DigiFlow User Guide

Version 4.0, January 2017

© Dalziel Research Partners
2000 - 2017

Contents

I LY 1 oo [8 o1 (o] o ISP URSSRPRP 1
I 1T (o] USSP 1
1.2 KBY TRALUIES....c.vieii ettt ettt e e e et e e esaeenaeennesneenee e 2
IR T T 01 T [PSSP 2

2 INSTAHALION ... bbbt b e bbb bt 3
2.1 BaSIC INSTAIALION ..o 3
2.2 DIgIFIOW ONfIQUIALION.......oiiiiicie e et 3

2.2.1 BasiC CONFIQUIALIONcuveiieeie et ne e 4
2.2.2 Encapsulated PostScript configurationcccccveveiieiieie e, 4
2.2.3 AAdItioNal MEMOTYeciiiicce e sre e sra e ne e 6
2.3 Installation with framegrabber ... 7
2.3.1 Framegrabber installation ..o 7
2.3.2 Camera CONfIQUIALIONceciuiiieiece e 7
2.3.3 LOCal SECUNILY POLICY .vviiieiee et 7
2.3.4 Video capture CoNfigUrationccceiiieiieiic e 8

B BASICS .ttt stttk R bbb bR Rt AR e e Rt et bR bR e Eean e ne et nens 9
3.1 Starting DIGIFIOWoovieiecccce ettt ere s 9
3.2 MAIN WINAOW. ...ttt bbbt b ettt 12
3.3 OBLAINING NEIP ...t e 13
3.4 IMAQGE SEIECIONS ...ttt ettt nreereanes 14
35 ANCRIVE TIIES ... e 14
KT T ST 1 11T RSP SSP 15
3.7 DIQIFIOW MACIOS.ceiiciiecieeie ettt e s e nre e enes 15
TSI I 1 =T To SO TPRPRPSSS PR 15
3.9 TOXE OULPUL ...ttt e et e e ssb e e nbe e e e be e e e be e e e seeeanes 15

4 COMMON QIAIOGS ...ttt et e e ste e e et e s te et e aneesreeneenes 18
4.1 OPEN IMAGE .ivieiiiie ettt ettt e et e e sr b e e e st e e e sbb e e e bb e e e nbe e e s beeeebeeeanbeeeanneeean 18
4.2 SAVE IMAGE AS ..ttt ettt e e e e h e b e b e b e e e nr e e e e rreean 22
4.3 SIftiNG INPUL STIEAMSeiiiiciecie et re e 23

4.3.1 SElECIOr tIMINQ ...viivieiiieie ettt re e sre e reeee e 23
-1 T () g =T | 0] SO S R STPS 24
4.3.3 MatChing INTENSIIES ...c.vvivieciiecie ettt 26
4.4 MOdifying OULPUL SEFEAMSecvieiiieiiie ittt e e e ae e 28
4.4.1 Setting output Stream COIOUNooiiiiiie i 28
A.4.2 FUIL COIOUN ...ttt st ae e 29
A 4.3 FIlE TOrMAL.......ooiiieiee e et ne e 29
O T S [0 1= RPN 29
4.4.5 RESAMPIINGviiiie ittt 29
4.4.6 SAVE USEI COMMENTSeiiiiieiieiittestee ettt ettt ettt et e e eesbn e e r e e e e enes 30
4.4.7 Encapsulated POStSCIIPt SLrEAMSccvviiieiiiiiec e 30
A5 AFC HEID .o 31
O I OfoTo [0 1o -1 Y USSP 32

S IMIBINUS ...ttt h ekt Rt E e bt Rt e b e nn e b e nne e nns 34

TR 1 LTSRS 34
5.1.1 OPEN TMAGE ...ttt ettt ettt sbe e be e s be e e be e sneeanbeesnneas 34
5.1.2 RUN COUB....coeieieeie ettt bttt ettt et nre et nnes 34
5.1.3 SAVE AS ...ttt ettt e be e bt nan e reeanne s 34

