions

– 222 –

Support for files already in the file system includes copy_file(..),

copy_file_wait(..), move_file(..) and delete_file(..). Information about a file is

obtained with file_details(..), while list_files(..) provides access to the contents of

directories, with greater detail available through list_file_details(..). Unless an

absolute path specification is given, the last two functions search relative to the current path

for the dfc macro (see change_directory(..)). The same can be achieved relative to the

global DigiFlow path using list_files_global(..) and list_file_details_global(..)

instead.

The function wait_for_file(..) provides an efficient way to wait until a specific file

exists.

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

9.8 Reading and writing images

In addition to accessing images through the built-in menu options, DigiFlow command

files may read and write images directly. Note that this mechanism bypasses the normal file

handling outlined in §9.2.

Functions that support the reading of images include read_image(..),

read_image_when_ready(..), read_image_from_view(..) and

read_image_details(..). In some circumstances, asynchronous reading of images can

substantially speed up the processing. This can be achieved by using

read_image_queue_create(..) to set up the queue, read_image_queue(..) to recover the

next image from the queue, and read_image_queue_destroy(..) to close the queue.

The function get_process_details(..) recovers what is known about how an image

was created in a form compatible with the process and dialog commands.

Conversely, the saving of images is achieved through write_image(..) and

save_view(..). For a full colour image, write_rgb_image(..) provides a simplified

interface. Rather than the direct write provided by write_image(..), images can be queued

for asynchronous writing using write_image_queue(..) and

write_rgb_image_queue(..). An indication of the number of images currently queued is

obtained with n_waiting_write_image(..) and the wait function

wait_for_write_image_queue_empty(..).

Custom image readers may be constructed using dfc code and installed in DigiFlow using

add_image_reader_macro(..).

MetaFile support is provided through draw_on_emf(..) as well as the standard

write_image(..).

Printer support is provided through ask_printer(..), print_view(..) and

print_view_dialog(..) while Encapsulated PostScript generation support includes

export_to_eps(..) and export_to_simple_eps(..).

Turning on and off the reading and writing of DigiFlow image archives (.dfa files) is

controlled by read_image_archive(..) and write_image_archive(..).

Some image formats support additional functionality, such as jpeg_get_comments(..).

The function add_movie_reader(..) provides the ability the add additional movie formats

to DigiFlow.

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

DigiFlow Functions

– 223 –

9.9 Windows and views

The image processing and plotting features of the DigiFlow interpreter are enhanced by its

ability to handle windows. In the terminology used in DigiFlow, a window containing an

image or other graphical object is referred to as a view.

Basic handling of views is achieved through new_view(..) and close_view(..). Once

created by new_view(..), the handle returned by this function is used to identify the view to

be operated on. The function view(..) has a large number of variants for displaying a diverse

range of data in an existing view, while view_rotated(..) adds to it the possibility of

rotating the display. Alternatively, images may be loaded directly into a new view using

open_image(..) or open_image_when_ready(..). When a view contains a selector

specifying multiple images, animate_view(..) may be used to control the replaying of the

sequence.

Views with slightly different characteristics may also be created using

new_view_clean(..) and new_view_floating(..), while the connection and

disconnection of a window to an execution thread can be controlled through

view_connect_thread(..) and view_disconnect_thread(..), respectively.

Icons may be superimposed on a view and manipulated with view_icon(..) and

move_icon(..).

The currently active view may be identified using get_active_view(..), and its contents

retrieved as an image using get_view_as_image(..). Information about the type of view can

be recovered with get_view_class(..), while information about a view-specific coordinate

system can be read or set using view_get_coord_system(..) and

view_set_coord_system(..).

Associated data for a view may be set with view_title(..) and view_time(..), while

the size and arrangement of views may be controlled using view_zoom(..),

view_zoom_all(..), view_zoom_to_fit(..), view_zoom_all_to_fit(..),

view_fit_to_zoom(..), view_fit_all_to_zoom(..), tile_views(..),

cascade_views(..), maximise_view(..), minimise_view(..) and restore_view(..).

The function close_all_views(..) can be used to close all views (or all views not currently

involved in a process), and view_get_time(..) can recover timing information set either by

view_time(..) or as part of a DigiFlow process.

The appearance of a view may be controlled through view_colour(..), with the

associated colour schemes manipulated using colour_scheme(..),

colour_scheme_from_image(..), add_colour_scheme(..) and

delete_colour_scheme(..). A false colour scheme may be toggled to greyscale using

view_toggle_colour(..). Other functions affecting the appearance in a view of a vector

field include view_vector_colour(..), view_vector_scale(..),

view_vector_spacing(..), view_scalar_colour(..) and view_scalar_range(..).

Specialised slave views are created and controlled using slave_view_3d(..), while plots

may be rendered in 3d using view_3d(..), render_3d(..), view_points_3d(..) or

render_points_3d(..).

Details from a view may be sent to a printer of PostScript file through print_view(..),

print_view_dialog(..) and export_to_eps(..).

Arrangement of the main DigiFlow window is achieved through

maximise_digiflow(..), minimise_digiflow(..) and restore_digiflow(..).

Icon-like images may be placed on, moved around and deleted from views using

view_icon(..), move_icon(..) and remove_icon(..), while view_counter(..) returns a

value that indicates if the contents of the view has changed.

DigiFlow Functions

– 224 –

For a more complete list, and further details on these functions, refer to the .dfc function

help facility within DigiFlow.

9.10 Timing functions

This group of functions returns timing information. The group includes time(..),

date(..) and process_time(..). Functions for generating delays include

start_timer(..), wait_for_timer(..) and sleep_for(..). For high-precision timing,

use time_interval(..).

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

9.11 Statistical functions

This group of functions returns statistical information. Most of these functions have three

variants: one that returns scalar statistics for the entire array, one that returns an array of

statistics collected along the x direction, and a third that returns an array of statistics collected

in the y direction. Examples of entire-array statistics include count(..), sum(..), mean(..),

rms(..), max_value(..), min_value(..). The corresponding x direction statistic functions

are x_count(..), x_sum(..), x_mean(..), x_rms(..), x_max_value(..),

x_min_value(..) and the y direction statistic functions are y_count(..), y_sum(..),

y_mean(..), y_rms(..), y_max_value(..), y_min_value(..). A subset of the radial

(r_count(..), r_mean(..), r_sum(..)) and azimuthal (theta_mean(..)) equivalents are

also provided.

The moment functions x_moment(..), y_moment(..), x_centroid(..) and

y_centroid(..) all return arrays of data. The location functions max_index_x(..),

max_index_y(..), min_index_x(..) and min_index_y apply to the entire array, while

x_max_index(..), y_max_index(..), x_min_index(..) and y_min_index(..) return

arrays. In a similar vein, the function where_is(..) determines the indices where a particular

condition is satisfied.

Random number support is available through both scalar random_number(..) and array

random_array(..) entry points, while randomise(..) will reorder an array or list, and

gaussian_array(..) provides normally distributed random numbers.

The histogram(..) function allows binning of information, while sample_values(..)

provides an efficient mechanism for extracting data from predetermined locations in an array.

The functions x_accumulate(..) and y_accumulate(..) accumulate the contents of arrays,

effectively integrating them in one direction from one edge.

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

9.12 Image processing functions

Image processing functions allow basic manipulations of array values in a manner that is of

use for image processing operations. The functions transpose(..), flip_horizontal(..),

flip_vertical(..), rotate_clockwise(..) and rotate_anticlockwise(..) can be

used to re-orient an image, while rotate_image(..) allows for more general rotations.

Images may be translated using shift(..) or shift_interpolated(..), and their

resolution changed using rescale_image(..) or the more sophisticated weighted

interpolate_image(..).

Basic filter operations include filter_low_pass(..), filter_convolution(..),

filter_min(..), filter_max(..), filter_median(..), filter_centile(..),

DigiFlow Functions

– 225 –

filter_std_dev(..) and filter_geometric(..). These may be extended further using the

Fast Fourier Transform function fft_2d(..) and its inverse inverse_fft_2d(..).

The basic filters assume the edges of the image are independent. However, sometimes it is

more appropriate to consider the image as one period of a periodic array. Support for this view

is provided through filter_periodic_centile(..),

filter_periodic_convolution(..), filter_periodic_geometric(..),

filter_periodic_low_pass(..), filter_periodic_max(..),

filter_periodic_median(..), filter_periodic_min(..) and

filter_periodic_std_dev(..).

Variants on filter_min(..) and filter_max(..), that exclude the pixel itself, are

available through filter_min_neighbours(..) and filter_max_neighbours(..). These

can be particularly valuable for identifying turning points in an image.

Further information about the structure of an image is available via contouring with

contour_image(..), find_contour_start(..), pixel_contour(..) and

smooth_contour(..). A contour may be resampled with resample_curve(..). A related

function, find_edge(..), uses gradient information to identify the edge of a region.

Alongside these, find_blobs(..) can determine the properties of islands satisfying an

intensity threshold, and fill_blobs(..) and fill_blob_list(..) can flood-fill such

entities. The function fractal_box_count(..) provides access to the Kolmogorov capacity,

while the related fractal_box_count_digimage(..) provides a similar function that makes

the calculation in the same way as DigImage.

Transitions within an array may be found conveniently with x_transition_index(..) or

y_transition_index(..).

Colour space manipulation is available through rgb_from_bayer(..),

bayer_from_rgb(..), hsi_from_rgb(..), hue_from_rgb(..),

saturation_from_rgb(..), intensity_from_rgb(..), grey_from_rgb(..),

red_from_rgb(..), green_from_rgb(..), blue_from_rgb(..), cyan_from_rgb(..),

magenta_from_rgb(..), yellow_from_rgb(..), cmy_from_rgb(..), cmyk_from_rgb(..)

and rgb_from_hsi(..).

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

9.13 Flow functions

The purpose of these functions is to help with the post-processing of fluid flows. These

include stream_line(..) and follow_optical_flow(..).

9.14 Coordinate functions

These functions provide access to the coordinate system mechanism within DigiFlow.

At the simplest level x_index(..) and y_index(..) provide a convenient method of

generating arrays containing pixel indices, while x_index_world(..) and

y_index_world(..) do the equivalent with world coordinates. The more general functions

world_coordinate(..) and pixel_coordinate(..) may be used to convert between

coordinate systems.

Coordinate systems may be created with coord_system_create(..) in conjunction with

coord_system_add_point(..) and coord_system_mapping(..). The default coordinate

system may be set using coord_system_set_default(..), and a coordinate sytem can be

removed with coord_system_destroy(..). The available coordinate systems may be

determined with coord_system_list(..) while information about an individual coordinate

system can be obtained with coord_system_destroy(..),

DigiFlow Functions

– 226 –

coord_system_get_mapping(..), coord_system_get_points(..) and

coord_system_units(..).

Once created, a coordinate system can be modified, thus creating a new coordinate system

using coord_system_apply_region(..),coord_system_translate(..) and

coord_system_translate_pixel(..).

The definition of a coordinate system can also be written to a dfc file with

coord_system_save(..).

In some cases, it can be desirable to create a mapping from pixel to world coordinate

systems. The functions coord_system_create_mapping_array(..) and

coord_system_transform_array(..) support this. The specialist function

stereo_velocity_to_3d(..) provides support for stereo PIV calculations.

View-specific coordinate information can be read or set through

view_get_coord_system(..) and view_set_coord_system(..).

Alongside the coordinate system creation is the ability to create regions for use in the Sift

facility using region_create(..) and match_intensity_create(..). The regions already

defined can be determined with region_list(..) and the details of an individual region are

retrieved using get_region(..). Regions may be removed from the list with

region_destroy(..).

9.15 Bit-wise operations

It can be useful sometimes to operate on the individual bits of integers as binary numbers.

This functionality is provided through bit_and(..), bit_or(..), bit_eor(..),

bit_not(..), bit_rotate(..), bit_test(..), bit_set(..), bit_clear(..) and

bit_shift(..).

9.16 Camera control

Camera control in DigiFlow dfc code is provided through two different, complementary

mechanisms. The first is via the process command to invoke the corresponding items from

the File menu. The second mechanism is provided through a direct dfc interface. To make use

of this, first create a live view, either using the process interface, ore more simply by a call to

camera_live_view(..). If you then wish to save the digitised images to a DigiFlow .dfm file,

then first call camera_capture_file(..) to set up the file, and

camera_start_capture(..) to start the capture process. Image saving capture may be

terminated either when a specified number of images have been captured, or a call is made to

camera_stop_capture(..). During the period while the video is being captured, the

function camera_is_capturing(..) will return true. The live view may be terminated by

simply closing the associated view (camera_live_view(..) and camera_get_view(..)

return the necessary handle). A typical example of code to capture a sequence using this

interface is given below.
hView := camera_live_view();

sleep_for(10); # Wait until we are sure the camera has started

camera_capture_file("MyMovie.dfm");

camera_start_capture();

sleep_for(20); # capture period

ret := camera_stop_capture();

message("Frame rate achieved:"+ret.fpsAchieved);

close_view(hView);

For cameras that support full asynchronous triggering, camera_set_mode(..) may be used

to change from continuous acquisition to one-shot triggered mode. In the latter case an image

will only be acquired (and correspondingly written to any output file) when an explicit trigger

is sent. This trigger may be provided either by external hardware (via the frame grabber card),

DigiFlow Functions

– 227 –

or from dfc code through camera_trigger(..). The code example below illustrates how to

capture images on demand by the user clicking a button.
hView := camera_live_view();

sleep_for(10); # Wait until we are sure the camera has started

camera_capture_file("MyMovie.dfm");

camera_wait_for_capture_ready(); # Wait before making async

camera_set_mode("oneshot");

camera_start_capture();

another := true;

while (another) {

 camera_trigger();

 another := ask_yesno("Capture another image?","Snap

images",allowCancel:=false);

};

camera_stop_capture();

camera_set_mode("continuous");

sleep_for(5);

close_view(hView);

Of course the sleep_for(..) or wait_for_timer(..) functions may be used in place of

the user clicking a button to provide more precise but flexible timings.

The camera_wait_for_capture_ready(..) call is necessary here to ensure that the

capture file is set up properly before switching to asynchronous mode. This is necessary

because camera_capture_file(..) does not itself initialise the capture file, but rather asks

the video subsystem to do so asynchronously as frames are processed by the system. In the

first example above the camera_start_capture(..) call implicitly issued a

camera_wait_for_capture_ready(..) call before commencing the capture. However, in

the second example, the code would stall if we relied on this since

camera_set_mode("oneshot") prevents any more frames being processed except by calls to

camera_trigger(..). We must therefore either do the wait with

camera_wait_for_capture_ready() before making the camera asynchronous, or ensure the

camera produces a few frames using camera_trigger(..) between

camera_set_mode("oneshot") and camera_start_capture(). The functions

camera_frame_number(..) and camera_frames_captured(..) provide additional

functionality for monitoring the capture process.

Single frames may be grabbed directly from live video through camera_grab(..) or

camera_grab_last(..), while individual lines or columns can be returned through

camera_grab_line(..) and camera_grab_column(..), respectively.

In some circumstances it may be desirable to lock the acquisition to the display rate of the

computer monitor. To aid in this the directdraw_trigger(..) and

directdraw_trigger_period(..) functions not only handle the display, but also send a

trigger to the camera. These can interact with functions such as camera_set_sync_line(..),

camera_set_strobe(..), camera_trigger(..), camera_wait_for_frame(..),

camera_wait_for_sync(..), wait_for_capture(..), wait_for_preprocess(..).

Communications with the camera are possible for many CameraLink cameras using

camera_serial(..). The gain and shutter speed can be controlled using

camera_set_gain(..) and camera_shutter_speed(..), respectively. The function

camera_set_frame_rate(..) uses a variety of techniques, dependent on camera type, to

adjust the frame rate. This should be issued prior to the corresponding

camera_capture_file(..) if a different capture rate is required. Capture through the default

capture file is aided by camera_save_cache(..) and camera_cache_file_name(..).

Where it can be adjusted, the black level of the camera is set by camera_set_black(..).

For some cameras, the optimal black level depends on the shutter speed. In such cases, a call

DigiFlow Functions

– 228 –

to camera_optimal_black(..) may be used from within camera_shutter_speed(..) to

set the black level.

The current settings for the camera can be established with camera_get_settings(..),

and a summary of these settings displayed on the status bar using camera_show_status(..).

The display of images can be controlled with camera_display_now(..) and

camera_set_display_rate(..).

Other low-level framegrabber specific controls include camera_low_level(..),

camera_gpout(..) and camera_override_sync(..).

Details of the camera may be found using camera_capabilities(..), and some of these

may be overridden through camera_override(..), while camera_get_settings(..)

determines key parameters controlling the camera. Persistent wrapping problems may

sometimes be solved through camera_set_frame_offset(..).

9.17 Array plotting functions

Array plotting functions allow data to be transferred into an array in a manner similar to

plotting.

Some of these functions are much more restrictive than the drawing functions described in

§11, but have their use in manipulating images. Examples include scatter_to_array(..).

A three-dimensional iso-surface can be created from a three-dimensional array using

render_3d_isosurface(..).

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

9.18 Numerical functions

DigiFlow provides a variety of numerical functions that can be used to for purposes

ranging from the manipulation of images to numerical solution of equations.

Linear algebra functions include identiy_matrix(..), matrix_multiply(..),

solve_linear(..), solve_svd(..), singular_value_decomposition(..),

least_squares(..), fit_expression(..), evaluate_expression(..), with

fit_line(..) providing a faster route to the fitting of a straight line. (The function

fit_as_text(..) provides a convenient method of producing LaTeX-like text from the

output of fit_expression(..) or fit_line(..).)

More specialist fitting procedures are available for one-dimensional data through

fit_ellipse(..), fit_periodic(..) and evaluate_periodic(..), while for two-

dimensional data fit_spline_surface(..), b_spline_2d(..) and

b_spline_2d_least_squares(..) are available.

Spectral functions such as fft_row(..), fft_column(..), fft_2d(..) and fft_3d(..),

and their inverses inverse_fft_row(..), inverse_fft_column(..),

inverse_fft_2d(..), and inverse_fft_3d(..), are complemented by

power_spectrum_row(..), power_spectrum_column(..) and power_spectrum_2d(..).

Additionally, power_spectrum_1d(..) provides the shell averaging of two-dimensional data

to produce a one-dimensional spectrum. For one-dimensional data, the maximum entropy

method equivalents mem_spectrum_row(..) and mem_spectrum_column(..) are available.

Similarly, DigiFlow also provides spectral calculation of auto_correlation_2d(..),

auto_correlation_row(..), auto_correlation_column(..) and

cross_correlation_2d(..), cross_correlation_row(..),

cross_correlation_column(..).

Root finding is supported through find_root_bisection(..) and

find_root_secant(..).

DigiFlow Functions

– 229 –

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

9.19 Differential functions

Functions oriented at differential equations include the calculation of derivatives through

d_dx(..), d_dy(..), d2_dx2(..), d2_dy2(..), curl(..), div(..), grad(..),

laplacian(..), and solution of the Poisson equation with solve_poisson(..). Functions

aimed at supporting numerical solution of the equations include advect_2d_psi(..),

upwind_value(..) and shallow_water(..). Direct inversion of a gradient field is provided

through inverse_gradient(..), while multigrid(..) provides a flexible route to

template-based equation solution and is used in the computation of

density_from_gradient(..).

An example of the use of some of these functions can be found in

StreamFunctionVorticity.dfc.

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

9.20 Handling threads

The DigiFlow interpreter has the ability to handle multithreaded code, thus allowing

improvements in performance on multiprocessor machines, and apparent improvements in the

time to first results.

Any piece of code may be started in its own thread using as_thread(..), while a

DigiFlow processing feature may be started in a separate thread with

process_as_thread(..). Both of these functions return a thread handle that may be used in

is_running(..) to determine if the thread is still running, or wait_for_end(..) to suspend

execution until the thread has finished running. The handle of a thread associated with a view

may be determined using thread_for_view(..). Execution of a thread may be paused with

pause_thread(..), restarted with unpause_thread(..), or terminated prematurely with

kill_thread(..) or stop_view_thread(..). Delays and synchronisation within a thread is

achieved through sleep_for(..), start_timer(..) and wait_for_timer(..).

For complex processes (and experienced users), the priority of individual threads may be

adjusted with set_thread_priority(..), with the matching get_thread_priority(..)

recovering the priority of a thread.

The function thread_set_stopping_time(..) can be used to specify how much time is

expected to elapse between an attempt to stop a thread using kill_thread(..) and it actually

stopping. Amongst other things, this sets the time delay between requesting a window be

closed and it actually closing. If this time is too short, it is more likely that an error is thrown.

External processes may be started and controlled using issue_command(..).

Files containing dfc code may be set to run automatically upon their creation by issuing

autorun_file(..).

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

9.21 Web browsing

Basic functionality for controlling the Internet Explorer web browser is available through

www_action(..), www_browse(..) and www_exit(..). Note, however, that default security

settings means that the level of functionality is greater when browsing to a http:// address

rather than a file on your own computer.