B0 LIVE VEOBO e e nnnn 34

B LD it StTBAM . ..ottt e ettt e e e e e e e e e e e e e e e e e e 44

5.1.6 MEIQE SIFBAIMSeieiiiie sttt ettt b e sbb e e e nbb e e s nsb e e nnneeen 46
.17 EXPOIT AV .ttt 47
5.1 PIINT VIBW vttt ettt st et e e e neesraeseennnenraenne s 48
5.1.9 Print ViISIDIE VIBWcvveiieieie ettt 49
S.LI0 EXPOIT IO EPS.. ..ot 49
5.1.11 EXPOrt VIsible t0 EPS.........cooiiee et 51
5.1.12 EXPOrt to SIMPIE EPSc.oiieieee e 52
o T0 00 T [0S OSSR SSSTPS 52
5114 CHOSE Al bbb 52
TR N T | RSSO PR PP 52
ST =0 | | PSSRSO 52
ST R O o] o TP RUPRTPIN 52
5.2.2 COPY S DItMAP ...veeeeeiieie ettt re e 53
5.2.3 ZOOMEA COPY .vvevieiieiieiteeite ettt ste st s e ste e te et e e saeeste e e e sbaeeesnaestaesseeneesteeneeas 53
I B o o] 01T (=TSSR USSR USRS 54
5.2.5 COOFAINALES......eeivieiiciiecie ettt ettt e e e st e e ae s e e staesesreesreeeeas 55
IV S = T | [o] o ISR U USRS 60
5.2.7 PrOCESS AQAIN.......cciuiiuieiiieieiieieesteseesteestesseesteeste s e e steestesssesbaeeessaesraessesneesreesens 61
5.2.8 DiIalOg FESPONSES......ecuveiureieeiieiteesteeeesteeste st e steeste s e saeeste s e e sbeeseesraesraesesreesreeneeas 61
5.2.9 AfCCONSOIE........eiiieee ettt ettt 62
O TRC AAV TSSSSSR 64
S TRC T8 A o To 1 4 TP RPN 64
5.3.2 FIEWINUOW.......oeiiiiiie ettt sttt ta e e sre e e 66
S TRC TR O U <o ORI PPN 66
IR I Y=ol (o] RO PR PSPPI 68
SR RN Y o] 1<z U= L (o0 TP PRSPPI 68
5.3.6 COlOUN SCNEIME ..ottt ettt et te e sraesreenee s 69
5.3.7 TOQUIE COIOUN ...ttt st reeae s 71
5.3.8 TOOIDANciiieie ettt ettt e re e 71
5.3.9 SIAVES ..ottt et et e e et et e era e e ere s 71
5.3.10 TRFEAASc.veevieiteeie ettt ettt e b e s e s ra e e e s e saeere s 73
5.3.11 Pause all threads............coviiiiiiiice ittt 74
5.3 L2 REIIESN .o 74
5.3 L3 INPArAIIEL ..o e 74
SR O =T 1SRRI 75
5.5 SBOUBNCE ...ttt e e et e e nrr e nre s 75
5. 5.1 ANIMALE ...ttt e e e e et ara e 76
5.8 ANAIYSE ..ttt e eabeenres 80
5.6.1 TIME INFOrMALION.......coiiiiiie it ae e 80
5.6.2 ENSEMDIESoviiiieiii ettt re e e e e e ne e 92
5.6.3 DYE IMAGESuvieiieiitieitie ettt ettt st et e st e et e et e e sbe e st e e beeenreesreeanbeesneeeneens 94
5.6.4 SYNthetiC SChIIEIENei i e 103
5.6.5 PANTICIES ... e 126
5.6.6 Particle Tracking VEIOCIMELIYccoviiiiiiiieieceeee e 145
5.6.7 OPLICAL FlOW.......eiiiiiiieece e e 167
ST 100 LS PSP PPPP 171
T A8 2 T [o= TSP PRRP 171

5.7.2 Transform INTENSITYcoveiiiiiiieseee e e 172

5.7.3 COMDINE IMAGESeveeiieeiecie sttt ste et e e e e sneenreas 180

5.7.4 ACCUMUIALE ...t 185
5.7.5 SIAVE PrOCESSecuviitieiieeie sttt sttt e et et e s beetesseesteeseeeraesreeneeaneenreas 186
5.7.6 TOWOIIA COOPINALESoveiiiiiiiiiieiee e s 188
BB WINUOW ...ttt bbbt b et bbbt 189
D0 HEID e 189
5.9.1 HEIP (DIrOWSEF) ...ttt re e nne s 189
5.9.2 AfC HEIP ..o 189
5.9.3 AULO NEIP v 189
5.9.4 ADOUL DIGIFIOWooviiiicie e 189

CI I=Tot T] o [0 =TSSR 191
6.1 Determining DIACKcov i 191
7 CNAINING PIOCESSESveuveeuteetteite et eeestee st et e steeste et e s teeste e e e saeesteessesseesteaneesseesseenneareenseans 193
8 INTEIPIEEr DASICS ...ovviiiciece ettt e et e e e reenre e 196
ST)Y | -V PR RPPRPPRIN 196
B2 VANIADIES ..o bt 197
8.2.1 SIMPIe VariabIeS.........ccveiiie e 197
8.2.2 Compound VariablesSccoveiiiiiiice e 198
8.2.3 TYPE qUEIY TUNCLIONS ..ot 199
8.3 ASSIGNIMENT.....eeiieieitieitt ettt e e e e e e e s te e besseesaeeteereeaba e reannenres 199
TR N 1 -\ T PSP RRPPRPPRIN 199
B LLISES vttt sttt ettt bbb n et es 202
S I @01 -1 (0] £ TR PPRPRRPIN 203
8.7 CONSTANTS ...ttt b et b e n e e bt e e st e e be e e b e e nne e e neennee s 204
8.8 EXECULION CONEIOL ...ttt 205
8.9 User-defined FUNCLIONSccoiiiiiiiiscee e 207
8.10 USer INPUL aNd OUPULocviiiieeie ettt sraesre e ane s 209
8.11 Input of code From FIlES.......coviie e 210
B.12 DEDUGGING ...vveveerie ettt ettt ettt s et esr et e et e et e s teebesaeesaeeaeereeera e beenneares 211
8.12. 1 Error handlingcoveiiiie et 211
8.12.2 VIeW VariabIeS.......c.ooiiiiiiicce s 212
B.12.3 IMIBSSATES ... uvveeirtiee ettt e eitee e sttt e et e et e ettt e e rb e na e nr e nes 213
B.12.4 QUETIES ..o eveeetie et ettt ettt et et e et e e st e et e e eateeebeesabeesbeeanteesbaeenbeenbeeenree e 214
8.12.5 Break POINTSocviiieieciic ettt 214
8.12.6 TracCing EXECULIONccueiiieeiee it e et s ettt e e e beesraeere e 215
8.12.7 AFCCONSOIE.....eiee ettt 215

O FUNCTIONS ...ttt ettt b et b bt se e be e bt et e nbeenae et e eneenae e 218
9.1 Basic mathematical fUNCLIONS............ccooiiiiiiiie e 219
9.2 SENG TUNCLIONS ... e e beeanee s 219
9.3 AITAY TUNCHIONS. ...t e e e anne s 219
9.4 Type Manipulation FUNCLIONS.cooiieiie e 220
9.5 INFOrmation TUNCLIONSoouiiiiiiiie e 220
9.6 Variable TUNCLIONScoiiiieiiee e et 221
0.7 File NANAIING.eiiiie i e e 221
9.8 Reading and WItING IMAGJEScveieeiieieiie ettt sttt sbe e nneas 222
9.9 WINAOWS @NU VIBWS ...ttt sttt ettt ettt 223
9.10 THIMING FUNCLIONS ...ttt sttt nneas 224
9.11 StatistiCal FUNCLIONSoiiiiiiiiie e 224