DigiFlow Functions

– 230 –

9.22 ftp functions

Commercial versions of DigiFlow provide the user with a set of ftp functions for

transferring data to and from an ftp server. In particular, ftp_open(..), ftp_close(..),

ftp_current_directory(..), ftp_change_directory(..), ftp_create_directory(..),

ftp_remove_directory(..), ftp_list_files(..), ftp_get_file(..),

ftp_put_file(..), ftp_rename_file(..) and ftp_delete_file(..).

Related to this are the network functions get_ip_address(..) and

get_mac_address(..).

Refer to the dfc help for further details.

9.23 DirectDraw functions

DigiFlow provides a variety of functions using the Microsoft DirectDraw interface in order

to provide specialised synchronisation between computer display and camera control. These

functions include list_monitors(..) to provide the necessary information in multi-monitor

systems, directdraw_create(..) and directdraw_destroy(..) to initialise or destroy the

DirectDraw interface, directdraw_view(..) to set an image to a flappable buffer, and

directdraw_animate(..), directdraw_animate_period(..), directdraw_trigger(..)

and directdraw_trigger_period(..) to switch between multiple buffers and (for the

‘trigger’ variants) trigger camera acquisition. The functions get_monitor(..) and

list_monitors(..) are required when dealing with multiple monitors on your system.

The following code segment illustrates a simplified situation in a dual monitor system. The

view identified by hView is located on the monitor where the DirectDraw mechanism is to be

used, Im0 and Im1 are the two images to be displayed, nFlips are the number of image

changes, and nWait is the number of vertical blanking periods to wait between each image

change.
 monitor := get_monitor(hView); # Find which monitor

 list := list_monitors();

 if (search_string(monitor.name,"1")) {

 # First monitor

 guid := list.GUID0;

 } elseif (search_string(monitor.name,"2")) {

 guid := list.GUID2;

 } else {

 message("Selected "+monitor.name+", using default");

 guid := "null";

 };

 # Size of display region

 nx := monitor.rect.right - monitor.rect.left + 1;

 ny := monitor.rect.bottom - monitor.rect.top + 1;

 ddraw := directdraw_create(2,hView,guid); # Use two buffers

 directdraw_view(ddraw,0,Im0,"greyscale");

 directdraw_view(ddraw,1,Im1,"greyscale");

 tFlips := directdraw_animate(ddraw,nFlips,nWait);

 directdraw_destroy(ddraw);

9.24 Data acquisition functions

Some users find it convenient to control a data acquisition card from within DigiFlow.

Support is provided here for controlling PD2-MFx cards from United Electronic Industries

(http://www.uei.com). These cards provide high-speed analog input and output and up to

sixteen digital input and output data lines. The design of the cards means that minimal cpu

load is imposed while doing analog input/output operations, thus allowing the computer to

focus on other data.

http://www.uei.com/

DigiFlow Functions

– 231 –

DigiFlow support for one of these cards is achieved first by the call

install_function_dll("DataAcquisition.dll","UEIDataAcquisition",true); before

using uei_open(..) to open the card. At the end of the session, uei_close(..) must be

called to tidy up and release resources. Note that DigiFlow can only access only one such card

at a time.

Analog output is provided by the single command uei_analog_out(..), whereas three

commands – uei_analog_in_configure(..), uei_analog_range(..) and

uei_analog_in(..) – are necessary to provide the analog in functionality.

TTL-level digital input can be read with uei_digital_in(..),

uei_digital_in_clear_events(..), uei_digital_in_configure(..),

uei_digital_in_status(..) and uei_digital_in_wait(..). Similarly, digital output is

made available with uei_digital_out(..) and uei_digital_out_array(..).

Some models of the PD2-MFx card are provided with a three-channel Intel Universal

Counter Timer chip. This can be configured in many different ways using the command set

uei_counter_clear_events(..), uei_counter_configure(..), uei_counter_gate(..),

uei_counter_mode(..), uei_counter_pulse(..), uei_counter_read(..),

uei_counter_reset(..), uei_counter_status(..), uei_counter_wait(..) and

uei_counter_write(..).

The low-level functions uei_get_configuration(..) and

uei_set_configuration(..) provide some additional functionality.

Built on top of these data acquisition and control functions is a set of functions and macros

specifically intended for the control and monitoring of a high-precision rotating table. These

functions are identified through names beginning with turntable_. Further details may be

available on request.

9.25 Serial communications

Some laboratory equipment can be controlled and/or data read through a protocol based on

RS232 serial communications. To facilitate this, DigiFlow provides a basic set of functions

for this. In particular, serial_open(..) opens and configures a communication port, while

serial_close(..) releases this resource. Whilst open, serial_write(..) and

serial_read(..) allow data to be transferred.

9.26 GhostScript functions

Although GhostScript does not form part of DigiFlow, if DigiFlow detects that it is

installed on your system then DigiFlow can make use of GhostScript for converting PostScript

files into raster images for processing (or simply displaying). The ghost_script(..)

function provides the simplest and most direct support, giving access to the GhostScript

interpreter and returning resulting image in a rgb formatted array. More detailed control over

the interpreter is provided through ghostscript_start(..), ghostscript_execute(..),

ghostscript_end(..), ghostscript_get_image(..), ghostscript_show_image(..) and

ghostscript_get_output(..).

9.27 Particle tracking functions

Files produced by the particle tracking system in DigiFlow necessarily have a different

format from those of other features. While the particle tracking menu provides a number of

post-processing options, there will be times when it is desirable to construct post-processing

using dfc code. Support for this is provided through ptv_open(..) and ptv_close(..) to

access the .dft particle tracking files. Once opened, ptv_tracks(..) provides a mechanism

for enumerating the tracks of individual particles (i.e., assembling paths from the coordinate

DigiFlow Functions

– 232 –

and linking information stored in the .dft files), and ptv_velocity(..) calculates the

velocities associated with the tracks. The functions ptv_tracks_compound(..) and

ptv_velocity_compound(..) provide some additional information in a different format.

More specific information about individual particles can be determined using

ptv_read_particles(..), and a specific particle within this located using

ptv_particle_details(..).

9.28 Logging

DigiFlow includes code for helping track down problems, either with DigiFlow code, or

with user dfc files. The following group of functions support this process by logging certain

groups of activities. These functions are intended primarily for the developer to help track

down the cause of any lingering bugs.

Key entry points are log_start(..), log_stop(..), log_message(..),

log_allocated(..), log_memory(..), log_flush(..) and log_flush_every_time(..).

Normally these functions will only be used while seeking technical support for DigiFlow.

The logging functions produce output into a file named DigiFlow.log. (Note that when

DigiFlow crashes, it will attempt to write as much diagnostic information as possible to

DigiFlow.log.) For example, if log_start(..) is used for levels 8, 9 and then, then this file

contains entries such as
 543 136295776 92 Allocate : $AddItem:New - nTotal

 544 136295880 472 Allocate : $AddItem:pItem - nTotal

 545 158924832 5242880 Allocate : CreateImage:RR

 546 164233248 5242880 Allocate : CreateValue$Kind:Value%AA

 547 158924832 5242880 Deallocate: $DiscardImage:RR

 547 147345992 92 Allocate : $AddItem:New - lay0avg

 548 147346096 472 Allocate : $AddItem:pItem - lay0avg

 549 147346584 128 Allocate : CreateValue$Kind:Value%List

where the first column gives a sequence number, the second a memory address, the third the

size of the associated structure, the fourth the action and the fifth an indication of where in

DigiFlow the memory was allocated. Here, nTotal is a scalar variable created by a user dfc

file, and lay0avg is an array read from an image. Note that the image itself is created as item

545, then destroyed as 547. The array is created as 546 and stored as lay0avg in 547 and 548.

If, subsequently, log_allocated(..) is called, then a block like that below will be added

to the log:

 # Currently allocated memory -- START

 # current allocation =

 ###

 521 136310400 92 $AddItem:New - i_min

 522 136310504 472 $AddItem:pItem - i_min

 523 136310992 92 $AddItem:New - i_max

 524 136311096 472 $AddItem:pItem - i_max

 525 136311584 92 $AddItem:New - j_min

 526 136311688 472 $AddItem:pItem - j_min

...

 4285 148167192 472 $AddItem:pItem - k

 4286 148167680 92 $AddItem:New - iFile

 4287 148167784 472 $AddItem:pItem - iFile

 4325 224133152 3672360 CreateValue$Kind:Value%AA

 ###

 # Currently allocated memory -- END

 # current allocation =

 ###

This block lists all memory that was allocated following log_start(8); (and before

log_stop(8);) that has been allocated but not deallocated. Note that the sequence number

DigiFlow Functions

– 233 –

(first column) is not necessarily in order, but refers back to the numbers in the previous list. In

this case, most of the entries in the list are the direct result of the dfc file that was running

when it was created.

9.29 Registry functions

DigiFlow itself makes minimal use of the registry, but does provide some access to it

through the functions registry_list_keys(..), registry_get_value(..),

registry_set_value(..) and registry_create_key(..).

9.30 Configuration and licence functions

During start-up, dfc code is responsible for some of the configuration of DigiFlow.

Advanced users may enhance this using functions such as add_menu_item(..),

add_menu_separator(..), get_submenu(..), add_submenu(..), add_image_reader(..),

add_image_writer(..), add_movie_reader(..), add_image_reader_macro(..),

install_function_dll(..).

Information about the state of DigiFlow licensing is obtained with

is_digiflow_licensed(..) and digiflow_licence_type(..), while the DigiFlow splash

screen may be manipulated with show_splash(..) and hide_splash(..).

Some releases of DigiFlow are available compiled with more than one compiler. Specific

information about this is provided through compiler_supplier(..) and

compiler_version(..). The date on which the main digiflow.exe was compiled is

accessible through digiflow_build_date(..), with options within this determined using

is_debug(..) and is_openmp(..).

Information about the folder in which it is installed can be determined using either

digiflow_directory(..) or digiflow_directory_url(..), the latter providing details of

the machine on which DigiFlow resides if you are using a mapped network drive. The folder

in which DigiFlow was started can be determined from start_directory(..) and

start_directory_url(..).

The version of Windows on which DigiFlow is running can be determined using

windows_version(..).

DigiFlow’s use of resources can be monitored through system_load(..),

memory_status(..) and memory_status_show(..), while an attempt to free some resources

is achieved with memory_tidy(..).

9.31 Miscellaneous functions

The equation of state for salt water is accessible through seawater_density(..).

The DigiFlow help system can be directed to a particular section in a web browser using

digiflow_help(..).

9.32 All functions

The table below gives a list of the names all the operators, functions and constants

understood by DigiFlow, including any alternate spellings.
!

"

&

()

*

*=

+

+=

-

-=

/

/=

0x

:=

<

<<>>

<=

<>

=

>

>=

?

?=

[]

{/ /}

{}

^

_!News - latest

_!News - old

_Input streams

_LaTeX

_Output streams

_Returning images

_Simple plot

abs

DigiFlow Functions

– 234 –

acos

acos_rad

add_color

add_color_scheme

add_colour

add_colour_scheme

add_image_reader

add_image_reader_macro

add_image_writer

add_menu_item

add_menu_separator

add_movie_reader

add_submenu

advect_2d_psi

allow_break

allow_query

and

animate_view

as_thread

asin

asin_rad

ask_directory

ask_directory_modeless

ask_file

ask_file_modeless

ask_image

ask_image_modeless

ask_integer

ask_integer_modeless

ask_list

ask_list_modeless

ask_printer

ask_real

ask_real_modeless

ask_string

ask_string_modeless

ask_yesno

ask_yesno_modeless

atan

atan_rad

auto_correlation_2d

auto_correlation_column

auto_correlation_row

autorun_file

b_spline_2d

b_spline_2d_least_squares

bayer_from_rgb

beep

bessel

bit_and

bit_clear

bit_eor

bit_not

bit_or

bit_rotate

bit_set

bit_shift

bit_test

blue_from_rgb

camera_cache_file_name

camera_capabilities

camera_capture_file

camera_display_now

camera_external_shutter_sp

eed

camera_frame_number

camera_frames_captured

camera_get_settings

camera_get_view

camera_gpout

camera_grab

camera_grab_column

camera_grab_last

camera_grab_line

camera_is_capturing

camera_live_view

camera_low_level

camera_open_serial

camera_optimal_black

camera_override

camera_override_sync

camera_save_cache

camera_serial

camera_serial_online

camera_set_black

camera_set_display_rate

camera_set_frame_offset

camera_set_frame_rate

camera_set_frame_straddle

camera_set_gain

camera_set_mode

camera_set_strobe

camera_set_sync_line

camera_show_status

camera_shutter_speed

camera_start_capture

camera_start_frame_straddl

e

camera_stop_capture

camera_stop_frame_straddle

camera_switch_mode

camera_trigger

camera_wait_for_capture

camera_wait_for_capture_re

ady

camera_wait_for_frame

camera_wait_for_preprocess

camera_wait_for_sync

cascade_views

change_directory

char

close_all_views

close_console

close_file

close_view

cmy_from_rgb

cmyk_from_rgb

color_scheme

color_scheme_from_image

colour_scheme

colour_scheme_from_image

command_line_arguments

compile

compile_rp

compiler_supplier

compiler_version

component_names

computer_for_file

contour_image

convert_to_rp

coord_system_add_point

coord_system_apply_region

coord_system_create

coord_system_create_mappin

g_array

coord_system_destroy

coord_system_get_mapping

coord_system_get_points

coord_system_list

coord_system_mapping

coord_system_save

coord_system_set_default

coord_system_transform_arr

ay

coord_system_translate

coord_system_translate_pix

el

coord_system_units

copy_file

copy_file_wait

cos

cos_rad

count

crash_digiflow

create_directory

cropped_add

cropped_assign

cropped_div

cropped_div_reversed

cropped_mul

cropped_power

cropped_power_reversed

cropped_sub

cropped_sub_reversed

cross_correlation_2d

cross_correlation_column

cross_correlation_row

curl

current_directory

cyan_from_rgb

d2_dx2

d2_dy2

d_dx

d_dy

date

degrees_from_radians

delete_color_scheme

delete_colour_scheme

delete_file

density_from_gradient

destroy_variable

dfc_as_latex

dialog

digiflow_build_date

digiflow_directory

digiflow_directory_url

digiflow_help

digiflow_licence

digiflow_licence_type

digiflow_site_licence

digiflow_version

directdraw_animate

directdraw_animate_period

directdraw_create

directdraw_destroy

directdraw_trigger

directdraw_trigger_period

directdraw_view

directdraw_wait

div

do_not_wait

draw_append_drawing

draw_arc

draw_begin_image

draw_begin_lineto

draw_begin_marks

draw_begin_vector

draw_bottom_axis

draw_circle

draw_clip_box

draw_colour_scheme

draw_create_key

draw_defaults

draw_destroy

draw_embed_drawing

draw_enable_latex

draw_end

draw_fill_color

draw_fill_colour

draw_font

draw_get_axes

draw_get_font_height

draw_get_status

draw_group_begin

draw_group_end

draw_image

draw_image_scale

draw_image_scale_vertical

DigiFlow Functions

– 235 –

draw_install_latex_macro

draw_key_entry

draw_left_axis

draw_line

draw_line_color

draw_line_colour

draw_line_style

draw_line_width

draw_lineto

draw_mark

draw_mark_size

draw_mark_type

draw_move

draw_no_fill

draw_on_array

draw_on_emf

draw_on_file

draw_on_view

draw_polygon

draw_rectangle

draw_restore_state

draw_right_axis

draw_save_state

draw_set_axes

draw_set_base_scale

draw_set_size

draw_skip_points

draw_start

draw_text

draw_text_color

draw_text_colour

draw_top_axis

draw_user_line_style

draw_vector

draw_vector_scale

draw_vector_scale_vertical

draw_x_axis

draw_y_axis

dye_ideal

dye_red_fiesta

eigen_system

eigen_values

else

elseif

enable_timing

end

end_data

eor

erf

erfc

evaluate_expression

evaluate_periodic

execute

exists

exit

exit_digiflow

exp

export_to_eps

export_to_simple_eps

extract

false

fft_2d

fft_3d

fft_column

fft_row

file_details

fill_blob_list

fill_blobs

filter_centile

filter_convolution

filter_geometric

filter_low_pass

filter_max

filter_max_neighbours

filter_median

filter_min

filter_min_neighbours

filter_periodic_centile

filter_periodic_convolutio

n

filter_periodic_geometric

filter_periodic_low_pass

filter_periodic_max

filter_periodic_median

filter_periodic_min

filter_periodic_std_dev

filter_std_dev

find_blobs

find_contour_start

find_edge

find_root_bisection

find_root_secant

fit_as_text

fit_ellipse

fit_expression

fit_image_b_spline

fit_line

fit_periodic

fit_spline_surface

flip_horizontal

flip_vertical

floor

flush_file

follow_optical_flow

for

fractal_box_count

fractal_box_count_digimage

from

ftp_change_directory

ftp_close

ftp_create_directory

ftp_current_directory

ftp_delete_file

ftp_get_file

ftp_list_files

ftp_open

ftp_put_file

ftp_remove_directory

ftp_rename_file

function

function_help

gaussian_noise

get_active_view

get_component

get_configuration

get_dfc_path

get_dialog_response

get_file_variables

get_global

get_image

get_ip_address

get_key

get_local_variables

get_mac_address

get_monitor

get_mouse_box

get_mouse_click

get_mouse_line

get_mouse_position

get_mouse_rect

get_process_details

get_region

get_submenu

get_user_variables

get_variable

get_view_as_image

get_view_class

ghostscript

ghostscript_end

ghostscript_execute

ghostscript_get_image

ghostscript_get_output

ghostscript_show_image

ghostscript_start

grad

green_from_rgb

grey_from_rgb

hide_splash

histogram

hsi_from_rgb

hue_from_rgb

identity_matrix

if

ifelse

in_parallel

include

indirect

install_function_dll

int

intensity_from_rgb

interpolate_image

inverse_fft_2d

inverse_fft_3d

inverse_fft_column

inverse_fft_row

inverse_gradient

is_array

is_code

is_compound

is_debug

is_digiflow_licenced

is_digiflow_licensed

is_drawing

is_file_local

is_integer

is_list

is_live_view

is_memo

is_null

is_numeric

is_openmp

is_parallel

is_real

is_running

is_string

is_view

issue_command

jpeg_get_comments

kill_thread

laplacian

least_squares

left_string

length

list_components

list_file_details

list_files

list_files_global

list_global_variables

list_local_variables

list_monitors

list_names

list_system_variables

list_user_variables

ln

log

log_allocated

log_flush

log_flush_every_time

log_memory

log_message

log_start

log_stop

look_up_table

lower_case

magenta_from_rgb

make_array

make_like

make_list

DigiFlow Functions

– 236 –

make_string

map_cartesian_to_polar

map_polar_to_cartesian

match_intensity_create

matrix_multiply

max

max_index_x

max_index_y

max_string_length

max_value

maximise_digiflow

maximise_view

maximize_digiflow

maximize_view

mean

mem_spectrum_column

mem_spectrum_row

memory_status

memory_tidy

message

message_modeless

mid_string

min

min_index_x

min_index_y

min_value

minimise_digiflow

minimise_view

minimize_digiflow

minimize_view

mod

mouse_get_mode

mouse_set_mode

move_file

move_icon

multigrid

n_components

n_size

n_waiting_write_image

new_line

new_view

new_view_clean

new_view_floating

nice_number

nice_number_string

not

null

open_binary_file

open_console

open_file

open_image

open_image_when_ready

or

pack_time

pause_thread

pi

pixel_contour

pixel_coordinate

plot

plot_axes

plot_axis_type

plot_destroy

plot_drawing

plot_fit

plot_get_state

plot_image

plot_line

plot_new

plot_titles

plot_update_view

plot_vectors

plot_view_handle

power_spectrum_1d

power_spectrum_2d

power_spectrum_column

power_spectrum_row

print_view

print_view_dialog

process

process_as_thread

process_time

ptv_close

ptv_open

ptv_particle_details

ptv_read_particles

ptv_tracks

ptv_tracks_compound

ptv_velocity

ptv_velocity_compound

quit

r_count

r_mean

r_sum

radians_from_degrees

random_array

random_number

randomise

read_array

read_binary

read_compound_image

read_console

read_data

read_file

read_image

read_image_archive

read_image_details

read_image_queue

read_image_queue_create

read_image_queue_destroy

read_image_from_view

read_image_when_ready

read_into_array

read_line

read_table

real

red_from_rgb

region_create

region_destroy

region_list

registry_create_key

registry_get_value

registry_list_keys

registry_set_value

remove_icon

remove_spaces

remove_trailing_zeros

render_3d

render_3d_isosurface

render_points_3d

replace_hashes

replace_values

resample_curve

rescale_image

restore_digiflow

restore_view

reverse_polish

rgb_from_bayer

rgb_from_hsi

rgb_from_image

right_string

rms

roll

rotate_anticlockwise

rotate_clockwise

rotate_image

round

sample_values

saturation_from_rgb

save_view

scatter_to_array

scrunch_string

search_string

seawater_density

serial_close

serial_open

serial_read

serial_write

set_configuration

set_dfc_path

set_dialog_response

set_file_end

set_file_pointer

set_global

set_variable

shallow_water

shift

shift_interpolated

show_memory_status

sign

sin

sin_rad

singular_value_decompositi

on

slave_view_3d

sleep_for

smooth_contour

solve_linear

solve_poisson

solve_svd

sort

sort_array

sort_index

sqrt

start_directory

start_directory_url

start_timer

status_bar_message

step

stereo_velocity_to_3d

stop_view_thread

stream_function

streamline

sum

system_load

t_index

t_size

tan

tan_rad

theta_mean

thread_for_view

thread_set_stopping_time

tile_views

time

time_interval

to

trace

transpose

true

try_execute

try_include

turntable_angle

turntable_average_output

turntable_ctrl

turntable_current_speed

turntable_enable

turntable_filter_low_pass

turntable_filter_median

turntable_fourier

turntable_get_variable

turntable_heart_beat

turntable_output

turntable_record

turntable_set_speed

turntable_set_variable

turntable_state

turntable_status_bar

turntable_stop

turntable_target_speed

DigiFlow Functions

– 237 –

turntable_update_base

turntable_update_calibrati

on

turntable_update_waveform

turntable_varying_speed

turntable_wait

turntable_where

uei_analog_in

uei_analog_in_configure

uei_analog_in_range

uei_analog_out

uei_analog_start

uei_close

uei_counter_clear_events

uei_counter_configure

uei_counter_gate

uei_counter_mode

uei_counter_pulse

uei_counter_read

uei_counter_reset

uei_counter_status

uei_counter_wait

uei_counter_write

uei_digital_in

uei_digital_in_clear_event

s

uei_digital_in_configure

uei_digital_in_status

uei_digital_in_wait

uei_digital_out

uei_digital_out_array

uei_get_configuration

uei_open

uei_set_configuration

unpack_time

unpause_thread

upper_case

view

view_3d

view_color

view_colour

view_connect_thread

view_counter

view_disconnect_thread

view_fit_all_to_zoom

view_fit_to_zoom

view_get_coord_system

view_get_time

view_icon

view_live

view_points_3d

view_rgb

view_rotated

view_scalar_colour

view_scalar_range

view_set_coord_system

view_time

view_title

view_toggle_color

view_toggle_colour

view_variables

view_vector_colour

view_vector_remove_mean

view_vector_scale

view_vector_spacing

view_vectors

view_zoom

view_zoom_all

view_zoom_all_to_fit

view_zoom_to_fit

wait_for_end

wait_for_ever

wait_for_file

wait_for_timer

wait_for_write_image_queue

_empty

where

where_is

while

window_from

windows_version

world_coordinate

wrapped_add

wrapped_assign

wrapped_div

wrapped_div_reversed

wrapped_extract

wrapped_mul

wrapped_power

wrapped_power_reversed

wrapped_sub

wrapped_sub_reversed

write_array

write_binary

write_console

write_file

write_image

write_image_archive

write_image_queue

write_integer_array

write_rgb_image

write_rgb_image_queue

write_thesis

www_action

www_browse

www_exit

x_accumulate

x_centroid

x_count

x_index

x_index_pixel

x_index_world

x_max_index

x_max_value

x_mean

x_min_index

x_min_value

x_moment

x_replicate

x_rms

x_size

x_sum

x_transition_index

xor

y_accumulate

y_centroid

y_count

y_index

y_index_pixel

y_index_world

y_max_index

y_max_value

y_mean

y_min_index

y_min_value

y_moment

y_replicate

y_rms

y_size

y_sum

y_transition_index

yellow_from_rgb

z_index

z_size

DigiFlow Macros

– 238 –

10 Macros

The full power of DigiFlow is released through its ability to run macros in the form of

DigiFlow command files (more frequently referred to as dfc files or dfc code) to automate

complex or repetitive tasks. This section supplements the discussion of the basic

10.1 DigiFlow command files

DigiFlow command files are simple text files that contain code that is interpreted and

executed by the DigiFlow interpreter. The language used by this interpreter is a simple

superset of that described already in this section, with the addition of commands to invoke

specific DigiFlow processes by mimicking the functionality of the user-interface and process

chaining ability (see §7).

It is recommended that the default dfc extension be used for all DigiFlow command files.

This will not only ensure that the command files are visible to the Run Code dialog (see

§5.1.2), but also that double-clicking on a dfc file in Windows Explorer, or dragging a dfc file

to DigiFlow, will ensure that it is run correctly.

10.1.1 Running processes
The basic command for running a DigiFlow process from dfc code is

 process dlg;

where dlg is a compound variable containing the responses for the dialog associated with that

menu item and the name of the process to be run. This is best illustrated by example.

To compute the arithmetic time average of a movie test.dfm and store the result in ave.dfi,

we may construct the following dfc code:
dlg.Input := "test.dfm";

dlg.Output := "ave.pic";

dlg.Kind := "Arithmetic";

dlg.process := "Analyse_TimeAverage"

process dlg;

or equivalently using the compound variable constructor .. ,

dlg :=
 Input := "test.dfm";

 Output := "ave.pic";

 Kind := "Arithmetic";

 process := "Analyse_TimeAverage";

;

process dlg;

In this example, the variable dlg is used to store the dialog responses that are required for the

Analyse_TimeAverage process (see §5.6.1.1). The dialog responses have been stored in the

form of a compound variable (see §8.2.2).

Typically, a process requires a number of mandatory responses, and may also accept a

variety of optional responses. Here we have defined only the mandatory input, output and

average type responses. If no errors are detected, the interface uses these values to initialise

the control structures for the averaging process, and then starts the averaging.

Although not used in the above examples, the process command has a return value that

contains information about the final state of the process. For most processes, the return value

is a compound value that contains things like the final image computed and the handle(s) of

any views left open by the process. In the above example, if
ret := process dlg;

then the variable ret contains components .hOutput, the handle of the view left open,

.imgOutput, a copy of the image created by the time average, and .process, which is a copy

DigiFlow Macros

– 239 –

of the entry value (here "Analyse_TimeAverage"). The simplest way of determining the

contents of the return value is to make a call to view_variables(..) after executing

process. If no assignment is made of the return value then this information is simply

discarded.

By default, processes are run in a separate thread from the interpreter handling the dfc code,

but the execution of the dfc code is suspended until the execution of the process is complete.

This behaviour may be modified by starting the process using

 thread_id := process_as_thread dlg;

(dlg must always contains the .process declaration). When started in this way, control is

returned to the dfc code as soon as the dlg variable has been executed to start the process. The

dfc code is then free to start other processes or make other computations. However, any code

that relies on an output created by the command started in this manner must execute

wait_for_end(thread_id); or at least check is_running(thread_id) prior to making use of

this output. See §9.20 for further information on threads. Note if process_as_thread is used,

then the return value available with process is automatically discarded and is not available to

the calling dfc code.

For each of the processes within DigiFlow that may be accessed by this method. The

easiest way of obtaining this list is to run the process interactively, then enter the Dialog

responses facility described in §5.2.9. This gives a list of the values used, including any

relevant optional ones.

10.1.2 Control of input streams
Input streams, such as that represented by dlg.Input in the previous section, may be either

a single file (which may contain either a single image or a movie of images), a series (with a

varying numeric part represented by one or more hash (#) characters, or a collection of

images. For a macro, a collection is typically specified using wild cards. The wild card for a

single character is either a question mark (?) or percentage symbol (%), whereas an asterisk (*)

or dollar symbol ($) represents an arbitrary number of characters. The reason why there are

two symbols for each type of wild card stems from the way Windows interprets wild cards

immediately when using an open or save file dialog. Note that it is more efficient to utilise the

numeric substitution character (#) than wild cards, and that numeric substitution can cope with

a much larger number of files.

The input streams can be modified in a number of ways, just as they could through

interactive use of DigiFlow. For most streams (those with a Sift button), aspects of the stream

such as the timing and region of interest can be changed. If the image source is a full colour

image, then the Colour component to be processed may be selected. In each case, the

additional control is optional and is achieved by appending further details to the name of the

associated control. For example, to select the green component of the full colour image

MyPic.bmp for dlg.Input, then the lines

dlg.Input := "MyPic.bmp";

dlg.Input_Component := "green";

should be included in the dfc code.

The various controls available for input streams are discussed below.

10.1.2.1 Folder for input stream
By default, if the file name specified for the input stream does not contain a path

component, then the stream will be taken from the current folder (directory). If you wish to

specify a different folder without including it in the file name, then _Folder may be appended

to the input stream name and set to a string value specifying the folder required.

DigiFlow Macros

– 240 –

10.1.2.2 Archive file for input streams
If available, .dfa archive files can be useful as they both act as a collection point for

sequences of files and store additional information for file formats that cannot store this

internally. Appending _Options.UseArchive to the input stream specifier allows the logical

true or false to specify whether or not DigiFlow searches for a .dfa file when processing an

input image stream. If true and an archive is found, then the information contained in it is

merged with that found in the image files themselves.

10.1.2.3 Displaying input
Normally it is desirable to show the input streams on the display as the process takes place.

However, in some cases it may be desirable to suppress this. Control of whether or not input is

displayed is achieved by appending _Options.Display to the corresponding input name. The

resulting logical variable will then display the input if true, or suppress it if false. If not

specified, then the input stream will normally be displayed.

10.1.2.4 Colour component
The colour component input is applicable only to source streams providing true colour

images (e.g. 24 bit .bmp files). The control is accessed by appending _Options.Component to

the corresponding input name. For example, if This.Experiment is set to a full colour image,

then This.Experiment_Options.Component provides selection of the colour component, as

detailed in the following table. Here, stream represents the base name of the input stream (e.g.

This.Experiment in the above example).

stream_Options.Component

:=
Description

"RGB" Returns a three-plane full colour image. Note that some

DigiFlow options will only process the first (red) plane when

presented with a full colour image.
"mono" Return the best monochrome version of the image.
"red" Return the red component of the image in RGB space.
"green" Return the green component of the image in RGB space.
"blue" Return the blue component of the image in RGB space.
"hue" Return the hue (colour) of the image, in

Hue/Saturation/Intensity space.
"saturation" Return the saturation (purity of the colour) of the image, in

Hue/Saturation/Intensity space.
"intensity" Return the intensity of the image, in Hue/Saturation/Intensity

space.
"cyan" Return the cyan component of the image in CMY space.
"magenta" Return the magenta component of the image in CMY space.
"yellow" Return the yellow component of the image in CMY space.
"black" Return the black component of the image in CMYK space.
"grey" Return the equivalent grey level.
"mean" Return the mean of the three RGB components.
"max" Return the maximum of the three RGB components.
"min" Return the minimum of the three RGB components.

Consult §4.1 for details on the relationship between the returned value and the individual

red, green and blue colour components.

DigiFlow Macros

– 241 –

10.1.2.5 Timing control
For input streams having a Timings button, the timing details may be set by appending

_Time to the corresponding input name. This new variable is a compound variable that

provides a number of ways of controlling the timings. For example, if dlg.Input controls an

input stream, then dlg.Input_Time.ToStep controls the last frame to be processed.

The timings may be specified in terms of either frames or seconds. If both are specified, the

frames version takes precedence. Details of both methods of control are given below. Note

that you need specify only those controls you wish to change from their defaults: the default

action is to process every frame of the input stream.

Variable Description

stream_Time.FromStep Select the first frame to be processed.

stream_Time.ToStep Select the last frame to be processed.

stream_Time.StepCount The number of frames to be processed. This has priority over

_Time.ToStep.

stream_Time.StepBy The spacing of the frames to be processed.

stream_Time.FromTime Select the start time for the sequence. This is rounded to the

nearest frame.

stream_Time.ToTime Select the end time for the sequence. This is rounded to the

nearest frame.

stream_Time.TimeStep The time step for the sequence. This is rounded to the nearest

frame.

stream_Time.TimeStepFile The interval between the frames in the sequence. This is

ignored for file formats that store time information, but is used

for file formats (e.g. sequences of .bmp files) that do not store

such information.

10.1.2.6 Selecting regions
It is often desirable to select only a part of an image for processing. This is achieved

through the specification of a region by appending _Region to the corresponding input name.

This new variable is a compound variable that provides a number of ways of controlling the

region. For example, if dlg.Input controls an input stream, then dlg.Input_Region.xMin

sets the left-hand side of the region. The table below summarises the available options.

Variable Description

stream_Region.Kind Select the type of region. This is a string variable that should be

set to one of:

"All" Indicates that all the input stream should be used.

"Conform" Indicates that a region conforming to that of the

master stream should be used. This option is not available for

streams that are the master. Typically, a given process will have

only one master stream, and this will be the first stream in the

dialog box.

"PixelRect" Indicates that a rectangle (specified in pixel

coordinates) will be used. Values must be specified for the

_Region.xMin, _Region.xMax, _Region.yMin and

_Region.yMax variables.

"Named" Indicates that a named region should be used. The

name must be specified for the _Region.Name variable.

stream_Region.xMin Must be specified when _Region.Kind is "PixelRect". Specifies

DigiFlow Macros

– 242 –

the left-hand side of the pixel rectangle defining the region.

stream_Region.xMax Must be specified when _Region.Kind is "PixelRect". Specifies

the right-hand side of the pixel rectangle defining the region.

stream_Region.yMin Must be specified when _Region.Kind is "PixelRect". Specifies

the bottom of the pixel rectangle defining the region.

stream_Region.yMax Must be specified when _Region.Kind is “PixelRect”. Specifies

the top of the pixel rectangle defining the region.

stream_Region.Name Must be specified when _Region.Kind is "Named". Specifies the

name of the previously saved region.

10.1.2.7 Matching intensities in input streams
As described in §4.3.3, it can be necessary to adjust the intensities of images on an image-

by-image basis in order to match their intensities to a reference level. This is achieved through

the specification of a Match Intensity by appending _MatchIntensity to the corresponding

input name. This new variable is a compound variable that provides a number of ways of

controlling the intensity matching. For example, if dlg.Input controls an input stream, then

dlg.Input_MatchIntensity.Name sets the intensity matching to a previously named

scheme. The table below summarises the available options.

Variable Description

stream_MatchIntensity.Kind Optional variable that select the type of intensity

matching. This is a string variable that should be set

to one of:

"None" Indicates that no intensity matching

will be used..

"Local" Indicates that the settings are defined

locally. Values must be specified for

_MatchIntensity.xMinA,

_MatchIntensity.xMaxA,

_MatchIntensity.yMinA,

_MatchIntensity.yMaxA,

_MatchIntensity.xMinB,

_MatchIntensity.xMaxB,

_MatchIntensity.yMinB,
_MatchIntensity.yMaxB

"Named" Indicates that a named setting should

be used. The name must be specified for the

_MatchIntensity.Name variable.

If this variable is not specified, but

_MatchIntensity.xMinA is, then "Local" will be

assumed. Similarly, if this variable is not specified,

but _MatchIntensity.Name is, then "Named" is

assumed.

stream_MatchIntensity.xMinA The left-hand edge of region A.

stream_MatchIntensity.xMaxA The right-hand edge of region A.

stream_MatchIntensity.yMinA The bottom edge of region A.

stream_MatchIntensity.yMaxA The top edge of region A.

stream_MatchIntensity.xMinB The left-hand edge of region B.

stream_MatchIntensity.xMaxB The right-hand edge of region B.

stream_MatchIntensity.yMinB The bottom edge of region B.

DigiFlow Macros

– 243 –

stream_MatchIntensity.yMaxB The top edge of region B.

stream_MatchIntensity.IntensityA If specified, then this gives the reference intensity

for region A. If not specified, then the reference

intensity is determined from the first image to be

processed.

stream_MatchIntensity.IntensityB If specified, then this gives the reference intensity

for region B. If not specified, then the reference

intensity is determined from the first image to be

processed.

stream_MatchIntensity.Name If specified, then this string gives the name of the

match intensity scheme to use.

10.1.2.8 Waiting for input streams
In some cases, the input stream will not exist when a process is started. DigiFlow allows

the possibility of the process waiting for the input stream to come into existence through some

other mechanism (e.g., being created or copied by an external program or the user) rather than

simply throwing an error. The table below summarises the possible actions.

Variable Description

stream_Options.WaitFor Determines the time DigiFlow will wait for the input stream to

be created, if it does not exist already. A numeric (floating point

or integer) value should be assigned to this variable. A zero or

negative value implies no waiting, while a positive value gives

the timeout period for the stream.

10.1.3 Control of output streams
In a similar way to the ability to modify input stream timing, colour component, etc., some

aspects of the output streams may also be modified. The following subsections detail the

available controls.

10.1.3.1 Folder for output streams
By default, if the file name specified for the output stream does not contain a path

component, then the stream will be taken from the current folder (directory). If you wish to

specify a different folder without including it in the file name, then _Folder may be appended

to the output stream name and set to a string value specifying the folder required.

10.1.3.2 Archive file for output streams
For many users, it is desirable to generate .dfa archive files that both act as a collection

point for sequences of files and store additional information for file formats that cannot store

this internally. Appending _Options.UseArchive to the output stream specifier allows the

logical true or false to specify whether or not the .dfa file is generated.

10.1.3.3 Displaying output
Normally it is desirable to show the output streams on the display as the process takes

place. However, in some cases it may be desirable to suppress this. Control of whether or not

output is displayed is achieved by appending _Options.Display to the corresponding output

name. The resulting logical variable will then display the output if true, or suppress it if

false. If not specified, then the output stream will normally be displayed.

DigiFlow Macros

– 244 –

10.1.3.4 Output stream colour
The colour scheme used for an output stream may be set by appending _Options.Colour

to the name of the stream, and specifying a colour scheme, either as the name of the scheme,

or as an array of RGB colour values.

Variable Description

stream_Options.Colour :=

"single cycle";

Specify a named colour scheme for this output stream.

stream_Options.Colour :=

my_array ;

Specify the colour scheme as an array of colour values.

The array should contain at least 2563 elements, the first

index corresponding to an 8-bit intensity, and the second to

the colour component in the order Red, Green, Blue. Each

element of the array should be scaled between 0.0 and 1.0.

stream_Options.Color :=

"single cycle";

Identical to the above description with the UK spelling of

colour.

stream_Options.Color :=

my_array;

Identical to the above description with the UK spelling of

colour.

Colour scheme information may also be specified simultaneously for all output streams by

omitting the stream_Options prefix.

Variable Description
Colour := "single cycle"; Specify a named colour scheme for all output streams.

Colour := my_array; Specify the colour scheme as an array of colour values.

The array should contain at least 2563 elements, the first

index corresponding to an 8-bit intensity, and the second to

the colour component in the order Red, Green, Blue. Each

element of the array should be scaled between 0.0 and 1.0.
Color := "single cycle"; Identical to the above description with the UK spelling of

colour.

Color := my_array; Identical to the above description with the UK spelling of

colour.

If both the stream_Options.Colour and Colour variants are used for a given output

stream, then the stream_Options.Colour variant has priority. Similarly, if both the UK and

US spellings of colour are used, then the UK spelling has priority.

For output streams that allow full (true) colour images, whether or not one is saved may be

controlled by setting the logical _Options.TrueColour.

10.1.3.5 First index
The first index to be used in naming the files in an output sequence may be specified by

appending _Options.FirstIndex to the name of the stream and specifying an integer value.

The default value is zero.

10.1.3.6 Output stream bit depth
The bit depth used for an output stream may be set (where the file format allows) by

appending _Options.nBits to the name of the stream, and specifying the bit depth as an

integer.

10.1.3.7 Output stream compression
The compression setting used for an output stream may be set (where the file format

allows) by appending _Options.Compression to the name of the stream, and specifying an

integer value. A value of zero turns off compression, while positive values give compression

(how many levels of compression are available depend on the image format).

DigiFlow Macros

– 245 –

10.1.3.8 Output stream quality
For output formats using a lossy compression scheme (e.g. .jpg files), it is possible to

specify the quality of the resulting image. There will, of course, be a trade-off between the

quality and the degree of compression. Access to the quality control is provided by appending

_Options.Quality to the name of the stream. This control takes a string value which is

normally one of "Default", "Fast", "Accurate", "Superb", "Good", "Normal", "Average"

or "Low".

10.1.3.9 Output stream resampling
When the .dfi image format is selected, it is possible to rescale the output stream before it is

saved and then reverse this rescaling when the image is subsequently read in. Typically this

option is used to reduce the resolution of the saved image, but maintain its size by

interpolating back to the original size before using the image again. Overall control of this is

provided by appending _Options.Resample to the name of the output stream and specifying

one of "none", "source" or "local". The first of these turns off resampling (default),

whereas the second causes any resampling parameters to be inherited from the source image

stream or the process that is creating the images, as appropriate. The "local" option provides

direct control over the resampling through the additional keys described below.