9.12 Image Processing fUNCLIONSccoiiiiiiieiiee e 224

.13 FIOW TUNCHIONS.ceeeee ettt e e e e e et e e e e e e e e e e eeeeeeeaaaan 225

9.14 CoOrdinate TUNCIIONSc.coviiiieiieiie it 225
9.15 Bit-WIiSE OPEIALIONSccveevieiieiieeiieie e esteeie s e ste et te e te e sraeste e reeteaneesreenneenee e 226
9.16 CaMEra CONEIOL....c.uiiiiiiieiieieie ettt 226
9.17 Array plotting FUNCLIONSc.oieeiiee e 228
9.18 NUMENICAl TUNCLIONSouviiiiieiicie ettt 228
9.19 Differential TUNCLIONSccvoiiiiii i 229
9.20 Handling threadscooieiieiieiicie et 229
9.21 WED BDIOWSING ...ttt sre e 229
9.22 TP TUNCLIONS ...t sre e nre e 230
9.23 DiIreCtDraw fUNCIONSoviiiieiiesiesies et 230
9.24 Data acquiSItion FUNCLIONS...........ccciiiieiecie e 230
9.25 Serial COMMUNICALIONSc.veiiiiiiieiieiiisesee e ereas 231
9.26 GhOSESCIIPt TUNCLIONS.....c.viiieiiccie e 231
9.27 Particle tracking fUNCLIONS.cociiiiiieee e 231
oI B oo o 11 T [OSSR 232
9.29 REQISIIY TUNCLIONSeiveeie ettt sre e 233
9.30 Configuration and licence fUNCLIONSc.cccveiiiie i 233
9.31 MisCellaneous TUNCLIONS.coiiiiiiiiisieeie e e 233
9.32 Al TUNCHIONS......ctiitiitieiieieie ettt bbb nenneas 233
L0 IMIACTOS ...ttt ettt b e st b e an e b e e e s e e b e e e nn e e nne e e nreenneas 238
10.1 DigiFlow command fileS.......ccocviiiiiiie e 238
10.1.1 RUNNING PrOCESSESevveveerreitreiteeitesseesteessessaestaesesseesseessesseessasssessesssesssessessnes 238
10.1.2 Control of INPUL SLFEAMSc.ecivieiiiiccece e 239
10.1.3 Control of QULPUL SEFEAMSccuveiiiiecece e 243
10.1.4 ChainNing FESPONSESeeiveeteitreiteeieeetee e etestaesteeeestaesteeaesraesreesesreesreeseesreeseas 245
10.1.5 Multiple OULPUL SEFEAMSccvveiieeie et 246
10.1.6 ACCESSING AIAIOUS......ccuveiveeieciie ettt 247
10.2 RECOrding USEI INPULc.veiieiieeiecieeste ettt be e sre e enne e 248
i (o n g To - U To o [> 1YL [oV RS PSOS 249
11.1 Drawing COMMEANGSccuveiuieiriereeieesteaee s e steeeesreesteesaesraesteese s e e sreeeesseesseenseennenns 249
11.2 The DigiFlow Drawing format..........cccccceiieiieiiiieseece e 250
T [4] o] L= o] [0 SRS 252
O 1= USRS USSP 253
115 LATEX MECIOS ...ttt ettt ettt etttk e et e st e et e e b e e e b e e e e anbeeannas 253
12 Image file FOrMALSooieie e 256
12.1 Windows bitmap files ((DMP).....cooiiiiiec e 256
12.2 TIFF FHES (L) 1o et 256
12.3 GIF FIlES (L) oot 256
12.4 Enhanced metafiles (LeMT) ..o 256
12.5 Windows metafiles ((WMT).......cooiiiiii e 257
12.6 Encapsulated POSESCIPL (LEPS) ...vvieureiieeiieiie ettt 257
12.7 DigiFlow floating point image format (.dfi)cccoooeviiiiici e, 257
I R o 1= Vo L] U UU TSP 257
L2.7.2 TAY oottt ettt b e h b et he et nan e be e neeenne e 258
12.7.3 8 bit image (DataType = #L00L)......cccerierierieiieie et 258
12.7.4 8 bit multi-plane image (DataType = #11001)cccoeeerererrieienieseeee e 258
12.7.5 Compressed 8 bit image (DataType = #12001).......ccccevvrierinieniirnenie e 258