The resolution of the saved image is controlled by appending _Options.ResampleFactor

to the name of the output stream and specifying a floating point value for the relative

resolution of the saved image. For example, a value of 0.5 will cause the saved image to have

only ¼ of the number of pixels of the original in the file, but through interpolation the missing

pixels are reconstructed when the image is read in again. The method of interpolation may

also be controlled using _Options.ResampleInterpolation with a value of "none" for no

interpolation (replicating pixels), "linear" for bi-linear interpolation and "cubic" for bi-

cubic interpolation.

10.1.3.10 Comments in output streams
For output file formats that support comments, a comment may be specified by appending

_Options.Comments to the name of the output stream and specifying the comment as a

character string.

10.1.3.11 Leaving output streams visible
When DigiFlow is run interactively, the principle output streams are opened and left visible

at the end of a process. This behaviour, however, may not be desirable when running

DigiFlow from a macro.

The macro can select whether or not to leave an output stream open by defining the symbol

(within the controlling compound variable or code segment) DisplayOnExit and setting the

value to true or false, as desired. If DisplayOnExit is not defined, it is assumed to be true.

10.1.3.12 Deleting existing streams
To automatically delete an existing output stream at the point when the first image is

written to the new stream, the stream modifier _Options.DeleteExisting should be added

to the output stream name and set to true, viz:

 stream_Options.DeleteExisting := true;

10.1.4 Chaining responses
As with interactive use of DigiFlow, dfc code may be used to build complex processes by

chaining together simpler processes. The mechanism beneath this is a simple extension of the

basic interface between dfc code and the various menu-driven processes. Whereas the

example given in the previous sections had a single input specified by a file name, here we

shall have a single input specified by a compound variable.

DigiFlow Macros

– 246 –

For example, if we wish to use the facility for transforming intensity (Tools: Transform:

Intensity, see §5.7.2) as the input to a time average, then we could construct a dfc code:

dlgTrans.Input := "Test.dfm";

dlgTrans.Code := "sqrt(P)";

dlgTrans.process := "Tools_TransformIntensity";

dlgAve.Input := dlgTrans;

dlgAve.Output := "ave.pic";

dlgAve.Kind := "Arithmetic";

dlgAve.process := "Analyse_TimeAverage";

process dlgAve;

Here, we first constructed a compound variable for Tools: Transform Intensity, but do not set

a destination for its output. We then assign this compound variable to the input of the

averaging process. Obviously this same code could be written more directly without

constructing the intermediate dlgTrans variable:

dlgAve.Input.Input := "Test.dfm";

dlgAve.Input.Code := "sqrt(P)";

dlgAve.Input.process := "Tools_TransformIntensity";

dlgAve.Output := "ave.pic";

dlgAve.Kind := "Arithmetic";

dlgAve.process := "Analyse_TimeAverage";

process dlgAve;

10.1.5 Multiple output streams
If a process, which you wish to use to provide input to a second process, produces more

than one output stream, then it is necessary to select which output stream you require. This is

achieved by specifying .pipe in the compound variable used for the input. The example

below selects the YGradient output from the synthetic schlieren process, and averages this

over time.

dlgAve :=

 Input :=
 Experiment := "Expt.dfm";

 Background := "Reference.dfi";

 Difference := "Absolute";

 CameraToTexture := 4.0;

 ExperimentToTexture := 0.3;

 ExperimentThickness := 0.2;

 Medium := "Water";

 CoordSystem := "internal waves";

 GradientScale := 0.1;

 DisplacementScale := 0.1;

 DensityScale := 1.00000;

 AutomaticInterrogation := true;

 AutomaticValidation := true;

 AutomaticMeans := true;

 process := "Analyse_SyntheticSchlierenPatternMatch";

 pipe := "YGradient";

 Output := "ave.pic";

 Kind := "Arithmetic";

 process := "Analyse_TimeAverage";

;

DigiFlow Macros

– 247 –

process Analyse_TimeAverage(dlgAve);

10.1.6 Accessing dialogs
Sometimes it is convenient to accept user input via one of the standard process dialogs,

then modify this before executing the process. This may be achieved using the dialog

statement either as:

 dlg_value := dialog dlg;

or

 dlg_value := dialog command;

In the first of these, dlg is a compound variable with one mandatory component, .process, to

specify the process that is being invoked. As with the process command, the .process

component must be a string value. In the second option, command is literal text for the name

of the process. For example, the following two code segments have the same effect:
dlg.process := "Analyse_TimeAverage";

dlg := dialog dlg;

and
dlg := dialog Analyse_TimeAverage;

In both the above examples the return value (here dlg) is a compound variable that

contains the responses, including details of any nested (chained) dialogs. Note that it does not

contain details of settings you have not made and will not affect the process you have selected.

For example, the time averaging process returns

dlg.process := "Analyse_TimeAverage";

dlg.Input := "randr.dfm";

dlg.Input_Time.FromStep := 0;

dlg.Input_Time.ToStep := 20;

dlg.Input_Time.StepBy := 1;

dlg.Input_Time.FromTime := 0.0;

dlg.Input_Time.ToTime := 8.0;

dlg.Input_Time.TimeStep := 0.20;

dlg.Kind := "Arithmetic";

dlg.Output := "Average.pic";

Obviously, the details on the right-hand side will vary, depending on the precise options

selected by the user, and the base variable (here dlg) is determined by the left-hand side of the

assignment expression. There is also some redundancy in this information in that the time

period is specified in both steps and times. In such a case, the step specification has priority.

The following example takes the returned compound variable from the time averaging

process and modifies the time period for the average:

Retrieve the dialog responses from the user.

dlg := dialog Analyse_TimeAverage;

Change time period to only 1 second. Since both step and time

specifiers are present, and we only want time, we must either

ensure they are compatible, or remove the unwanted specifier.

Here we shall completely replace the time specifier.

Could either remove the variable (as here) or assign it

some dummy value, such as dlgInput_Time := null;

destroy_variable("dlg.Input_Time”);

Specify the new times

dlg.Input_Time.FromTime := 0.0;

dlg.Input_Time.ToTime := 1.0;

Execute the process.

ret := process dlg;

DigiFlow Macros

– 248 –

If you wish to specify the initial values of the controls within the dialog, then this may be

achieved using the

 dlg_value := dialog dlg;

form of the command. Any valid components in dlg will be used to initialise the

corresponding controls within the dialog.

The functions get_dialog_response(..) and set_dialog_response(..) may be used

to retrieve or set (respectively) the current default response for a given dialog.

10.2 Recording user input

Constructing dfc code to control a process from scratch can be time consuming and prone

to error, especially when working with the more complex DigiFlow processes. To simplify

matters, DigiFlow is able to record many aspects of interactive use, and convert these to dfc

code.

Indeed, DigiFlow does this all the time, and records a log of user responses in the file

DlgResponses.log in the directory the process was run from. This file will gradually grow with

time as it accumulates more and more of the users’ interactive activity. This file may be

deleted without any harmful effects.

Moreover, the Edit Dialog Responses menu item (see §5.2.9) provides direct access to the

latest responses for all process dialogs, and provides the ability to fire up the dialog to

determine the dfc responses without initiating the process. Note, however, that the responses

displayed in Edit Dialog Responses is only the minimum set required for the options selected

in the dialog. For example, the various sifting options will not be included in the response

unless they were selected in the dialog. Figure 148 illustrates this point. Note that the

highlighted entry in figure 148b is included to remove any pre-existing output file.

 (a) (b)
Figure 148: Example of Edit Dialog Responses for the same process: (a) no sifting options selected,

and (b) sifting both time and space.

DigiFlow Plotting and drawing

– 249 –

11 Plotting and drawing

Many of the features of DigiFlow produce graphical output. Similarly, it is often desirable

for a dfc file to plot the results of its processing, or indeed for the user to plot data from a wide

variety of external sources. This section describes the features within DigiFlow that support

this process.

Before describing the commands controlling this process, consider the following example.
hD := draw_start(width:=512,height:=512,

description:="Unspecified DigiFlow drawing");

draw_group_begin(hD,name:="Velocity");

draw_begin_vector(hD,vectorScale:=10.0,autoWidth:=false);

#Data: xFrom,yFrom,xTo,yTo

 100.0 100.0 2.0 2.0

 300.0 300.0 -1.0 1.0

end_data; #vector

draw_group_end(hD,name:="(group)");

draw_end(hD);

hView := new_view(512,512);

view(hView,hD,erase:=true);

draw_destroy(hD);

Here, the drawing object, referred to by the handle hD, is created by the call to

draw_start(..). The draw_group_begin(..) draw_group_end(..) pair are optional:

they cause the graphics objects between to be grouped in any enhanced metafile created from

this drawing. Data is plotted by specifying it should be drawn as vectors through the

draw_begin_vector(..) command, then the data is enumerated. As many data lines as

desired may be included, the end of the data being indicated by end_data; Completion of the

drawing should be indicated by draw_end(..). The drawing object may then be rendered on

the screen by first using new_view(..) to create the view window, then calling

draw_on_view(..) (or equivalently a variant of the view(..) command) to do the rendering.

Finally, the drawing object may be destroyed using draw_destroy(..) to free up the

associated memory.

11.1 Drawing commands

There are two levels of drawing commands in DigiFlow. The main group, all of which start

with draw_, provide the most flexible, versatile and powerful approach to creating graphs,

plots, etc. However, in some situations, a simpler interface is required. To this end a second

set of drawing functions is provided in DigiFlow, with names beginning plot_, which

effectively act as a simplified interface to the draw_ family. This section deals with the draw_

family, whereas plot_ is dealt with in §11.3.

DigiFlow drawing commands may be subdivided into a number of groups.

Drawing initialisation is provided by draw_start(..), which returns a handle for use in

all other drawing commands. Ultimately, after drawing all elements, draw_end(..) indicates

the drawing is ready for rendering, after which time draw_destroy(..) may be used to tidy

up the memory that was used. The rendering itself is achieved through one or more of

draw_on_view(..), draw_on_file(..) and draw_on_emf(..). Note that there is a variant

of the view(..) function that is directly equivalent to draw_on_view(..).

The axes for the drawing are set up using draw_set_axes(..), with the labels and tick

spacing specified with draw_x_axis(..) and draw_y_axis(..). Alternate axes, independent

of the coordinate system, may be specified with draw_bottom_axis(..),

draw_top_axis(..), draw_left_axis(..) and draw_right_axis(..). All of these

understand LaTeX-like text formatting with fully licensed copies of DigiFlow; see §11.4 for

details.

DigiFlow Plotting and drawing

– 250 –

Basic drawing primitives include draw_move(..), draw_line(..), draw_lineto(..),

draw_mark(..) and draw_vector(..). The block data equivalents of these are

draw_begin_line(..), draw_begin_lineto(..), draw_begin_mark(..) and

draw_begin_vector(..), each block being terminated by end_data. In some cases it may be

desirable to reduce the number of discrete points to be plotted. This can be controlled for

subsequent draw commands using draw_skip_points(..).

Additional drawing primatives include draw_arc(..), draw_circle(..),

draw_rectangle(..) and draw_polygon(..).

The attributes applied to drawing primitives are set by draw_line_colour(..),

draw_fill_colour(..), draw_no_fill(..), draw_line_width(..),

draw_line_stye(..), draw_mark_type(..) and draw_mark_size(..). Note that colours

can be specified in a number of ways for draw_line_colour(..) and

draw_fill_colour(..), including using colour names (e.g. "black" or "red"), specifying

the red, green and blue components, or as an index into the current colour scheme (set by

draw_colour_scheme(..)). Further colour names can also be added using add_colour(..).

Text output is provided through draw_text(..) in conjunction with draw_font(..) and

draw_text_colour(..). In addition, draw_create_key(..) and draw_key_entry(..)

provide a convenient method of producing a legend for a plot. All of these understand LaTeX-

like formatting commands. See §11.4 for further details.

It is possible to place an image on the drawing with draw_image(..), setting the colour

scheme through draw_colour_scheme(..). An intensity scale for the image (or other

plotting feature) can be generated with draw_image_scale(..) for a horizontal scale, or

draw_image_scale_vertical(..) for one oriented vertically. A scale can also be provided

for vector elements using draw_vector_scale(..) and

draw_vector_scale_vertical(..).

Grouping of drawing objects may be achieved with draw_group_begin(..) and

draw_group_end(..), while plot attributes may be localised with draw_save_state(..)

and draw_restore_state(..). One drawing object may be embedded within another using

draw_embed_drawing(..), and the clipping area may be customised with

draw_clip_box(..).

Information about a specified drawing handle can be returned to the calling dfc code using

draw_get_axes(..), draw_get_font_height(..) and draw_get_status(..).

For a more complete list, and further details on these functions, refer to the dfc function

help facility within DigiFlow.

11.2 The DigiFlow Drawing format

The DigiFlow Drawing format (.dfd) represents a subset of the dfc dfc format that contains

a mixture of data representing DigiFlow results, and commands that allow DigiFlow to read

the data back in to form a plot. Typically, when DigiFlow produces a .dfd file, it will also

embed within it both time information, and documentation that records how the file was

created. This latter information is then available through the Edit: Properties dialog described

in §5.2.5.

A .dfd file contains four types of lines: comment lines, which start with a hash (#)

character; drawing command lines (all valid commands start with draw_); data lines

containing numeric values, and macro lines. A macro line is a line that contains other dfc

code. Such lines should only be used to manipulate data for the drawing; they should have no

external or permanent effect on DigiFlow. Finally, a .dfd file can contain only a single drawing

object and must not attempt to display it (e.g. it must not call view(..)). A .dfd file may be

DigiFlow Plotting and drawing

– 251 –

specified at the Open Image dialog (§4.1, 5.1.1) or at the Run Code dialog (§5.1.2) prompt.

The converse, however, is not true.

DigiFlow can generate .dfd files in a number of ways. This process is automatic if the

output file name is given the .dfd extension (particularly suitable for plots such as those from

Analyse: Time Summarise, §5.6.1.6) or using the draw_on_file(..) function. To aid

interpretation by the user or user-written programs, .dfd files created by DigiFlow always

include keywords in the calls to the various drawing commands. Similarly, DigiFlow-created

.dfd files do not contain macro lines.

The following illustrates a trivial .dfd file:
hDraw := draw_start(512,512);

draw_set_axes(hDraw,0,10,0,100);

draw_x_axis(hDraw,"x");

draw_y_axis(hDraw,"y");

draw_begin_marks(hDraw);

 0 0

 1 1

 2 4

 3 9

 5 25

 8 64

end_data;

draw_end(hDraw);

Note that if the .dfd file contains an error, then the part of the drawing preceding the error will

still be rendered, however no error message will be generated. The .dfd code is run in its own

(isolated) interpreter context and can not access variables in any dfc code that may be causing

the .dfd to be processed.

The output from a .dfd file, as with any drawing command, is rendered as an Enhanced

MetaFile which utilises vector graphics. It is therefore ideal for incorporation in manuscripts

and may readily be converted to PostScript. Figure 149 illustrates the output from the above

trivial .dfd file.

0.0 2.0 4.0 6.0 8.0 10.0

x

0.0

20.0

40.0

60.0

80.0

100.0

y

Figure 149: Example of the output from the trivial .dfd file given above.

DigiFlow Plotting and drawing

– 252 –

11.3 Simple plot

The Simple Plot family of routines, which have names beginning with plot_, provides a

simplified interface for producing basic graphs of data with a minimum of commands. In the

simplest case, a single command is all that is necessary to produce a line plot or a plot

showing individual data points. Consider the following example:
x := x_index(100)/10.0;

y := x*(x-2);

plot_line(x,y);

The first two lines simply define a quadratic to be plotted, and the final line takes the data in

the x and y arrays and produces a line plot using the default colour and style. Further lines

may be plotted, either by making the x and y arrays multidimensional, or by repeated calls to

the plot_line(..) function. The following two code segments would produce the same

results:
x := x_index(100,2)/10.0;

y[:,0] := x[:,0]*(x[:,0]-2);

y[:,1] := x[:,1];

plot_line(x,y);

or
x := x_index(100)/10.0;

y := x*(x-2);

plot_line(x,y);

y := x;

plot_line(x,y);

The limiting values for the axes are determined automatically as the extremes in the

specified data. However, these may be overridden by calling plot_axes(..) giving the

desired limiting values. Similarly, the default titles for the axes may be overridden by

plot_titles(..).

If calling any of these plot functions directly from dfc code, then DigiFlow will

automatically display the plot by creating an appropriate view. Subsequent calls to Simple

Plot functions will cause that view to be updated. If, however, the call is made within one of

the menu options, then DigiFlow will display the plot only when appropriate and not update it

for each and every call.

Many of the Simple Plot functions (which are implemented dfc macros to the draw_ series

of functions) have optional parameters to provide greater flexibility. For example, the

plot_line(..) function used above includes an optional style parameter that can be used to

select between lines and points, and an optional colour parameter. Each of these may be

supplied either as a single value, or (when multiple sets of data are being plotted

simultaneously) as a list of values.

The Simple Plot family of functions includes:
plot(..) Plots a series of points.
plot_line(..) Plots a line.
plot_vectors(..) Produce a vector map.
plot_image(..) Add an image to a plot.
plot_fit(..) Perform and plot a least squares fit.
plot_axes(..) Explicitly specify the limits for the axes.
plot_axis_types(..) Specify the types of axis (linear or

logarithmic).
plot_titles(..) Specify the titles for the axes.
plot_new(..) Start a new plot.
plot_view_handle(..) Return the handle for the view window

displaying the plot.

DigiFlow Plotting and drawing

– 253 –

plot_drawing(..) Return a handle to the base plot. This does not

include information about the axes.
plot_update_view(..) Cause the view to be updated.

Most of the Simple Plot family of functions return a handle to the drawing that is being

displayed. This handle may be passed to any of the draw_ family of functions to provide more

advanced control over the appearance of the plot. The reason for this is related to the manner

in which the limits on the axes are automatically determined.

If you wish to add details to a plot using the draw_ family and wish this to be retained after

subsequent calls to the Simple Plot functions, then recover a handle to the base drawing using

plot_drawing(..). (Alternatively, passing a null or the integer value zero as the plot handle

to many of the draw_ family will have the same effect.) However, adding any further details to

the plot using one of the simple plot functions will cause this additional information to be

discarded. Note the base drawing does not have the limits for its axes set and so should not be

viewed directly. After modifying the drawing using the handle obtained from

plot_drawing(..) you should either call another of the Simple Plot family of functions or

call plot_update_view(..).

11.4 Text

With fully licensed copies of DigiFlow, text added to drawings and plots, whether via the

draw_... or plot_... set of functions, understands simple LaTeX-like formatting

commands within the specified strings. For example, the string "Dimensionless height

$\big(\frac{h}/{\alpha^2H_0}\big)$" if specified in draw_text(..) would produce the

label

Dimensionless height (
h

2H
0
)

.

Although DigiFlow does not understand the full range of LaTeX commands and macros, it

can interpret those most likely to be of use in figures and graphs. The file DigiFlow_Latex.dfc

defines the majority of macros, using a set of more primitive macros built in to DigiFlow’s

LaTeX-like interpreter. Consult the dfc documentation on draw_install_latex_macro(..)

for details of how to define macros. The LaTeX interpretation may be turned off using

draw_enable_latex(..).

Text size may be changed within a given string using the LaTeX commands \tiny,

\small, \subscriptsize, \footnotesize, \normalsize, \large, \Large, \LARGE, \huge

and \HUGE. However, it is normally more convenient to change the size using draw_font(..)

when outputting text through draw_text(..). On the other hand, draw_font(..) does not

change the size of elements such as the labels and scale for the axes. The command

draw_set_base_scales(..) changes the base scale for all text, and can thus be used to

change the scale for axes, etc.

The LaTeX macros understood by DigiFlow are listed below.

11.5 LaTeX macros
_

^

\!

\#

\$

\%

\&

\,

\2dots

\:

\;

\Alpha

\BIG

\BIG

\Beta

\Big

\Big

\Chi

\Delta

\Downarrow

\Epsilon

\Eta

\Gamma

\HUGE

\HUGE

\Im

\Iota

DigiFlow Plotting and drawing

– 254 –

\Kappa

\LARGE

\LARGE

\Lambda

\Large

\Large

\Leftarrow

\Leftrightarrow

\Mu

\Nu

\O

\Omega

\P

\Phi

\Pi

\Psi

\Re

\Rho

\Rightarrow

\S

\Sigma

\Tau

\Theta

\Uparrow

\Upsilon

\Varphi

\Varpi

\Xi

\Zeta

\\

\^

_

\aleph

\alpha

\angle

\approx

\backslash

\bar

\bar

\beta

\bf

\bf

\big

\big

\bigsizes

\bullet

\calc

\cdot

\chi

\circ

\copyright

\cos

\cosh

\currentx

\currenty

\dagger

\ddagger

\dddot

\dddot

\ddot

\ddot

\delta

\div

\dot

\dot

\dots

\downarrow

\ell

\emdash

\endash

\epsilon

\equals

\equalsspace

\equiv

\eta

\euro

\exists

\exp

\footnotesize

\footnotesize

\forall

\frac

\frac

\gamma

\ge

\geq

\gg

\gotox

\gotox0

\gotoxy

\gotoxy0

\gotoy

\gotoy0

\hat

\hat

\huge

\huge

\hyphen

\in

\infty

\int

\iota

\it

\it

\kappa

\lambda

\langle

\large

\large

\lbrace

\lbrack

\le

\left

\left

\leftarrow

\leftrightarrow

\leftszbracket

\leq

\ll

\ln

\log

\mark

\mathbf

\mathbf

\mathit

\mathit

\mathrm

\mathrm

\mathsprime

\minus

\minusspace

\moveto

\mp

\mu

\nabla

\ne

\neq

\normalsize

\normalsize

\notin

\nu

\nudge

\o

\omega

\oplus

\oslash

\otimes

\overchar

\overcharoffset

\partial

\phantom

\phi

\pi

\plus

\plusspace

\pm

\pop

\popcalc

\pounds

\prime

\print

\prod

\propto

\psi

\push

\pushcalc

\qquad

\quad

\querybottom

\queryglyphbottom

\queryglyphheight

\queryglyphleft

\queryglyphright

\queryglyphtop

\queryglyphwidth

\queryheight

\queryheightline

\queryheighttotal

\queryleft

\queryright

\querytop

\querywidth

\querywidthline

\rangle

\rbrace

\rbrack

\rho

\right

\right

\rightarrow

\rightszbracket

\rm

\rm

\rmove

\rule

\scriptsize

\scriptsize

\sigma

DigiFlow

– 255 –

\sim

\simeq

\sin

\sinh

\size

\sizeto

\small

\small

\sqrt

\sqrt

\subscript

\subscriptIt

\subset

\subseteq

\sum

\superscript

\superscriptIt

\supset

\supseteq

\surd

\tan

\tanh

\tau

\textbf

\textbf

\textit

\textit

\textnormal

\textnormal

\textrm

\textrm

\therefore

\theta

\tilde

\tilde

\times

\tiny

\tiny

\underline

\underline

\uparrow

\upsilon

\varphi

\varpi

\vcentre

\wedge

\widthheight

\wp

\xi

\yen

\zeta

\{

\}

\~

DigiFlow Image file formats

– 256 –

12 Image file formats

In this section, some of the key image file formats supported by DigiFlow are described.

Which image file is most appropriate depends in part on the intended use of the final

images, and in part on the amount of disk space available. For all but the simplest processing

operations, use of a ‘lossless’ integer image format (all industry standard formats are integer

based, most using 8-bit representations of the intensity) will introduce losses through the

quantisation of a floating point value into an integer domain. The .dfi format introduced in

DigiFlow (see §12.7) overcomes this problem by storing the images in a floating point format

(either 32 or 64 bit, although it can also store as 8 bit); the cost is a greatly increased storage

requirement.

In environments where DigiFlow is being used alongside DigImage, use of the older

DigImage formats (.pic and .mov) is recommended to facilitate exchange of information

between these two applications. Indeed, the DigImage .mov format (now also known as .dfm)

still plays a central role as the initial format when capturing video from a supported camera

(see §5.1.5.2).

When DigiFlow is used in conjunction with other image processing packages, or with

painting programmes, then use of standard formats such as .bmp and .tif is recommended.

With vector drawing packages, then the enhanced metafile format (.emf) is normally the best

option, although the older style Windows metafile format (.wmf) may also be used. Note that a

Matlab macro is available for reading uncompressed .dfi and .dfd files into Matlab.

For incorporating images or graphics into documents, the best results may be achieved with

encapsulated PostScript (.eps), if your printer supports this. If you do not use a PostScript

printer, then use standard formats such as .bmp, .tif .jpg, .emf or .wmf.

12.1 Windows bitmap files (.bmp)

The .bmp format is central to the design of Windows, and offers a universal but inefficient

standard for simple images. There are a number of variants of .bmp files, and DigiFlow can

read the most common variants (including 24-bit colour files). DigiFlow will normally,

however, only create 8-bit uncompressed files.

See standard Windows documentation for further details.

12.2 TIFF files (.tif)

The Tagged Image Format File (TIFF) is one of the oldest commonly used image formats.

It offers great flexibility, but also great difficulty as there are so many variants.

DigiFlow can read a wide variety of TIFF files using the FreeImage library.

See standard TIFF documentation for further details.

12.3 GIF files (.gif)

For a long time, the .gif format was widely used, providing an effective lossless

compression for a broad variety of images. However, in the late 1990s, Compuserve, who

owned the intellectual property rights for the GIF format, decided to charge a royalty. Since

then, the use of GIF has declined sharply, and many applications that once supported GIF no

longer do so. More recently the original patent on the GIF format expired, and DigiFlow is

again able to offer comprehensive support for GIF.

12.4 Enhanced metafiles (.emf)

Enhanced metafiles (.emf) are a standard Windows format, intended primarily for vector

graphics, but also supporting bit mapped images. Most Windows-based packages support

DigiFlow Image file formats

– 257 –

embedding and/or linking with these files to provide graphical content. DigiFlow can both

read and write .emf files, although they should not normally be used as an image source.

12.5 Windows metafiles (.wmf)

Windows metafiles (.wmf) are a standard Windows format, dating from the days when

Windows was only 16 bits. This format is intended primarily for vector graphics, but also

supports bit mapped images. Most Windows-based packages support embedding and/or

linking with these files to provide graphical content. DigiFlow can both read and write .wmf

files, although they should not normally be used as an image source. In general the newer

Enhanced metafile format (.emf) should be used in preference (see §12.4).

12.6 Encapsulated PostScript (.eps)

Encapsulated PostScript is fundamentally an output format, intended for inclusion in

documents that will be printed using a PostScript printer. DigiFlow does not provide the

ability to read data from .eps files, although may be able to use GhostScript to convert .eps

into a format it can read (see §2.2.2). Encapsulated PostScript typically provides the best

quality output for a printed document and may be imported readily into standard word

processors and text formatting languages such as LaTeX.

12.7 DigiFlow floating point image format (.dfi)

The purpose of this format is to store image and related data without significant loss of

precision. Indeed for most elements of the format, there are both four-byte and eight-byte

floating point representations as an option, in recognition that DigiFlow internally uses an

eight byte floating point representation, but often a four byte representation is sufficient and is

more compact. For compactness, a single-byte image format is also available.

A tagged format is used to distinguish the different data objects within the file, and the four

and eight byte variants simply have different tags. However, for the convenience of the user,

DigiFlow uses a single extension, .dfi, for all of these, with the Options button for the output

stream allowing selection of the desired variant (32 or 64 bits). Additionally, the .dfi format

can store the image data in a single byte integer (8 bit) format.

Overall, the structure of the .dfi files may represented as

header

tag

object data

tag

object data

…

Each of these elements is described in turn below.

12.7.1 Header
The file header has been kept as simple as possible while still conveying the essential data.

Field Data type Description

idFormat Character(32) Contains the text “Tagged

floating point image

file” (excluding quotes).

This is used by DigiFlow to

identify the file type.

Version Integer (4) Version number. Here must

equal zero.

DigiFlow Image file formats

– 258 –

12.7.2 Tag
Each data object is preceded by a tag that indicates the type of object and the size of the

object.

Field Data type Description

DataType Integer (4) The type of data contained in

the ext object.

nBytes Integer (4) The number of bytes of data

used to represent the object.

Valid tags and the associated data objects are described in the following subsections. Note that

the quoted value is in hexadecimal (base 16), as indicated by the hash (#) in front of the

DataType value.

12.7.3 8 bit image (DataType = #1001)
This data object contains an image using an eight-bit (single byte) integer representation.

Note nBytes = 8 + nx*ny.

Field Data type Description

nx Integer (4) The width of the image, in

pixels.

ny Integer (4) The height of the image, in

pixels.

c(0:nx1, 0:ny1) Integer (1) The pixel intensities. The

first index is across from left

to right, and the second is up

from bottom to top. Storage

in the file is ordered

c(0,0), c(1,0),…

12.7.4 8 bit multi-plane image (DataType = #11001)
This data object contains a multi-plane image using an eight-bit (single-byte) integer

representation. Note nBytes = 12 + nx*ny*nz.

Field Data type Description

nx Integer (4) The width of the image, in

pixels.

ny Integer (4) The height of the image, in

pixels.

nz Integer (4) The number of pixel planes.

c(0:nx1, 0:ny1,0:nz-1) Integer (1) The pixel intensities. The

first index is across from left

to right, and the second is up

from bottom to top. Storage

in the file is ordered

c(0,0,0), r(1,0,0),…

12.7.5 Compressed 8 bit image (DataType = #12001)
This data object contains an image using an eight-bit (single byte) integer representation

compressed using ZLib. Note that nBytes varies depending on the efficiency of the

compression, and that nine different levels of compression are available through the output

options setting (see §4.4).

DigiFlow Image file formats

– 259 –

Field Data type Description

nx Integer (4) The width of the image, in

pixels.

ny Integer (4) The height of the image, in

pixels.

nz Integer (4) The number of image planes.

szCompressed Integer (4) The number of bytes of

compressed data.

c(0:szCompressed1) Integer (1) The compressed pixel data.

When reading an image, this

should be fed to the ZLib

function uncompress to

recover the original image.

When writing an image, the

ZLib function compress(..)

or compress2(..) should be

used.

12.7.6 32 bit image (DataType = #1004)
This data object contains an image using a four-byte floating point representation. Note

nBytes = 8 + 4*nx*ny.

Field Data type Description

nx Integer (4) The width of the image, in

pixels.

ny Integer (4) The height of the image, in

pixels.

r(0:nx1, 0:ny1) Real (4) The pixel intensities. The

first index is across from left

to right, and the second is up

from bottom to top. Storage

in the file is ordered

r(0,0), r(1,0),…

12.7.7 32 bit multi-plane image (DataType = #11004)
This data object contains a multi-plane image using a four-byte floating point

representation. Note nBytes = 12 + 4*nx*ny*nz.

Field Data type Description

nx Integer (4) The width of the image, in

pixels.

ny Integer (4) The height of the image, in

pixels.

nz Integer (4) The number of pixel planes.

r(0:nx1, 0:ny1,0:nz-1) Real (4) The pixel intensities. The

first index is across from left

to right, and the second is up

from bottom to top. Storage

in the file is ordered

r(0,0,0), r(1,0,0),…

DigiFlow Image file formats

– 260 –

12.7.8 Compressed 32 bit image (DataType = #12004)
This data object contains an image using an four-byte floating point representation,

compressed using ZLib. Note that nBytes varies depending on the efficiency of the

compression, and that nine different levels of compression are available through the output

options setting (see §4.4).

Field Data type Description

nx Integer (4) The width of the image, in

pixels.

ny Integer (4) The height of the image, in

pixels.

nz Integer (4) The number of image planes.

szCompressed Integer (4) The number of bytes of

compressed data.

c(0:szCompressed1) Integer (1) The compressed pixel data.

When reading an image, this

should be fed to the ZLib

function uncompress(..) to

recover the original four-byte

floating point image. When

writing an image, the ZLib

function compress(..) or

compress2(..) should be

used.

12.7.9 64 bit image (DataType = #1008)
This data object contains an image using an eight-byte floating point representation. Note

nBytes = 8 + 8*nx*ny.

Field Data type Description

nx Integer (4) The width of the image, in

pixels.

ny Integer (4) The height of the image, in

pixels.

r(0:nx1, 0:ny1) Real (8) The pixel intensities. The

first index is across from left

to right, and the second is up

from bottom to top. Storage

in the file is ordered

r(0,0), r(1,0),…

12.7.10 64 bit multi-plane image (DataType = #11008)
This data object contains a multi-plane image using a eight-byte floating point

representation. Note nBytes = 12 + 8*nx*ny*nz.

Field Data type Description

nx Integer (4) The width of the image, in

pixels.

ny Integer (4) The height of the image, in

pixels.

nz Integer (4) The number of pixel planes.

DigiFlow Image file formats

– 261 –

r(0:nx1, 0:ny1,0:nz-1) Real (8) The pixel intensities. The

first index is across from left

to right, and the second is up

from bottom to top. Storage

in the file is ordered

r(0,0,0), r(1,0,0),…

12.7.11 Compressed 64 bit image (DataType = #12008)
This data object contains an image using an eight-byte floating point representation,

compressed using ZLib. Note that nBytes varies depending on the efficiency of the

compression, and that nine different levels of compression are available through the output

options setting (see §4.4).

Field Data type Description

nx Integer (4) The width of the image, in

pixels.

ny Integer (4) The height of the image, in

pixels.

nz Integer (4) The number of image planes.

szCompressed Integer (4) The number of bytes of

compressed data.

c(0:szCompressed1) Integer (1) The compressed pixel data.

When reading an image, this

should be fed to the ZLib

function uncompress to

recover the original eight-

byte floating point image.

When writing an image, the

ZLib function compress(..)

or compress2(..) should be

used.

12.7.12 32 bit range (DataType = #1014)
This data object specifies the range of image values that can be displayed. Note nBytes = 8.

This tag should be located after the image to which it applies.

Field Data type Description

rBlack Real (4) The intensity (value of r) that

will be displayed as “black”.

rWhite0 Real (4) The intensity (value of r) that

will be displayed as “white”.

12.7.13 64 bit range (DataType = #1018)
This data object specifies the range of image values that can be displayed. Note

nBytes = 16. This tag should be located after the image to which it applies.

Field Data type Description

rBlack Real (8) The intensity (value of r) that

will be displayed as “black”.

rWhite0 Real (8) The intensity (value of r) that

will be displayed as “white”.

DigiFlow Image file formats

– 262 –

12.7.14 Rescale image (DataType = #1100)
This data object requests that the image is rescaled after being read in. Typically this is

used to render a low resolution image to a given size.

Field Data type Description

nxWant Integer (4) The desired width after

rescaling. Typically this is the

width of the original image

prior to resampling and

saving.

nyWant Integer (4) The desired height after

rescaling. Typically this is the

height of the original image

prior to resampling and

saving.

method Integer (4) Method of rescaling image:

 0 Constant

 1 Bilinear

 2 Bicubic

 3 Natural spline

 4 Cubic b-spline

 5 Quintic b-

spline.

12.7.15 Rescale image rectangle (DataType = #1101)
This data object requests that the image is rescaled after being read in. Typically this is

used to render a low resolution image to a given size. In contrast with DataType #1100, this

data object allows the input image to coincide with a particular rectangle within the resultant

image. This feature is designed primarily to allow PIV velocity fields to be rescaled back to

the original size and location if saved in a compact format with vectors only at the

interrogation points.

Field Data type Description

nxWant Integer (4) The desired width after

rescaling. Typically this is the

width of the original image

prior to resampling and

saving.

nyWant Integer (4) The desired height after

rescaling. Typically this is the

height of the original image

prior to resampling and

saving.

method Integer (4) Method of rescaling image:

 0 Constant

 1 Bilinear

 2 Bicubic

 3 Natural spline

 4 Cubic b-spline

 5 Quintic b-

spline.

DigiFlow Image file formats

– 263 –

useRectangle Integer (4) Indicates if Rectangle is to be

used. If zero (false), then the

net effect of this tag is the

same as for #1100.

Rectangle.xMin Integer (4) The left side of the rescaled

source image in the output

image.

Rectangle.yMin Integer (4) The bottom of the rescaled

source image in the output

image.

Rectangle.xMax Integer (4) The right side of the rescaled

source image in the output

image.

Rectangle.yMax Integer (4) The top of the rescaled source

image in the output image.

12.7.16 Colour scheme (DataType = #2000)
This data object contains the colour scheme that the image should be displayed with by

default. Note that nBytes = 768. This tag should be located after the image to which it applies.

Field Data type Description

red(0:255) Integer (1) Defines the red component of

the colour scheme to be used

to display the image.

green(0:255) Integer (1) Defines the green component

of the colour scheme to be

used to display the image.

blue(0:255) Integer (1) Defines the blue component

of the colour scheme to be

used to display the image.

12.7.17 Colour scheme name (DataType = #2001)
This data object contains the name of a colour scheme. If the name is recognised by

DigiFlow, then the corresponding colour scheme will be used. Note that nBytes is 64.

Field Data type Description

name Character (64) The name of the colour

scheme to be used.

12.7.18 Colour scheme name variable (DataType = #2002)
This data object contains the name of a colour scheme. If the name is recognised by

DigiFlow, then the corresponding colour scheme will be used. Note that nBytes is 4 plus the

length of the name.

Field Data type Description

iLen Integer (4) The length of the name

string.

name Character (iLen) The name of the colour

scheme to be used.

12.7.19 Description (DataType = #3000)
This data object contains a 512 character description. Note nBytes = 512.

DigiFlow Image file formats

– 264 –

Field Data type Description

Descr Character (512) A description.

12.7.20 User comments (DataType = #3001)
This object contains user comments about the process that created the file.

Field Data type Description

nBytes Integer (4) The length of the description

in bytes (characters).

Descr Character (nBytes) The description.

12.7.21 Creating process (DataType = #3002)
This object contains information about the process that created the file. Typically this is a

copy of the dialog responses for the controlling process.

Field Data type Description

nBytes Integer (4) The length of the description

in bytes (characters).

Descr Character (nBytes) The description.

12.7.22 Creator details (DataType = #3003)
Records details of the creator. Note, nBytes = 304.

Field Data type Description

DigiFlow Character (32) The DigiFlow version.

buildDate Character (16) The build date.

licenceType Character (16) The type of licence.

nameUser Character (32) The name of the user.

nameComputer Character (32) The name of the computer.

nameDomain Character (32) The name of the Windows

domain.

guidUser Character (32) The user GUID.

macAddress(0:3) 4 lots of Character (12) Mac address of creating

computer.

ipAddress(0:3) 4 lots of Character (16) IP address of creating

computer.

12.7.23 Image time (DataType = #3018)
This data object contains time information. Note nBytes = 28.

Field Data type Description

iFrame Integer (4) Ordinal position of the frame.

Reserved Integer (4) Reserved.

Time Real (8) The time for the image.

tStep Real (8) The size of the time steps in

the sequence the image

belongs to.

tFirst Real (8) The time for the first frame in

the sequence (i.e. iFrame = 0)

12.7.24 Image coordinates (DataType = #4008)
This data object gives information on the coordinate system if this is not a standard one.

DigiFlow Image file formats

– 265 –

Field Data type Description

Kind Integer (4) The type of coorindates

stored here:

0 None

1 Approximation to

world

2 Custom

xWorldPerPixel Real (8) Number of world units per

pixel.

yWorldPerPixel Real (8) Number of world units per

pixel.

xOriginWorld Real (8) The world origin of the

image.

yOriginWorld Real (8) The world origin of the

image.

xUnits Character (16) The name of the world units.

yUnits Character (16) The name of the world units.

OriginalName Character (64) The name of the coordinate

system on which this was

based. If none, then

“(none)”.

12.7.25 Image plane details (DataType = #4108)
This data object gives details of the contents of individual image planes when there is more

than one.

Field Data type Description

nPlanes Integer (4) The number of planes of data

contained in this field.

Contains0 Integer (4) Indicates the type of data in

image plane 0:

#000 None

#001 Greyscale

#002 Red

#003 Green

#004 Blue

#101 xCoordinate

#102 yCoordinate

#103 zCoordinate

#201 xVector (u)

#202 yVector (v)

#203 zVector (w)

Descr0 Character (32) Text description or name for

bit plane.

ParamA0 Real (8) First parameter

ParamB0 Real (8) Second parameter

ParamC0 Real (8) Third parameter

ParamD0 Real (8) Fourth parameter

Contains1 Integer (4) As for Contains0, but for

DigiFlow Image file formats

– 266 –

second image plane.

Descr1 Character (32) As for Descr0, but for second

image plane.

…

12.8 DigiFlow Particle tracking format

The format used for DigiFlow .dft particle tracking files shares some elements in common

with .dfi files. Both use the same general tagged structure. However, while .dfi files are aimed

primarily at containing rasterised images, .dft files are designed to store information about

particles located in an image, ant the relationship between these particles and the neighbouring

images in a time sequence.

Further information on the format of these files is available on request.