12.7.6 32 bit image (DataType = #1004).......ccceiririieie e 259

12.7.7 32 bit multi-plane image (DataType = #11004)ccccvveerveierieereere e, 259

12.7.8 Compressed 32 bit image (DataType = #12004)........ccceveevveierieereeieseennean, 260
12.7.9 64 bit image (DataType = #1008).........ccceiiverierierierieeie e e 260
12.7.10 64 bit multi-plane image (DataType = #11008)cccccverveveerieerireiesiennean, 260
12.7.11 Compressed 64 bit image (DataType = #12008).........cccccevvevvevvereereeseennnnn, 261
12.7.12 32 bit range (DataType = #1014)cocoeieeie e 261
12.7.13 64 bit range (DataType = #1018)ccceiieeieeieiiereee e 261
12.7.14 Rescale image (DataType = #1100)ccocevveireiierieieseese e 262
12.7.15 Rescale image rectangle (DataType = #1101)ccccoevieeiieievieere e, 262
12.7.16 Colour scheme (DataType = #2000)........cccccvererieeriierieieeseere e e see e, 263
12.7.17 Colour scheme name (DataType = #2001)........cccecvevrerieieeiieneeie e, 263
12.7.18 Colour scheme name variable (DataType = #2002)........ccccccevvvevreieeieennnnn. 263
12.7.19 Description (DataType = #3000)........cccccieereereiierieeieseese e e see e see e, 263
12.7.20 User comments (DataType = #3001)cccccveieiieieeiieieeseeie e, 264
12.7.21 Creating process (DataType = #3002)cccevereeirreieeieene e see e e e, 264
12.7.22 Creator details (DataType = #3003)ccccceereiieiieiecee e 264
12.7.23 Image time (DataType = #3018).....cccccveiiieiieeieece e 264
12.7.24 Image coordinates (DataType = #4008).........cccccvevvevreiieeieiie e, 264
12.7.25 Image plane details (DataType = #4108)ccccoeevreveiieiicie e, 265
12.8 DigiFlow Particle tracking format............cccooeiieii i 266
12.9 DigiFlow pixel data format (.afp)ccceoveeiieiiicce e 266
12.10 DigiFlow drawing format (.dfd)...........cccooveiiiiieiiie e 266
12.11 DigiFlow archive format (.dfa)ccccoiviiiiiiie e, 267
12.12 Diglmage raw format ((PIC)cceieerreiiieiieie et 268
12.13 Diglmage compressed format (.PIiC)ccovevveiieeieeie i 269
12.14 Diglmage movie format(.mov or .dfm).........ccccooveiiiiiic e, 270
13 ConfigUIration FIlES.......ccui it 272
13.1 DigiFIOW _LiCeNCE.AFC.....ciiiieeciece e 272
13.2 DigiFlow_LocalData.dfC........ccccveiieieiieieec et 272
13.3 DigiFIow_Cameras.dfCccoiiiiiiee s 274
13.4 DigiFIow_Dialogs.dfscooveiiiiiiiiee e 278
13.5 DIgiFIOW_Status.dfS.........cooiiiiiiiecece e 279
14 EXteNdiNg DIGIFIOW.........coviiiiieiie et 281
14.1 InStalling EXEENSIONSccviiiiiiiii et e et e e 281
15 Miscellaneous pUBbIICAtIONS...........c.coiiiiiiiiie e 282
] (=] =] [0S USRS 284
10 (=) PSR SST PR PRI 285
16 LICENCE AQFEEIMENTuiiiiie ittt ettt e e et e e b e e saeeasbeesreeenree e 291
L= o o RSP STPTPR 291

L AT g 1S PRSPPI 292

O CONAITIONS: .o 292

DigiFlow Introduction

1 Introduction

DigiFlow provides a range of image processing features designed specifically for analysing
fluid flows. The package is designed to be easy to use, yet flexible and efficient, and includes
a powerful yet flexible macro language. Whereas most image processing systems are intended
for analysing or processing single images, DigiFlow is designed from the start for dealing with
sequences or collections of images in a straightforward manner.

Before installing or using DigiFlow, please read the Licence Agreement (see §16) and
ensure you have completed the registration requirements.

1.1 History

The origins of DigiFlow lie in an earlier system by the same author: Diglmage. This earlier
system, with its origins in 1988 and first released commercially in 1992, pioneered many uses
of image processing in fluid dynamics. Utilising its own DOS-extender technology, Diglmage
existed in the base 640kB of DOS memory (and later from the command prompt under
Windows 3.x and 9x), accessing around 12MB of extended memory for image storage and
interface with the framegrabber hardware.

To obtain the necessary performance in these early days of image processing on desktop
computers, Diglmage required a framegrabber card to be installed to provide not only image
capture, but also image display and some of the processing. While this close coupling allowed
efficient real-time processing and frame-accurate control of a video recorder, it ultimately
restricted the development and deployment of the technology. The original ISA bus based
Data Translation DT2861 and DT2862 frame grabber cards remained available until 2001, but
by that time suitable motherboards had become difficult to source. At time of writing (2007)
and despite its reliance on outdated technology, Diglmage is still used in many laboratories
around the world.

The development of DigiFlow began in 1994, although the project had a number of false
starts and development put on hold a number of times due to other commitments. The code of
this version has its origins in 1997 as part of the development of synthetic schlieren (see
85.6.4). The computational and resolution requirements for synthetic schlieren could not be
accommodated efficiently within the framework of Diglmage.

Despite sharing many approaches, algorithms and techniques, DigiFlow does not re-use
any of Diglmage’s 8Mbytes Fortran 77 and 2MB Assembler source code. The design goals for
power, flexibility and efficiency in DigiFlow could only be achieved by starting again from
scratch.

DigiFlow builds on experience with Diglmage from the user view point to provide a more
powerful, more flexible, but simpler interface. It also builds on the programming experience
to provide a more flexible, powerful and maintainable code base (now in excess of 15MB of
source).