12.9 DigiFlow pixel data format (.dfp)

The .dfp format is a simple plain text format intended for direct use by other programs, or

to be imported into spreadsheets, etc. The first line contains the width and height of the image

(in pixels). Optionally, the number of data planes can also be specified Subsequent lines each

contain the pixel indices (i,j) and a floating point representation of the intensity. For a simple

image, with only a single plane of data, the format is therefore
nx ny

i j pix_ij

i j pix_ij

…

With more than one plane of data, the format is
nx ny nz

i j pix_ij0 pix_ij1 … pix_ijk

i j pix_ij0 pix_ij1 … pix_ijk

…

This choice of format is motivated by providing a compact, readable output for velocity fields,

rgb full-colour images, etc. For example, with an image containing both velocity and vorticity,

the output format would be
nx ny 3

i j u v vort

i j u v vort

…

while for a full colour image it would be
nx ny 3

i j red green blue

i j red green blue

…

When DigiFlow creates a .dfp file, it contains all the image data, ordered from left to right,

then from bottom to top. However, DigiFlow does not care on the order of the pixel data when

reading a .dfp file, and the file need not contain all valid combinations of the pixel indices.

Note that the first index gives the column number (from 0 at the left to with1 at the right),

while the second determines the row number (from 0 at the bottom, to height1 at the top).

12.10 DigiFlow drawing format (.dfd)

The DigiFlow drawing format (.dfp files) can store image as well as vector graphic data.

These files may be read as well as written, although they are not recommended for simple

raster images. For further information, refer to the information on the format of these files in

§11.2.

DigiFlow Image file formats

– 267 –

12.11 DigiFlow archive format (.dfa)

The DigiFlow archive file format (.dfa files) do not themselves store images. Rather, they

provide a container for information describing the contents of a sequence of image files, and

provide a way of specifying the sequence.

If a .dfa file is generated for a sequence of images image000.png, image001.png, …

image732.png, then the name of the .dfa file will be image###.png.dfa. Note that this name

comprises the manner in which you would specify the sequence to DigiFlow (image###.png)

but with the .dfa appended.

The archive file itself contains dfc code specifying variables that describe the image

sequence. For example, generating the above image###.png sequence using File: Edit Stream

would produce
image###.png.dfa

Begin

DigiFlow Archive File for: image###.png

File := "image###.png";

SelectorKind := 3;

IndexPtr := 5;

nDigits := 2;

FileType := 21;

nx := 512;

ny := 512;

nz := 1;

Time.LocateWith := 1;

Time.fFirst := 0;

Time.fLast := 732;

Time.tFirst := 0.0;

Time.tLast := 361.00000000000;

Time.tStep := 0.50000000000000;

Comments.UserComments := "No user comments";

Comments.CreatingProcess := {dlgFile_EditStream.DirectCopy :=

true;

dlgFile_EditStream.DisplayOnExit := true;

dlgFile_EditStream.Input := "JPRD45.MOV";

dlgFile_EditStream.Input_Options.Display := true;

dlgFile_EditStream.Input_Options.UseArchive := true;

dlgFile_EditStream.Input_Region.Kind := "All";

dlgFile_EditStream.Output := "junk##.png";

dlgFile_EditStream.Output_Options.DeleteExisting := true;

dlgFile_EditStream.Output_Options.Compression := 0;

dlgFile_EditStream.Output_Options.TrueColour := false;

dlgFile_EditStream.Output_Options.Colour := "(default)";

dlgFile_EditStream.Output_Options.Display := true;

dlgFile_EditStream.Output_Options.UseArchive := true;

dlgFile_EditStream.ReviewCapture := false;

dlgFile_EditStream.process := "File_EditStream";

process dlgFile_EditStream;

};

Creator.DigiFlow := "DigiFlow v3.4.0 (ivf)";

Creator.Licence := "commercial";

Creator.UserName := "sd103";

Creator.ComputerName := "WETA";

Creator.UserDomain := "WETA";

Creator.UserNumber := "{…}";

Creator.MacAddress0 := "…";

Creator.MacAddress1 := "…";

Creator.MacAddress2 := "";

Creator.MacAddress3 := "";

Creator.IPAddress0 := "127.0.0.1";

Creator.IPAddress1 := "192.168.1.2";

Creator.IPAddress2 := "192.168.56.1";

DigiFlow Image file formats

– 268 –

Creator.IPAddress3 := "";

Coord.Kind := 0;

Coord.xWorldPerPixel := 0.0;

Coord.yWorldPerPixel := 0.0;

Coord.xOriginWorld := 0.0;

Coord.yOriginWorld := 0.0;

Coord.xUnits := "";

Coord.yUnits := "";

Coord.OriginalName := "";

Appearance.rBlack := 0.0;

Appearance.rWhite := 1.00000000000000;

 Appearance.LUT.Red:=[0.0000 … 1.0000 1.0000];

 Appearance.LUT.Green:=[0.0000 … 0.9608 0.9804];

 Appearance.LUT.Blue:=[0.0000 … 0.9608 0.9804];

Appearance.ColourScheme.Name := "(default)";

Appearance.DisplayAs := 1;

Appearance.TopDown :=false;

Resample.Kind := 0;

Tue May 29 21:32:57 2012

End

junk##.png.dfa

Note that some of the entries in the .dfa file above have been shortened or removed (and

replaced by an elpsis) to aid clarity. The details stored here include what can be determined

using read_image_details(..).

If you attempt to open a .dfa file using a function intended to read an image, then the

corresponding image or image stream will be opened (as specified in the File variable), but

key details will be taken from the .dfa file.

12.12 DigImage raw format (.pic)

This format, developed originally for DigImage, is the simplest supported by DigiFlow. It

may be both read and written.

Field Data type Description

ni Integer (2) Number of rows in the image.

nj Integer (2) Number of columns in the

image.

iPixel(0:nj1,0:ni1) Byte (1) Array of un-signed image

intensities, ordered across

(first index) then down

(second index) from the top

left.

iOLUT Integer (2), optional The DigImage output look up

table giving the colour

scheme.

Red(0:255) Integer (1), optional Defines the red component of

the colour scheme to be used

to display the image. This

entry is optional if and only if

nChannels = 1.

Green(0:255) Integer (1), optional Defines the green component

of the colour scheme to be

used to display the image.

This entry is optional if and

only if nChannels = 1.

Blue(0:255) Integer (1), optional Defines the blue component

DigiFlow Image file formats

– 269 –

of the colour scheme to be

used to display the image.

This entry is optional if and

only if nChannels = 1.

iw0 Integer (2), optional The location of the top of the

window saved in the file.

iw1 Integer (2), optional The location of the bottom of

the window saved in the file.

jw0 Integer (2), optional The location of the left of the

window saved in the file.

jw1 Integer (2), optional The location of the right of

the window saved in the file.

12.13 DigImage compressed format (.pic)

The compressed version of the DigImage file format was developed to allow efficient

compression using a hybrid adaptive run-length encoding scheme based on individual bit

planes. The degree of compression achieved depends on the structure of the image. Although

DigiFlow is able to read these files, it does not provide a user interface to allow them to be

created.

Note that the image is stored top-down.

Bytes Data type Description

0-1 Integer (2) Always zero to distinguish from uncompressed format.

2-3 Integer (2) nBitPlanes, indicating the number of bit planes stored in the

file.

4-5 Integer (2) The height of the image in pixels.

6-7 Integer (2) The width of the image in pixels.

5 Integer (1) Indicates the type of encoding used in the following bytes:

Bit7 If set, then run-length encode, otherwise bit-image

encoding.

Bit6 If bit7=1, then bit6 set indicates the length of the run

is given by bits 0-4 in conjunction with the following byte. If

bit6 is clear, then the run length is given only by bits 0-4.

 If bit7=0, then bit6 set indicates the number of BYTEs

specified by a bit-image is given by bits 0-4 and the following

byte; if clear and bit5 is set, then only bits 0-4 are used to give

the number of BYTES in the bit-image. However, if bit5 is

clear, then bits 0-4 are themselves a bit-image.

bit5 If bit7=1, then this bit indicates whether the

corresponding bit plane is set or clear in the run.

 If bit7=0, then this bit indicates whether bits 0-4 are

used as (part of) the length of the bit-image, or the bit-image

itself (clear).

bits0-4 Used in giving the length of the run length or bit-

image, or as part of the bit-image (bits 5,6&7 all clear).

6 Integer (1) If bit6 of byte4 is set, then this byte is used in specifying the

length of the run or bit-image.

If bit 6 of byte 4 is clear, then this is the first byte of the

encoding segment (if previous byte was run-length), or part of

DigiFlow Image file formats

– 270 –

the bit-image.

7 This could be part of the bit-image specified by bytes 5 & 6,

or a new key code similar to 5, etc.

… Repeat run-length and/or bit-image encoded segments, bit

plane by bit plane, until all image data has been processed.

 Integer (2) iOLUT Optional specification of the logical output look up

table number within DigImage (not used by DigiFlow).

Red(0:255) Integer (1) Defines the red component of the colour scheme to be used to

display the image.

Green(0:255) Integer (1) Defines the green component of the colour scheme to be used

to display the image.

Blue(0:255) Integer (1) Defines the blue component of the colour scheme to be used

to display the image.

iw0 Integer (2) The top of the source window saved in this file.

iw1 Integer (2) The bottom of the source window saved in this file.

jw0 Integer (2) The left of the source window saved in this file.

jw1 Integer (2) The right of the source window saved in this file.

12.14 DigImage movie format(.mov or .dfm)

The DigImage movie format is of central importance for sharing image sequences between

DigiFlow and the earlier DigImage. It also provides a computationally efficient medium for

storing sequences of 8-bit images of any resolution. The images are stored top-down, and the

file header contains an index of their location within the file.
C= DigImage Movie Genearal Header Information =

C= Size Name Description =

C= 8 FileOwner Contains the text "DigImage" =

C= 8 Version Contains the DigImage version =

C= string. =

C= 4 iPtrHistoryHeader Points to the location of the =

C= history header block. =

C= 16 FileType The type of file. Terminated by =

C= <CR>. =

C= 220 Comments Comments, terminated by <FF>. =

C= Not mapped on to iGeneralHeader. =

C= History Header Information =

C= 4 iPtrPrivateHeader Points to the location of the =

C= header for this file type =

C= 4 iDummy Unused. =

C= 8 CreatedBy The program which created the =

C= file. Normally "DigImage". =

C= 8 Version The version of the program which =

C= created the file. =

C= 16 CreatedUser The name of the user who created =

C= the file =

C= 64 CreatedName The original name of the file =

C= 8 CreatedDate The date the file was created =

C= 8 CreatedTime The time at which the file was =

C= created =

C= 16 ModifiedUser The name of the user who =

C= modified the file =

C= 64 ModifiedName The name of the file when it was =

C= last modified =

C= 8 ModifiedDate The date the file was last =

C= modified =

C= 8 ModifiedTime The time the file was last =

C= modified =

C= 40 UnUsed Additonal information. Not =

C= currently assigned. =

C= Movie Header Information =

C= 2 iFormatType Specifies the format of the =

C= movie: =

DigiFlow Image file formats

– 271 –

C= 0 Raw bit image =

C= 1 Aligned raw bit image. =

C= The movie frames are =

C= aligned with nPixels/8 =

C= byte boundaries, where =

C= nPixels is the total =

C= number of pixels in the =

C= movie window. =

C= 2 iFrameRate Number of frames per second in =

C= original input =

C= 4 iSampleSpacing The nominal spacing (in frames) =

C= between images in the movie. =

C= 4 iMovieDuration The expected duration of the =

C= movie (in original frames) =

C= 4 iPtrFrameTable Points to the start of the table =

C= containing the frame data =

C= 4 nMovieFrames The number of movie frames in =

C= the frame table. =

C= 2 iw0 The first row stored for the =

C= image =

C= 2 iw1 The last row stored for the image=

C= 2 jw0 The first column stored for the =

C= image =

C= 2 jw1 The last column stored for the =

C= image =

C= 2 idi The step between sampled rows =

C= 2 jdj The step between sampled columns =

C= 4 nSize The size of the image (iw1- =

C= iw0+1)*(jw1-jw0+1) =

C= 4 AspectRatio The aspect ratio of the pixels =

C= in the image. =

C= 2 nBits The number of bit planes stored =

C= 256 iOLUTRed Red component of OLUT =

C= 256 iOLUTGreen Green component of OLUT =

C= 256 iOLUTBlue Blue component of OLUT =

C= 4 nFrameTableLength The number of bytes in the =

C= frame table. =

C= 2 RecordAtFieldSpacing Indicates if the recording =

C= sample spacing is determined by =

C= iSampleSpacing or =

C= dtSampleSpacing (if different). =

C= 4 dtSampleSpacing Nominal sample spacing (in =

C= seconds). This is used in =

C= priority to iSampleSpacing if =

C= RecordAtFieldSpacing is .FALSE. =

C= 204 UnUsed Additional information, not =

C= currently assigned. =

C= Frame Table Information =

C= 4 iFrameNumber0 The first movie frame number =

C= 2 iLength The number of frames required =

C= to process the movie during =

C= acquisition. =

C= 2 iDummy Unused =

C= OBSOLETE 4 iPtrFrame0 Points to the first frame. =

C= OBSOLETE 4 iPtrData0 Points to the additional data =

C= OBSOLETE for the frame (0 if no =

C= OBSOLETE additional data). =

C= 8 iPtrFrame0 Points to the first frame.

C= 4 iFrameNumber1 The second movie frame number =

C= OBSOLETE 4 iPtrFrame1 Points to the second frame. =

C= OBSOLETE 4 iPtrData1 Points to the additional data =

C= OBSOLETE for the frame (0 if no =

C= OBSOLETE additional data). =

C= 8 iPtrFrame1 Points to the second frame.

C= =

C= Note: DigImage limits the size of the frametable to 2048 =

C= entries. In DigiFlow, this is extended to 32768 entries. =

C= DigImage will only be able to access the first 2048 entries. =

DigiFlow Configuration files

– 272 –

13 Configuration files

As noted in §2, DigiFlow access a number of start-up files in the program directory each

time it is started. The list below illustrates their use and the order in which they are called.

Note that there is information about which file is being executed that is displayed in the status

bar at the bottom of DigiFlow as it is started.
File Usage
DigiFlow_GlobalData.dfc Controls setup of root (global) interpreter
 DigiFlow_dfcInstall.dfc Installs dfc functions located in DLLs rather than

kernel
 DigiFlow_Constants.dfc Defines constants used by dfc code
 DigiFlow_CheckLicence.dfc Controls the checking of the licence for DigiFlow
 DigiFlow_Licence.dfc Contains the DigiFlow licence. This file differs for

each installation
 DigiFlow_LocalData.dfc Local customised data
 DigiFlow_Plotting.dfc Various plotting macros
 DigiFlow_SimplePlot.dfc The simple plot (plot_) functions
 DigiFlow_Utilities.dfc Utility macros
 DigiFlow_Cameras.dfc Details of supported cameras
DigiFlow_Dialogs.dfs Status file restoring default dialog responses from

last time DigiFlow was run in directory
DigiFlow_Configuration.dfc Controls configuration of DigiFlow
 DigiFlow_Update.dfc Controls the updating of DigiFlow
 DigiFlow_7Z_Install.dfr Responses for extracting DigiFlow from archive
 DigiFlow_Registry.dfc Handles DigiFlow registry settings
 DigiFlow_dfcCommands.dfc Contains main dfc documentation
 DigiFlow_Changes.dfr Contains information about recent changes
 DigiFlow_General.dfr Contains dfc information for processes
 DigiFlow_Latex.dfc Defines LaTeX-like macros
DigiFlow_Status.dfs Status file restoring settings from last time

DigiFlow was run in directory

Subsequently, the following files may also be used, depending on the processing selected.
DigiFlow_Phrases.dfr
DigiFlow_Recipes.dfc
DigiFlow_SlaveProcess.dfc

Most of these files do not require modification by or knowledge of the user. The following

sections discuss those configuration files that might require user customisation, or at least

those that migh require a user knowledge of their structure. Those files were highlighted in red

in the table above.

13.1 DigiFlow_Licence.dfc

The DigiFlow_Licence.dfc file, located in the DigiFlow installation directory, contains the

licence for DigiFlow on one or more machines. This file is read and processed when DigiFlow

starts. If the file cannot be found, then DigiFlow will prompt the user to create a

LicenceRequest.dat file. This file should be sent to Dalziel Research Partners in order that they

can generated a licence for your machine.

13.2 DigiFlow_LocalData.dfc

The standard distribution of DigiFlow does not include nor create a DigiFlow_LocalData.dfc

file. Rather, this file is intended to contain user customisations that are not overwritten by

DigiFlow Configuration files

– 273 –

updating DigiFlow. (Note that a Site Licence server installation of DigiFlow will create a

DigiFlow_LocalData.dfc on the server.) If the file is not detected, then default values will be used.

Similarly, default values will be used if a specific value is not specified in

DigiFlow_LocalData.dfc. The file may contain some or all of the following settings:
Variable Type Default Comments
VideoCapture.UseCache Logical true Causes DigiFlow to use a fixed

cache file and undergo a

review process each time video

sequences are captured.
VideoCapture.CacheFile String "V:\Cache\Capt

ureVideo.dfm"
The default file and path to be

used for video capture.
VideoCapture.CameraBuff

er
String "(default)" Selects the buffering

mechanism for the cache file.

One of "(default)",

"buffer", "nobuffer",

"writethrough". Changing

this may improve the

performance when writing the

capture file on some systems.
DigiFlowServer.Server String The server

DigiFlow was

installed from.

The server DigiFlow was

installed from.

DigiFlowServer.Path String \\Server\DigiFlow$ The path (network share)

where the server may be found.
DigiFlowServer.InstallD

ate
String The date DigiFlow was

installed on the server.
DigiFlowServer

.InstallTime
String The time DigiFlow was

installed on the server.
DigiFlowServer

.InstalledBy
String The user-id of the person

installing DigiFlow on the

server.
DigiFlowServer

.UpdateDirectory
String \\Server\DigiFlow$ The path DigiFlow is to check

for updates.
DigiFlow.Update.Type String Dependent on

licence type:
 "manual"

 Free
 "ftp"

 Commercial
 "site"

 Site

Determines the location from

which updates will be sought.

Must be "manual" for free

licences.

DigiFlow.Options.Bayer

.rGain
Real 1.0 The gain applied to the red

channel when a Bayer filter is

used to determine a colour

image from a single plane.
DigiFlow.Options.Bayer

.gGain
Real 1.5 The gain applied to the green

channel when a Bayer filter is

used to determine a colour

image from a single plane.
DigiFlow.Options.Bayer Real 1.0 The gain applied to the blue

file://///Server/DigiFlow$

DigiFlow Configuration files

– 274 –

.bGain channel when a Bayer filter is

used to determine a colour

image from a single plane.
DigiFlow.Options.Bayer

.Roll
Integer 1 Controls the phase of the

colour information within the

single plane of pixels.
DigiFlow.Options.dfi

.useCompression
Logical true Indicates that compression

should be used by default for

dfi files.
DigiFlow.Options

.Display.dpi
Integer 96 Specifies the assumed display

resolution. This overrides the

/dpi:n command line switch.
DigiFlow.Options

.Display.Scaling
Real 1.0 Specifies the scaling applied to

certain visual elements of the

user interface. This overrides

the scaling implicitly

calculated from the /dpi:n

command line switch.

13.3 DigiFlow_Cameras.dfc

DigiFlow requires details of the cameras it is going to use as in many cases there is no

mechanism for determining key information via the camera interface. These details are

supplied in the DigiFlow_Cameras.dfc file. This file sets the CameraInfo compound variable,

that is stored in the global interpreter context, and specifies both hardware details of the

cameras that may be connected, and preferences for their use. The table below summarises the

entries, each of which has the form CameraInfo.xxx.yyy, where xxx identifies the camera,

and yyy the specific configuration item. The camera identifier is related to the name of its

BitFlow framegrabber configuration file. It need not be the whole of the file name, but it does

need to be unique within DigiFlow_Cameras.dfc and follow normal dfc syntax (e.g. it can not

contain a hyphen character as this would be interpreted as minus).
Variable Type Comments

CameraInfo.xxx.CameraFile String Specifies the full name of the

BitFlow configuration file.

CameraInfo.xxx.CameraName String A descriptive name for the

camera.

CameraInfo.xxx.nChannels Integer The number of taps or channels

feeding data from the camera to

framegrabber.

CameraInfo.xxx.fpsMin Real The lowest frame rate supported

by the camera.

CameraInfo.xxx.fpsMax Real The highest frame rate supported

by the camera.

CameraInfo.xxx.CanChangeExposure Logical Indicates that the exposure can

be changed independently of the

frame rate.

CameraInfo.xxx.fpsDisplay Real The highest frame rate that

should be used for displaying the

output on screen. Typically this

DigiFlow Configuration files

– 275 –

should be less than or equal to

the smaller of 25 and

CameraInfo.xxx.fpsMax.

CameraInfo.xxx.fpsKind Integer The method by which the

number of frames per second

can be changed. Values are 0 for

no change possible, 1 for change

via a CameraLink interface, and

2 for changes in the BitFlow

CTab entry (typically for Dalsa

cameras).

CameraInfo.xxx.Untangle Logical Indicates processing is required

to untangle the information from

the camera to generate a valid

display.

CameraInfo.xxx.prefPreviewResolutionFactor Integer The scale factor that should be

applied to the image when

previewing it on screen. For very

high resolution cameras, a value

greater than 1 will reduce the

size of the preview image,

allowing more rapid display and

allowing the image to fit more

comfortably on the screen

(which may have a much lower

resolution). Note that the user

can override this setting in the

dialog used to start the preview.

CameraInfo.xxx.prefPreviewProcessing String It is often desirable to have some

form of processing on the

preview image. The default

processing (which may be

overridden by the user in the

dialog starting the preview) is

specified by this string. Typical

examples include “particle

streaks” and “synthetic

schlieren”.

CameraInfo.xxx.prefFpsDisplay Real The preferred display frames per

second for the preview. This

may be overridden by the user in

the dialog used to start the

preview.

CameraInfo.xxx.nCaptureBuffers Integer The number of buffers to which

the video is initially captured.

Typically 2 for an R3

framegrabber, or 8 for an R64-

based card..

CameraInfo.xxx.nTotalBuffers Integer The number of buffers to be

DigiFlow Configuration files

– 276 –

reserved for the camera.

Typically 8 for an R3

framegrabber, or 16 for an R64-

based card..

CameraInfo.xxx.nProcessThreads Integer The number of threads used to

process the sequence being

captured prior to saving.

CameraInfo.xxx.nDisplayThreads Integer The number of threads used to

display the sequence being

captured. Typically 1.

CameraInfo.xxx.fpsToInteger Code Converts the requested number

of frames per second into an

integer value for internal use.

For many cameras, the

permissible number of frames

per second is restricted to be an

integer fraction of the base frame

rate.

CameraInfo.xxx.fpsFromInteger Code Converts an integer (produced

by fpsToInteger) back into a

frame rate.

CameraInfo.xxx.ReserveSpaceInFile Logical Causes extra space to be

reserved in the Cache file.

CameraInfo.xxx.minReserveFramesInFile Integer If the cache file must be

extended, then this will be the

minimum additional space

reserved for future growth.

CameraInfo.xxx.SetGain Code Code used for suitable

CameraLink cameras to set the

gain.

CameraInfo.xxx.maxGain Integer The maximum gain for the

camera.

CameraInfo.xxx.defaultGain Integer The default gain value for the

camera.

CameraInfo.xxx.ShutterSpeed Code Code used for suitable

CamerLink cameras to set the

shutter speed.

CameraInfo.xxx.minShutter Integer The minimum shutter speed for

the camera.

CameraInfo.xxx.maxShutter Integer The maximum shutter speed for

the camera.

CameraInfo.xxx.defaultShutter Integer The default shutter speed for the

camera.

CameraInfo.xxx.AllowSerial Logical Enable serial communication

over CamerLink connection.

CameraInfo.xxx.SerialLineFeed Logical Indicates that the CameraLink

serial protocol requires line

feeds as well as carriage returns.

CameraInfo.xxx.SerialStatusQuery String The string that should be sent to

DigiFlow Configuration files

– 277 –

the CameraLink camera to query

its status.

CameraInfo.xxx.SerialOnLineResponse String The first part of the response to

the CameraLink status query

that, if received, indicates the

camera is on line.

CameraInfo.xxx.SerialError String The response from a

CameraLink camera that

indicates an error condition.

CameraInfo.xxx.SetupCode String

or

Code

dfc code that is run before

starting the capture process to

set up the camera.

CameraInfo.xxx.PostSetupCode String

or

Code

dfc code that is run after starting

the capture process to set up the

camera.

CameraInfo.xxx.SetFrameRate String dfc code to alter the frame rate.

CameraInfo.xxx.minFrameRate Integer The minimum frame rate.

CameraInfo.xxx.maxFrameRate Integer The maximum frame rate.

CameraInfo.xxx.defaultFrameRate Integer The default frame rate.

CameraInfo.xxx.delayFrameStart Integer The number of pixels to delay

that separates the start of the

image from the start of the frame

sent by the camera.

CameraInfo.xxx.StrobeStart Integer This optional setting is used in

conjunction with the BitFlow

framegrabber’s VSTROBE

output signal (available via the

15 pin D connector). Typical

uses of this include controlling a

strobe light, or driving a liquid

crystal shutter. Adjusting this

value changes the phase of the

start of the VSTROBE pulse

relative to the camera acquisition

cycle.

CameraInfo.xxx.StrobeStop Integer As with

CameraInfo.xxx.StrobeStart,

but sets the timing for the end of

the VSTROBE pulse. Note that

if StrobeStop is less than

StrobeStart then VSTROBE is

low only between the stop and

the start.

CameraInfo.xxx.TriggerEventType String Indicates the type of event that is

triggered.

CameraInfo.xxx.TriggerEventLine Integer The line within the image that

the event is triggered at. Note for

R2 and R3 framegrabbers, this

will typically be 4096 plus the

DigiFlow Configuration files

– 278 –

scan line number.

CameraInfo.xxx.TriggerEventMaxCount Integer Causes wrapping of the trigger

event.

13.4 DigiFlow_Dialogs.dfs

This status file is stored in the directory from which DigiFlow is started. It contains and

localises information about the responses used most recently in each of the main DigiFlow

dialogs. The format of the entries is that of dfc calls to each of the DigiFlow facilities, with the

name of the compound variable being descriptive.

The DigiFlow_Dialogs.dfs will only contain dialog entries for facilities that have been run for

DigiFlow started in the directory on this or a previous invocation. The following is an

example of this file. Note that the order of the entries is not fixed.
dlgFile_CaptureVideo.Output_Options.Colour := "(default)";

dlgFile_CaptureVideo.Output_Options.Display := 1;

dlgFile_CaptureVideo.Output := "CaptureVideo.dfm";

dlgFile_CaptureVideo.RegionName := "(all)";

dlgFile_CaptureVideo.Gain := 0;

dlgFile_CaptureVideo.ShutterSpeed := 0;

dlgFile_CaptureVideo.DisplayProcessDialog := 1;

dlgFile_CaptureVideo.DisplayProcessing := "(none)";

dlgFile_CaptureVideo.PreProcessFrame := "Default";

dlgFile_CaptureVideo.Time := 60.0000 ;

dlgFile_CaptureVideo.DisplayResolutionFactor := 3;

dlgFile_CaptureVideo.TimeMode := "Time";

dlgFile_CaptureVideo.DisplayDuringCapture := 1;

dlgFile_CaptureVideo.nSaveBits := 8;

dlgFile_CaptureVideo.fpsDisplay := 24.0000 ;

dlgFile_CaptureVideo.fpsShutter := 30.0000 ;

dlgFile_CaptureVideo.fpsCapture := 30.0000 ;

dlgFile_CaptureVideo.AcquireEqShutter := 1;

dlgFile_CaptureVideo.DisplayOnExit := 1;

dlgFile_CaptureVideo.process := "File_CaptureVideo";

LastResponse := "dlgFile_EditStream";

openImage.ChangeToHashes := 1;

openImage.CompactList := 1;

runCode.DefaultDir := "s:\users\stuart\img\digiflow\";

dlgFile_EditStream.Output_Options.DeleteExisting := 1;

dlgFile_EditStream.Output_Options.Resample := "none";

dlgFile_EditStream.Output_Options.Comments := "No user comments";

dlgFile_EditStream.Output_Options.Colour := "(default)";

dlgFile_EditStream.Output_Options.Display := 1;

dlgFile_EditStream.Output := "junk####.dfi";

dlgFile_EditStream.DirectCopy := 1;

dlgFile_EditStream.Input_Region.Kind := "All";

dlgFile_EditStream.Input_Options.Display := 1;

dlgFile_EditStream.Input := "JPRD45.dfm";

dlgFile_EditStream.DisplayOnExit := 1;

dlgFile_EditStream.process := "File_EditStream";

dfcConsole.LastOpen :=

"S:\Users\Stuart\Img\DigiFlow\StreamFunctionVorticity.dfc";

dfcConsole.LastSave :=

"S:\Users\Stuart\Img\DigiFlow\FunctionNames.dfc";

In addition to the compound dlg… variables, DigiFlow also stores other user-interface

related information in this file. In particular, LastResponse indicates the last dialog to be

DigiFlow Configuration files

– 279 –

activated. This value is used in the Edit Dialog Responses facility described in §5.2.9. The

openImage compound variable records the current settings of the Open Image dialog (see

§4.1), in particular how to handle numbered image sequences.

Handling of dfc files is controlled by runCode.DefaultDir, which stores the current

directory for File: Run Code (see §5.1.2), while dfcConsole stores information about the last

dfc files to be opened or saved.

13.5 DigiFlow_Status.dfs

As with DigiFlow_Dialogs.dfs, the DigiFlow_Status.dfs stores localised status information in the

directory in which DigiFlow was started, restoring that saved previously each time it is

started. However, whereas DigiFlow_Dialogs.dfs concentrates on data associated with the user

interface, DigiFlow_Status.dfs stores information concerning the internal state of DigiFlow such

as colour shemes, coordinate systems and region definitions.

The example below illustrates the structure of this file. Note that this is again a dfc file.

However, for brevity, the contents have been shown truncated; truncations are indicated by an

ellipsis (…).
#S:\Users\Stuart\Img\DigiFlow\DigiFlow_Status.dfs

Begin

Mon Apr 23 17:57:06 2007

#Colour Schemes

add_colour_scheme(scheme:="bipolar",

 red:=[0.4980 0.4902 0.4824 0.4745 0.4667 0.4588 0.4510 …],

 green:=[1.0000 0.9843 0.9686 0.9529 0.9373 0.9216 0.9059 …],

 blue:=[1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 …]);

add_colour_scheme(scheme:="schlieren",

 red:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 …],

 green:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 …],

 blue:=[0.0000 0.0118 0.0235 0.0353 0.0471 0.0588 0.0706 …]);

add_colour_scheme(scheme:="single cycle - double brightness",

 red:=[0.5020 0.5176 0.5333 0.5490 0.5647 0.5804 0.5961 …],

 green:=[0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 …],

 blue:=[0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 …]);

add_colour_scheme(scheme:="single cycle - aperture",

 red:=[0.0000 0.0157 0.0314 0.0471 0.0627 0.0784 0.0941 …],

 green:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 …],

 blue:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 …]);

add_colour_scheme(scheme:="single cycle - half brightness",

 red:=[0.0000 0.0157 0.0314 0.0471 0.0627 0.0784 0.0941 …],

 green:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 …],

 blue:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 …]);

add_colour_scheme(scheme:="(default)",

 red:=[0.0000 0.0314 0.0510 0.0902 0.1255 0.1569 0.1804 …],

 green:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 …],

 blue:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 …]);

add_colour_scheme(scheme:="single cycle",

 red:=[0.0000 0.0314 0.0627 0.0941 0.1255 0.1569 0.1882 …],

 green:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 …],

 blue:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 …]);

add_colour_scheme(scheme:="negative",

 red:=[1.0000 0.9961 0.9922 0.9882 0.9843 0.9804 0.9765 …],

 green:=[1.0000 0.9961 0.9922 0.9882 0.9843 0.9804 0.9765 …],

 blue:=[1.0000 0.9961 0.9922 0.9882 0.9843 0.9804 0.9765 …]);

add_colour_scheme(scheme:="greyscale",

 red:=[0.0000 0.0039 0.0078 0.0118 0.0157 0.0196 0.0235 …],

 green:=[0.0000 0.0039 0.0078 0.0118 0.0157 0.0196 0.0235 …],

 blue:=[0.0000 0.0039 0.0078 0.0118 0.0157 0.0196 0.0235 …]);

#Coordinate Systems

DigiFlow Configuration files

– 280 –

#Coordinate System: Tank

coord_system_create(name:="Tank",units:="mm");

coord_system_mapping(name:="Tank",mapping:="Linear: 1;x;y;");

coord_system_add_point(name:="Tank",xPixel:=155.0,yPixel:=385.0,

xWorld:=0.0,yWorld:=1.0);

coord_system_add_point(name:="Tank",xPixel:=551.0,yPixel:=104.0,

xWorld:=1.0,yWorld:=0.0);

coord_system_add_point(name:="Tank",xPixel:=165.0,yPixel:=111.0,

xWorld:=0.0,yWorld:=0.0);

#Set default coordinate system

coord_system_set_default(name:="Tank");

#Regions

#MatchIntensity

set_dfc_path(path:="s:\users\stuart\img\digiflow\;");

End

#S:\Users\Stuart\Img\DigiFlow\DigiFlow_Status.dfs

In this particular example, there are no regions and no Match Intensity specifications set.

The function set_dfc_path(..) specifies the path along which DigiFlow will search for any

dfc files.

DigiFlow Extending DigiFlow

– 281 –

14 Extending DigiFlow

DigiFlow is designed so as to allow users to extend its core functionality in a number of

ways. This section gives a brief introduction to the facilities and techniques available.

14.1 Installing extensions

DigiFlow extensions are installed via a dfc interface.

add_image_reader(
add_image_reader(dll)

add_image_reader(dll,routine)

Adds a new image reader.

dll string

The name of the DLL file containing the image reader.

routine optional string (default “ReadImageDLL”)

The name of the function within the DLL that provides the required functionality..

Return value None.

The following example (using Fortran 90 syntax) may be used as the basis of a user-written

reader. In this example, the image is provided as ASCII values in a file, prefixed by the size of

the image. If the function fails, it should return Image_FileType_Unknown; if it succeeds, it

should return Image_FileType_DLL:
 function ReadImageDLL(Image,File,Options,Descriptor)
!DEC$ ATTRIBUTES DLLEXPORT, REFERENCE :: ReadImageDLL

!DEC$ ATTRIBUTES ALIAS:'ReadImageDLL' :: ReadImageDLL

!=====Modules

 use T_All

!=====Parameters

 integer (4) ReadImageDLL

 type (F_Image), intent(inout) :: Image

 character (*), intent(in) :: File

 type (F_ImageOptions), intent(inout), optional :: Options

 type (F_ImageDescriptor), intent(inout), optional :: Descriptor

!=====Local variables

 integer (4), automatic :: iFile,i,j,io,nx,ny

!=====Code

 ReadImageDLL = Image_FileType_Unknown

 call NewFileHandle(iFile)

 open(iFile,file=File,status=’old’,form=’formatted’,err=99)

 read(iFile,*,err=99)nx,ny ! Read image size

 ! Create the image

 call CreateImage(Image,nx=nx,ny=ny,AccessAs=Image_AccessAs_Real)

 ! Read in the intensities

 do j=0,Image%Height-1

 read(iFile,*,err=99)(Image%R2(i,j),i=0,nx-1)

 enddo

 ! Automatic scaling of intensities

 Image%rBlack = minval(Image%R2)

 Image%rWhite = maxval(Image%R2)

 if (present(Descriptor)) then

 Descriptor%Time%iFrame = 999

 Descriptor%Time%tNow = 999.0

 Descriptor%Time%tStep = 0.1

 Descriptor%Time%tFirst = 0.0

 Descriptor%Comments%UserComments = 'This is a test'

 Descriptor%Comments%CreatingProcess = 'Sample'

 Endif

 ReadImageDLL = Image_FileType_DLL

99 continue

 close(iFile)

 call FreeFileHandle(iFile)

 return

 end Function

DigiFlow Miscellaneous publications

– 282 –

15 Miscellaneous publications

This section lists a small subset of the papers that have been published using DigiFlow (or

DigImage). The subset has been selected as these papers showcases a new feature in or new

application of the technology within DigiFlow. This is by no means a complete list of

publications in which DigiFlow has been used, even by the authors of DigiFlow. For a

complete list of the latter, refer to http://www.damtp.cam.ac.uk/lab/people/sd103/papers/

Dalziel, S.B. 1992 Decay of rotating turbulence: some particle tracking experiments; Appl.

Scien. Res. 49, 217-244. [[pdf]]

Dalziel, S.B. 1993 Rayleigh-Taylor instability: experiments with image analysis; Dyn.

Atmos. Oceans, 20 127-153. [[pdf]]

Boubnov, B.M., Dalziel, S.B. & Linden, P.F. 1994 Source-sink turbulence in a stratified

fluid; J. Fluid Mech. 261, 273-303. [[pdf]]

Linden, P.F., Boubnov, B.M. & Dalziel, S.B. 1995 Source-sink turbulence in a rotating,

stratified fluid; J. Fluid Mech 298, 81-112. [[pdf]]

HackerS, J., Linden, P.F. & Dalziel, S.B. 1996 Mixing in lock-release gravity currents;

Dyn. Atmos. Oceans 24, 183-195. [[pdf]]

HolfordS, J.M. & Dalziel, S.B. 1996 Measurements of layer depth in a two-layer flow;

Appl. Scien. Res. 56, 191-207. [[pdf]]

CenedeseS, C. & Dalziel, S.B. 1998 Concentration and depth fields determined by the light

transmitted through a dyed solution; Proceedings of the 8th International Symposium

on Flow Visualization, ed. G.M. Carlomagno & I. Grant. ISBN 0 9533991 0 9, paper

061. [[pdf]]

Dalziel, S.B., HughesS, G.O. & SutherlandP, B.R. 1998 Synthetic schlieren; Proceedings

of the 8th International Symposium on Flow Visualization, ed. G.M. Carlomagno & I.

Grant. ISBN 0 9533991 0 9, paper 062. [[pdf]]

SutherlandP, B.R., Dalziel, S.B., HughesS, G.O. & Linden, P.F. 1999 Visualisation and

Measurement of internal waves by “synthetic schlieren”. Part 1: Vertically oscillating

cylinder; J. Fluid Mech. 390, 93-126. [[pdf]]

Dalziel, S.B., Linden, P.F. & Youngs, D.L. 1999 Self-similarity and internal structure of

turbulence induced by Rayleigh-Taylor instability; J. Fluid Mech. 399, 1-48. [[pdf]]

[[pdf]]J: (21) SutherlandP, B.R., HughesS, G.O., Dalziel, S.B. & Linden, P.F. 2000

Internal waves revisited; Dyn. Atmos. Oceans. 31, 209-232.

Dalziel, S.B., HughesS, G.O. & SutherlandP, B.R. 2000 Whole field density measurements

by ‘synthetic schlieren’; Experiments in Fluids 28, 322-335. [[pdf]]

LeppinenP, D.M. & Dalziel, S.B. 2001 A light attenuation technique for void fraction

measurement of microbubbles; Experiments in Fluids 30, 214-220. [[pdf]]

RossS, A.N., Linden, P.F. & Dalziel, S.B. 2002 A study of three-dimensional gravity

currents on a uniform slope; J. Fluid Mech. 453, 239-261. [[pdf]]

Thomas, L.P., Marino, B.M. & Dalziel, S.B. 2003 Measurement of density distribution in

a fluid layer by light induced fluorescence in non-rectangular cross section channels.

Int. J. Heat & Tech. 21, 143-148. [[pdf]]

http://www.damtp.cam.ac.uk/lab/people/sd103/papers/
1992/ApplSciRes_Dalziel_Small.pdf
1993/DAO20_Dalziel1993.pdf
1994/JFM261_BoubnovDalzielLinden.pdf
1995/JFM298_LindenBoubnovDalziel1995.pdf
1996/DAO24_HackerLindenDalziel1996.pdf
1996/AppSciRes56_HolfordDalziel1996_Small.pdf
1998/IntSympFlowVis8_CenedeseDalziel.PDF
1998/IntSympFlowVis8_DalzielHughesSutherland1998.PDF
1999/jfm390.pdf
1999/JFM399.pdf
2000/DAO31_209.pdf
2000/ExpInFluids28.pdf
2001/LeppinenDalziel2001_ExpInFluids30.pdf
2002/JFM453_2002.pdf
2003/ThomasMarinoDalziel_IntJHeatTech21_2003.pdf

DigiFlow Miscellaneous publications

– 283 –

Thomas, L.P., Dalziel, S.B. & Marino, B.M. 2003 The structure of the head of an internal

gravity current determined by Particle Tracking Velocimetry. Expt Fluids. 34, 708-

716. [[pdf]]

HigginsonS, R.C., Dalziel, S.B. & Linden, P.F. 2003 The drag on a vertically moving grid

of bars in a linearly stratified fluid. Expt. Fluids. 34, 678-686. [[pdf]]

MunroP, R.J., Dalziel S.B. & JehanS, H. 2004 A pattern matching technique for measuring

sediment displacement levels. Expt. Fluids. 37, 399-408. [[pdf]]

ShinS, J.O., Dalziel, S.B. & Linden, P.F. 2004 Gravity currents produced by lock

exchange. J. Fluid Mech. 521, 1-34. [[pdf]]

Jacobs, J. & Dalziel, S.B. 2005 Rayleigh-Taylor instability in complex stratifications.

J.Fluid Mech. 542, 251-279. [[pdf]]

MunroP, R.J. & Dalziel S.B. 2005 Attenuation technique for measuring sediment

displacement levels. Expt. Fluids 39, 602-613. [[pdf]]

SveenP, J.K. & Dalziel, S.B. 2005 A dynamic masking technique for combined

measurements of PIV and Synthetic Schlieren applied to internal gravity waves. Meas.