A central feature of DigiFlow is a powerful macro language (dfc) and interpreter. This
provides users with an efficient and flexible environment in which to automate and customise
processing, as well as proving to be a very useful general computational and plotting tool.

Versions of DigiFlow have been in use in Cambridge since 2000, and at other selected
laboratories since 2002. Its wider dissemination began in late 2003 with a series of beta
releases. The first commercial release (version 1.0) dates from February 2005, with parallel
processing and other technologies providing substantial speed increases being introduced with
version 2.0 during 2007. Version 3.0, released in 2008, provides further performance
improvements plus a wealth of new processing features.

DigiFlow Introduction

1.2 Key features

DigiFlow has been designed from the outset to provide a powerful yet efficient
environment for acquiring and processing a broad range of experimental flows to obtain both
accurate quantitative and qualitative output.

Central to design philosophy is the idea that an image stream may be processed as simply
as a single image. Image streams may consist of a sequence of images (e.g. from a ‘movie’),
or a collection of images related in some other manner.

Efficiency is obtained through the use of advanced algorithms (many of them unique to
DigiFlow/Diglmage) for built in processing options.

Power and flexibility are obtained through an advanced fully integrated macro interpreter
(using DigiFlow’s dfc macro language) providing a similar level of functionality to industry
standard applications such as MatLab. This interpreter is available to the user either to directly
run macros, or as part of the various DigiFlow tools to allow more flexible and creative use.
Commercial versions of DigiFlow include additional features such as partial compilation to
further improve performance.

Although not an essential component, DigiFlow retains the potential Diglmage released by
the control of a framegrabber. Not only does this greatly simplify the process of running
experiments, acquiring images, processing them, extracting and plotting data, but it also
enables real-time processing of particle streaks and synthetic schlieren, for example.

1.3 User guide

This User Guide is designed to provide the primary reference for DigiFlow. The User
Guide is supplied in both .html and .pdf formats and is linked to the help system within
DigiFlow. Pressing the F1 function key within DigiFlow will start a web browser and take you
to the most appropriate point in the .html version of the User Guide.

The User Guide is not in itself complete: detailed descriptions of the many functions
provided by the macro interpreter may be found in the interactive help system (Help: dfc
Functions). The User Guide is also supplemented by a variety of scientific publications that
expand on some of the underlying technologies.

The typographical convention used in the User Guide is described below:

Typography Description

Analyse Windows elements such as prompts, menu items and
dialogs.

Expt_A.dfi File names, etc.

read_image () Interpreter commands and functions.

= Interpreter operators and syntax.

"string" Interpreter operators and syntax.

comment Formal argument names for interpreter functions.

my_image Variables, numbers, etc., for the interpreter.

fileO Formal argument names for interpreter functions.

DigiFlow Installation

2 Installation

Although DigiFlow will work on any Windows XP or later machine, we recommend that
you avoid using Windows Vista if possible as the performance of Vista is significantly worse
than either Windows XP or Windows 7. There are versions of DigiFlow that can operate
under both 32-bit and 64-bit implementations, although at present it cannot control a digital
video camera under a 64-bit implementation of Windows.

2.1 Basic installation

DigiFlow is a typical Windows application with a graphical user interface, menus, dialog
boxes and toolbars. However, unlike many applications, DigiFlow does not require a special
installation procedure, but can simply be copied to the desired directory. In most cases
DigiFlow will be delivered in a .zip or self-extracting (.exe) archive file, downloaded from the
web. This should simply be unzipped into your selected directory. However, to make the best
of DigiFlow, there are some additional settings and tasks to be completed. The setup.bat file
that is copied to the installation folder will help with this process. Refer to GettingStarted.pdf
for further details.

The installed part of DigiFlow consists of DigiFlow.exe, which contains the core
functionality, and a range of DLL files that handle specific menu options. DigiFlow also
makes use of various global start-up files stored in the same directory.

During use, DigiFlow generates two status files in the directory in which it is started. These
are DigiFlow_Status.dfs (§13.5), which contains a range of information describing the settings,
and DigiFlow_Dialogs.dfs (813.4), which records your last responses to many of the prompts, etc.
By storing this information in the directory in which DigiFlow is started, DigiFlow is able to
keep a separate set of information for each user, or for each specific task, without polluting the
registry. Additionally, these status files can be deleted or moved as the user wishes. In some
circumstances, DigiFlow_Status.dfs may become corrupted. If DigiFlow fails to start, or exhibits
unexpected behaviour, you should try removing (or renaming) DigiFlow_Status.dfs to see if this
cures the problem.