Sci. Technol. 16, 1954-1960. [[pdf]]

RossS, A.N., Dalziel, S.B. & Linden, P.F. 2006 Gravity currents on a cone. J. Fluid Mech.

565, 227-253. [[pdf]]

ScaseS, M.M. & Dalziel, S.B. 2006 An experimental study of the bulk properties of vortex

rings translating through a stratified fluid. Eur. J. Mech. B/Fluids 25, 302-320. [[pdf]]

Dalziel, S.B., CarrP, M., SveenP, K.J. & Davies, P.A. 2007 Simultaneous Synthetic

Schlieren and PIV measurements for internal solitary waves. Meas. Sci. Tech. 18, 533-

547. [[pdf]]

HazewinkelS, J., BreevoortS, P. van, Maas, L.R.M., Doelman, A. & Dalziel, S.B. 2007

Equilibrium spectrum for internal wave attractor in a trapezoidal basin. In Proceedings

of the 5th International Symposium on Environmental Hydraulics. [[pdf]]

HazewinkelS, J., BreevoortS, P. van, Dalziel, S.B. & Maas 2008 L.R.M. Observations on

the wave number spectrum and evolution of an internal wave attractor in a two-

dimensional domain. J. Fluid Mech. 598, 81-105. [[pdf]]

Dalziel, S.B., PattersonP, M.D., Caulfield, C.P. & Coomaraswamy, I.A. 2008 Mixing

efficiency in high aspect-ratio Rayleigh-Taylor experiments. Phys. Fluids 20, 065106.

DOI:10.1063/1.2936311. [[pdf]] [[web]]

MunroP, R.J., BethkeS, N. & Dalziel, S.B. 2009 Sediment resuspension and erosion by

vortex rings. Phys. Fluids. 21, 046601. [[pdf]]

IhleS, C.F., Dalziel, S.B. & Niño, Y. 2009 Simultaneous PIV and synthetic schlieren

measurements of an erupting thermal plume. Meas. Sci. Tech. 20, 125402. [[pdf]]

HazewinkelS, J., TsimitriS, C., Maas, L.R.M. & Dalziel, S.B. 2010 Observations on the

robustness of internal wave attractors to perturbations. Phys. Fluids 22, 107102,

doI:10.1063/1.3489008. [[pdf]] [[web]]

HazewinkelS, J., Maas, L.R.M. & Dalziel, S.B. 2011 Tomographic reconstruction of

internal wave patterns in a paraboloid. Exp. Fluids 50, 247-258. DOI:

10.1007/s00348-010-0909-x. [[pdf]] [[web]]

2003/ExpInFluids34_708.pdf
2003/ExpInFluids34_678.pdf
2004/ExpInFluids37_2004.pdf
2004/JFM521.pdf
2005/JFM542_JacobsDalziel.pdf
2005/ExpInFluids39.pdf
2005/MeasSciTech16.pdf
2006/JFM565_RossDalzielLinden.pdf
2006/EJoMB_25.pdf
2007/MeasSciTech18_DalzielCarrSveenDavies2007.pdf
2007/ISEH5_Tempe_HazewinkelBreevoortMaasDoelmanDalziel.pdf
2008/JFM598_HazewinkelVanBreevoortDalzielMaas.pdf
2008/PoF20_DalzielPattersonCaulfieldCoomaraswamy.pdf
http://link.aip.org/link/?PHF/20/065106
2009/PoF21_MunroBethkeDalziel.pdf
2009/MST20_IhleDalzielNino.pdf
2010/PhysFluids22_HazewinkelTsimitriMaasDalziel.pdf
http://pof.aip.org/resource/1/phfle6/v22/i10/p107102_s1
2011/ExpFluids_HazewinkelMaasDalziel.pdf
http://www.springerlink.com/content/v82652h83pq6m717/fulltext.pdf

DigiFlow References

– 284 –

HazewinkelS, J., GrisouardS, N. & Dalziel, S.B. 2011 Comparison of laboratory and

numerically observed scalar fields of an internal wave attractor. Eur. J. Mech/B. 30,

51-56. DOI:10.1016/j.euromechflu.2010.06.007. [[web]]

Dalziel, S.B., PattersonP, M.D., Caulfield, C.P. & Le BrunS, S. 2011 The structure of low

Froude number lee waves over an isolated obstacle. J. Fluid Mech. 689, 3-31.

doi:10.1017/jfm.2011.384. [[pdf]] [[web]]

BethkeS, N. & Dalziel, S.B. 2011 Resuspension onset and crater erosion by a vortex ring

interacting with a particle layer. To appear in Phys. Fluids.

See http://www.damtp.cam.ac.uk/lab/people/sd103/papers/ for a comprehensive list (including

many with electronic copies) of papers related to the techniques used by DigiFlow.

References

Dalziel, S.B. 1992 Decay of rotating turbulence: some particle tracking experiments;

Appl. Scien. Res. 49, 217-244.

Dalziel, S.B. 1993 Decay of rotating turbulence: some particle tracking experiments; in

Flow visualization and image analysis; Ed. Nieuwstadt, Kluwer, Dordrecht, 27-

54.

Dalziel, S.B. 1993 Rayleigh-Taylor instability: experiments with image analysis; Dyn.

Atmos. Oceans, 20 127-153.

Dalziel, S.B., Hughes, G.O. & Sutherland, B.R. 2000 Whole field density measurements

by ‘synthetic schlieren’; Experiments in Fluids 28, 322-335.

Monahan, J.J. 1992 Smoothed particle hydrodynamics. Ann. Rev. Astrophys. 30, 543-

574.

Sutherland, B.R., Dalziel, S.B., Hughes, G.O. & Linden, P.F. 1999 Visualisation and

Measurement of internal waves by “synthetic schlieren”. Part 1: Vertically

oscillating cylinder; J. Fluid Mech. 390, 93-126.

http://dx.doi.org/doi:10.1016/j.euromechflu.2010.06.007
2011/JFM689_DalzielPattersonCaulfieldLeBrun.pdf
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8446737
http://www.damtp.cam.ac.uk/lab/people/sd103/papers/

DigiFlow Index

– 285 –

Index

3D view, 64

Accessing dialogs, 232

Accumulate images, 171

Aligning images, 169

Analyse

Ensemble mean, 84

Harmonic Analysis, 75

Time average, 71

Time extract, 79

Time series, 77

Analyse_DyeAttenuation, 86

Analyse_EnsembleMean, 84

Analyse_FollowOpticalFlow, 154

Analyse_PIV, 121

Analyse_PTVTrack, 131

Analyse_PTVVectors, 150

Analyse_ShowAsStreaks, 118

Analyse_SyntheticSchlierenInterpolative,

100

Analyse_SyntheticSchlierenPatternMatch,

105

Analyse_SyntheticSchlierenQualitative, 98

Analyse_TimeAverage, 71

Analyse_TimeExtract, 79

Analyse_TimeSummarise, 81

Appearance, 61

Archive file

input stream, 13, 225

output stream, 228

Array functions, 204

Array plotting functions, 212

Arrays, 185

as_thread(..), 66

Assignment, 185

Autocorrelation, 148

AutoHelp, 12

Average

Ensemble, 84

Time, 71

AVI files, 42

Bit depth of output stream, 229

BitFlow, 7

Bit-wise operations, 210

bmp

file format, 241

Break points, 200

Cache file, 8

Camera configuration, 7

Camera configuration - BitFlow, 7

Camera control, 210

camera_*, 33

Capture configuration, 8

Capture video, 36

Chaining responses, 230

Close, 46

Close all, 46

Code library, 31

Collection - definition, 13

Colour

output stream, 27

toggle, 64

Colour images, 20

Colour of output stream, 229

Colour scheme, 62

Combine images, 166

Command prompt, 9

Command prompt - commands, 9

Comments in output stream, 230

compile(), 193

Compound variables, 184

Compression of output stream, 229

Concentration power spectrum, 81

Configuration, 258

Configuration files, 257

Configuration functions, 217

Contouring images, 162

Coordinate functions, 210

Coordinate system wizard, 52

Coordinate systems, 50, 51, 52, 174

Coordinates

copy world system, 52

edit world system, 51

new world system, 50

transform to world, 174

world, 49

Copy, 47

as bitmap, 47

Cursor, 60

Data acquisition functions, 215

DigiFlow Index

– 286 –

Data Translation, 1

Debugging, 196

Deleting existing output stream, 230

Depth of a gravity current, 80

dfa

file format, 251

dfc

run, 33

dfc code, 14

dfc Console, 201

dfc Help, 30

dfcConsole, 55

dfd

file format, 235, 251

dfi

file format, 242

dfm

file format, 255

dfp

file format, 251

dft

file format, 251

Dialog responses, 55, 233

Differential functions, 213

DigiFlow command files, 223

DigiFlow configuration, 3

DigiFlow_Cameras.dfc, 258

DigiFlow_Dialogs.dfs, 3, 262

DigiFlow_Licence.dfc, 257

DigiFlow_LocalData.dfc, 258

DigiFlow_Status.dfs, 3, 263

DigImage, 1

DirectDraw functions, 214

Displaying output stream, 228

Distance

measure, 60

Drawing, 234

Drawing commands, 234

Drawing file format, 235

Dye attenuation, 86

Dye concentration, 89, 90

Edit

dialog responses, 55

process again, 54

properties, 48

region, 54

world coordinates, 49

Edit dfc code, 55

Edit stream, 40

emf

file format, 241

Encapsulated PostScript, 4, 29, 43

Enlarge

zoom in, 58

zoom out, 58

Ensemble

Average, 84

eps, 29, 43

file format, 242

printer setup, 4

Error handling, 196

Eulerian, 131

execute statement, 192

Exit, 46

exit statement, 192

exit_digiflow, 46

exit_digiflow(), 192

Export AVI, 42

Export to simple EPS, 46

Extending DigiFlow, 265

Extract time series, 79

File handling functions, 206

File menu, 33

File_CaptureVideo(..), 36

File_EditStream, 40

File_ExportAVI, 42

File_MergeStreams, 41

File_ShowLiveVideo, 33

Filtering images, 162

First index, 28

First index for output stream, 229

Flow functions, 210

Folder for output stream, 228

Follow optical flow, 154

for statement, 192

Format

bmp, 241

dfa, 251

dfd, 235, 251

dfi, 242

dfm, 255

dfp, 251

dft, 251

emf, 241

eps, 242

gif, 241

DigiFlow Index

– 287 –

image files, 241

mov, 255

output stream, 28

pic, 253, 254

tif, 241

wmf, 242

Fourier descriptors, 162

Fractal

box count, 163

Fractal dimension, 83

Frame grabber, 7

ftp functions, 214

Full colour

output stream, 28

function, 193

Functions, 203

all, 218

array, 204

array plotting, 212

basic mathematical, 204

configuration, 217

coordinate, 210

differential, 213

file handling, 206

flow, 210

image processing, 209

information, 205

logging, 216

miscellaneous, 217

numerical, 212

reading and writing images, 207

statistics, 208

string, 204

threads, 213

timing, 208

type manipulation, 205

variables, 206

windows and views, 207

GhostScript functions, 215

gif

file format, 241

Grid PTV velocity, 151

Help, 12

History, 1

if statement, 191

Image

open, 17, 33

properties, 48

save, 21, 33

Image file formats, 241

Image processing functions, 209

Image selectors, 13

Images streams, 13

include(..), 196

Information functions, 205

Input

from file, 196

Input stream

archive file, 13, 225

colour component, 225

control in macro file, 224

displaying, 225

folder for, 224

match intensity, 25

matching intensity, 227

region, 23, 226

selecting times, 226

sifting, 22

timing, 22

waiting for, 228

Installation, 3

Intensity

transform, 158

transform recipe, 157

Key features, 2

Lagrangian, 131

LaTeX, 15, 30, 43

LaTeX macros, 238

Leaving output stream visible, 230

Library, 31

Lists, 188

Live video

particle streaks, 35

synthetic schlieren, 35

Live view, 33

Local data, 258

Logging functions, 216

Macro files, 223

Macros, 14, 223

accessing dialogs, 232

chaining responses, 230

control of input streams, 224

DigiFlow Index

– 288 –

control of output stream, 228

multiple output streams, 231

make_array(..), 185

make_like(..), 185

make_list(..), 188

Match intensity, 25, 227

Matching algorithm, 133

Mathematical functions, 204

MatLab, 2

Mean

Ensemble, 84

Time, 71

Measure distance, 60

Merge streams, 41

mf

file format, 242

mod, 190

mov

file format, 255

Move image, 61

Multiple output streams, 231

Numerical functions, 212

Objective function, 133

Open image, 17, 33, 46

Operators, 189

mod, 190

Optical flow, 153

follow, 154

Follow, 154

Options

output stream, 27

Output stream

archive file, 228

bit depth, 229

colour, 27, 229

comments, 230

compression, 229

controlling, 228

deleting existing stream, 230

displaying, 228

file format, 28

first index, 28, 229

folder for, 228

full colour, 28

leaving visible, 230

multiple, 231

options, 27

quality, 230

resampling, 28, 230

user comments, 29

Particle Image Velocimetry (PIV), 121

Particle streaks, 118

live video, 35

Particle tracking functions, 216

Particle Tracking Velocimetry (PTV), 131

Particles

streaks, 118

pic

file format - compressed, 254

file format - raw, 253

PIV data

example of post-processing, 164

Plot, 237

Plotting, 234

PostScript, 215

PostScript driver, 5

Printing, 43

process, 223

Process again, 54

psfrag, 30, 43

PTVAutocorrelation, 148

PTVBasic statistics, 147

PTVGridVelocity, 151

Quality of output stream, 230

Queries, 200

quit statement, 192

Reading and writing images, 207

Recording user input, 233

Redo process, 54

Region, 226

edit, 54

input stream, 23

naming, 24

Registry, 7

Registry functions, 217

Resampling, 28

Resampling output stream, 230

Rescaling an image, 161

Run code, 33

Running processes, 223

Save image, 21, 33

Security, 7

DigiFlow Index

– 289 –

Selectors, 13

Sequence - definition, 13

Serial communications, 215

Setup video, 39

Show where, 60

Sifting, 14

input stream, 22

Sifting data, 89

Simple plot, 237

Slave process, 34, 172

Slaves, 64

Starting DigiFlow, 9

Statements

exit_digiflow, 46

Statistical functions, 208

Status files, 3

Streaks, 118

String functions, 204

Summarise time series, 81

Synthetic schlieren, 108

live video, 35

process, 100, 105

qualitative, 98

Synthetic Schlieren, 95

Text output, 15

Thread functions, 213

Threads, 14

run code as thread, 66

tif

file format, 241

Time

Average, 71

Mean, 71

Time average, 71

Time extract, 79

Time series, 77

Time summarise, 81

Timing

input stream, 22

Timing functions, 208

Toggle colour, 64

Tools_CombineImages, 166

Tools_TransformIntensity, 158

Tools_TransformRecipe, 157

Tools_TransformToWorld, 174

Tracing execution, 200

Transform

intensity, 158

recipe, 157

to world coordinates, 174

Transportation algorithm, 133

try_execute statement, 192

Type manipulation functions, 205

Type query functions, 185

User comments, 29

User functions

definition, 193

User input, 195

User output, 195

Variable functions, 206

Vector scale, 61

Velocities

PIV, 121

PTV, 131

PTV - autocorrelation, 148

PTV – basic statistics, 147

PTV - grid, 151

PTV - vectors, 150

Show as streaks, 118

Velocity fluctuations, 170

Velocity statistics, 147

Velocity vectors – PTV, 150

Video

capture, 36

live, 33

setup, 39

View

3D, 64

appearance, 61

close, 46

close all, 46

colour scheme, 62

slaves, 64

toggle colour, 64

vector scale, 61

zoom, 58

View variables, 197

view_variables(..), 197

Waiting for input streams, 228

Web browsing, 214

while statement, 191

Wild cards, 20

Window and view functions, 207

World coordinates, 49

DigiFlow Index

– 290 –

Z - objective function, 133

ZLib, 245

Zoom

all full size, 59

all half size, 59

all one third size, 59

all quarter size, 59

custom, 58

Fit window to, 60

full size, 58

in, 58

to window, 59

Zoom out, 58

DigiFlow Licence Agreement

– 291 –

16 Licence Agreement

DigiFlow Licence Agreement

Dalziel Research Parnters,

142 Cottenham Road, Histon, Cambridge CB4 9ET, England

Licence:

1. Agreement. Installation of part or all of the software suite known as DigiFlow, or any

system derived from DigiFlow, is deemed to indicate agreement with the terms and conditions

of this licence.

2. Parties. This agreement is between Dalziel Research Partners, the software Developer and

copyright holder, and the person, company or institution installing or using the software, the

Customer.

3. Definition. DigiFlow comprises the DigiFlow executable files, support files,

documentation files, configuration files, and other utilities supplied with the system, and the

source code, object code, libraries and documentation associated with or supplied with the

system.

4. Types of Licence. Two types of licence are available for DigiFlow. A Free Licence has

restricted functionality and more limited support. A Commercial Licence provides access to

all of DigiFlow’s features and has a broader level of support.

5. Right of use. The Developer hereby grants the Customer, a non-transferable and

nonexclusive licence to use DigiFlow on a single microcomputers within the premises of the

Customer. The software may be transferred to a different microcomputer, with the Customer's

premises, only after it has been removed completely from any machine on which it was

installed previously.

6. Licence Key. The Licence Key is the numeric code that controls the use of DigiFlow on a

given computer. The Licence Key is unique to the network adapter(s) on the licensed

computer. The Customer must inform the Developer if they wish to transfer DigiFlow from

one computer to another, or if the network card is changed or removed. The Developer will

then issue a new Licence Key for the new computer.

7. Use off site. DigiFlow, or any software developed using the DigiFlow Development

System, may not be used outside the premises of the Customer without the express prior

written consent from the Developer. The exception to this rule is that use during brief field

studies (lasting no more than four weeks in a twelve month period), for demonstration and

presentation purposes is permitted.

8. Revocation. The Developer reserves the right to revoke the Licence if the Customer fails to

meet any of the terms under which the software is supplied.

9. Copyright. The copyright of DigiFlow, and all its components and manuals, is owned by

the Developer. Copyright of certain third party open source libraries used by DigiFlow

remains with the developers of those libraries. Copies of the software and documentation may

be made for backup purposes. Additionally, copies may be made of the manuals for the

purposes of training and use of DigiFlow provided such copies retain their original copyright

declaration.

10. Reverse engineering. The Customer may not decompile, disassemble or otherwise

reverse engineer any component of DigiFlow. Further, the customer must not attempt to

break, bypass or disable the licence key system controlling the use of DigiFlow.

11. Transfer of Ownership. The Customer may not sell DigiFlow or any code developed

under the Development System without prior consent from the Distributor. The customer may,

DigiFlow Licence Agreement

– 292 –

however, distribute images processed by DigiFlow and DigiFlow dfc macro code without

restriction.

12. Other Copies. All the terms of this licence apply equally to the original supplied version

of DigiFlow, to any upgrades or updates to the DigiFlow or subsequent systems derived from

DigiFlow, or documentation which may be supplied from time to time by the Distributor, and

to any copies made of DigiFlow or its updates under the terms of this licence.

Warranty:

13. Limited Warranty. The Developer guarantees holders of Commercial Licences that

DigiFlow will perform substantially in accordance with the accompanying documentation. No

such guarantee exists for holders of Free Licences. The Developer disclaims all other

warranties either express or implied.

14. Period. The period for the stated and any implied warranty is limited to 90 days from

receipt of a Commercial Licence for DigiFlow. Updates or upgrades to DigiFlow outside this

period carry no warranty.

15. Consequential Damages. Neither the Developer nor their suppliers shall not be liable for

any damages whatsoever arising out of the use, misuse or inability to use DigiFlow or any

updates or upgrades to this system.

Other Conditions:

16. Support. User support for holders of Commercial Licences will be provided by the

Developer free of charge for the first year following receipt of the System. This support will

normally consist of a combination of electronic, written and verbal communication. On-site

training is not included. The Developer reserves the right to alter the precise nature and scope

of this support. Support for users with Free Licences is at the discretion of the Developer.

17. Upgrades. The Developer undertakes to make available, free of charge, any upgrades or

updates to DigiFlow released by the Developer during the first year after the receipt of a

Commercial Licence, provided the appropriate licence fee has been paid. This undertaking

does not imply that Developer is obligated to modify DigiFlow in any way, or release any

modifications made to DigiFlow.

18. Expiration. Licence Keys are perpetual for the version of DigiFlow for which they were

issued. The Developer, however, reserves the right to change the licence key mechanism in

future versions of DigiFlow in a way that may render invalid Licence Keys from earlier

versions. In such cases, Holders of Commercial Licences within their upgrade period will be

entitled to a new Licence Key. The Developer also reserves the right to discontinue the issue

of Free Licences.