It is recommended that you use a new directory for each new set of experiments and for
each new project. In this way the DigiFlow strategy of storing localised status files will
facilitate use of DigiFlow in the various different contexts. In such an environment it is
frequently most convenient to start DigiFlow from the command prompt within the
appropriate directory structure, although other strategies such as multiple shortcuts or setting
up associations for Windows Explorer are also possible.

If you wish to run DigiFlow from a command prompt (strongly recommended), it is worth
putting this directory on the path so that DigiFlow may be started by simply typing pigiFlow
at the prompt (DigiFlow will normally add itself to the search path the first time it is run to
enable this). If you prefer to start DigiFlow from the desktop or start menu, you will need to
create a shortcut at that point and set the Start in directory appropriately. It is strongly
recommended that you do not run DigiFlow from the directory in which the program resides,
exept during the set-up procedure.

2.2 DigiFlow onfiguration

Details of the basic setup and configuration of DigiFlow under Windows is covered in
GettingStarted.pdf. This section reiterates some of the key points and highlights other
considerations that may facilitate your use of DigiFlow. Note that DigiFlow can also be
installed to run under Wine on a Linux machine, although it is not possible to control a digital

DigiFlow Installation

video camera and .eps (Encapsulated PostScript) files do not have access to the normal range
of fonts and appear visually less satisfying.

2.2.1 Basic configuration

Specification of the file extension for file names within DigiFlow is mandatory in most
circumstances as DigiFlow utilises this extension to determine the file type for output.
However, by default, Windows XP and later hide the extensions to files of known types, a
feature that can cause problems with DigiFlow. We recommend, therefore, that you turn off
this feature. DigiFlow will attempt to do this for itself, but this may not work on some
systems. If DigiFlow does not make all extensions visible automatically, then you may
achieve this manually through the View tab of Tools: Folder Options under Windows
Explorer. Simply remove the check mark from Hide extensions for known file types. Note that
this will need to be done for each DigiFlow user.

By default, DigiFlow will not be associated with any file types or extensions, unless you
install it using setup.bat (in which case .dfc, .dfd, .dfi, .dfm, .dfs and .dft will be associated with
DigiFlow). The easy way to make or add such associations is to right-click on a file with such
an association then select Open with (or Open if Open with is not visible) and choose the
default program from the Open With dialog and check the Always use... box. If DigiFlow is
not listed in this dialog, then locate it using the Browse button.

j Choose the program you want ko use to open khis File:

File: .DFM

Programs

) Recommended Programs:
= foorion
|7 Other Programs:
@ HF Image Zone
& Internet Explorer
&% Microsoft Yisual Studio \MET 2003
[& Motepad
Y Paint
() windows Media Player
| windows Picture and Fax Yiewer
A wordPad

Blways use the selected program to open this kind of file

If the program you want is not in the list or on your computer, you can ook
for the appropriste program on the Web,

[Ok H Canicel]

Figure 1: The Open With dialog for selecting the default program.

We recommend that the following extensions are associated with DigiFlow on all
installations: .dfc, .dfd, .dfi, .dft and .dfs. You may also wish to set up associations for other
standard image formats such as .bmp, .tif, .png and .jpg.

2.2.2 Encapsulated PostScript configuration

DigiFlow can create Encapsulated PostScript (.eps) files from image and graphical output
for incorporation into documents in packages such as LaTeX and Word. This can be achieved
either through DigiFlow’s inbuilt .eps facility, or using a Windows printer driver. The former
is restricted to bit images (or a rasterised version of graphics), whereas the latter can produce
both bit image and vector graphics.

DigiFlow Installation

By default, DigiFlow searches for a printer named EPS to use to create the .eps files.
Creation of this printer is relatively straight forwards. Start the Add Printer Wizard from the
Printers and faxes window, selecting Local printer attached to this computer and using the
File: (print to file) port. Select a PostScript printer driver (we recommend the #HP C LaserJet
4500-ps if you are using Windows XP, or the xerox Phaser 6120 Pps if you are using
Windows 7) and name the printer “EPS”. (You do not want to make this the default printer,
you may, however, wish to share the printer to simplify the setting up of further machines.)
For Windows Vista, it is recommended that you download an Adobe PostScript driver from
www.adobe.com as some of the drivers distributed with Windows Vista format their
PostScript in a manner that inhibits the use of LaTeX packages such as psfrag.

Once the wizard has finished, right-click on the new EPS printer and select Printing
preferences. Click on the Advanced button expand Document Options and PostScript
Options within it. Under PostScript Output Option select Encapsulated PostScript (EPS), as
indicated in figure 2.

HP C LaserJet 4500-P5 Advanced Options

=] % PaperOukput A
Paper Size: A4
Copy Counk: 1 Copy
= @ Garaphic
Print Quality: &00dpi
= @ Image Color Management
ICM Method: ICM Disabled
ICM Inkent: Pickures
Scaling: 100 %
TrueType Font: Subskituke wikh Device Fonk
= ﬁh Document Opkions
= ﬁs PostScript Opkions
PaostScript Oubput Option: | Encapsulated PoskScrip »
TrueType Fonk Download Cf Optimize for Speed
PaostSeripk Language Lewel:] 2ptimize For Portability
Send PostScript Errar Handlfloiioe S e ey S,

Archive Format
Mirrored Qubput: Mo rchrve Forma _

4 >

[QE. H Cancel]

Figure 2: Encapsulated PostScript (.eps) printer setup.

Note: if you are using Remote Desktop to access the computer with DigiFlow installed,
you are best to disable the feature making local printers available to the remote session as this
can cause problems if the EPS printer exists on your local machine.

DigiFlow cannot itself read back in an Encapsulated PostScript file it produces. However,
if DigiFlow detects that GhostScript is installed on the machine, then DigiFlow will attempt to
use GhostScript to help it load the .eps file in an appropriate format. For this to be achieved,
then GhostScript must be on the system paTa and the s 118 environment variable must be
set up to point to the GhostScript libraries.

Note that GhostScript is not distributed with or required by DigiFlow. Use of GhostScript
is governed entirely by the licence of that product and not by the DigiFlow Licence.

http://www.adobe.com/

DigiFlow Installation

2.2.3 Additional memory

The maximum linear address range under 32 bit Windows is 32 bits or 4GB. By default
under Windows this is subdivided into two ranges for each process. The first 2GB of memory
is for the process’s own use, while the second is for the operating system. Although 2GB
superficially appears a lot, there are times when it would be useful to have more. (At the time
Windows was designed, 2GB was considered a good approximation to an unlimited memory
resource, but things have moved on...) With Windows XP and later it is possible to change
the 50:50 default split to reserve 3GB for processes, restricting the system. Not all software,
particularly some drivers, support this extension. DigiFlow, however, is able to and so if you
start running low on virtual memory, it may be worth a try.

To install the 3GB process memory option, select System Properties (right click on My
Computer and select Properties) then the Advanced tab. Click the Startup and Recovery
Settings button, then the Edit button to open NotePad to make the necessary changes. Note that
you need to have Administrative access rights to be able to do this.

System Properties - Startup and Recovery

Systern Restore Avtomatic Updates System startup

General Computer Mame Hardware
Defaulk operating swstem:

ou muszt be logged on az an Administrator to make most of theze changes. "Microsoft Windows #P Professional” fnoexecute=optin ffastdetellg
fciiatice Time: to display list of operating systems: 30 % | seconds
Visual effects, processzor scheduling, memorny usage. and virtual memory
Time ta display recovery options when needed: | 30 % | seconds
Settings To edit the skartup options file manually, dick Edit,
User Profiles

Syskem Failure

Desktop settings related to vour logon o £ S i e sl

Settings Send an administrative alert
Automatically restart

Startup and Recovery Wite debugging information

Systern startup, system failure, and debugging information
Small memory dump (64 KB) w

Settings small dump directory:

%oSystemR oot Minidump

[Ervvironment Y ariables][Error Reporting]

I 0k H Cancel] [Ok H Cancel l

Figure 3: Dialogs for setting the /3GB option to increase available virtual memory.

NotePad will allow you to edit the boot.ini file that controls the startup of Windows.
Typically, this will look like

[boot loader]

timeout=30

default=multi (0)disk(0)rdisk (0)partition (1) \WINDOWS

[operating systems]

multi (0)disk(0)rdisk (0)partition (1) \WINDOWS="Microsoft Windows XP

Professional" /noexecute=optin /fastdetect

To enable the 3GB option, you need to add the /3ce switch to the end of the line specifying
Windows startup. It is best to do this by adding an additional startup option so that you can
boot your machine in either standard 2GB or 3GB modes. The resulting boot.ini should look

something like this:
[boot loader]
timeout=30
default=multi (0)disk(0)rdisk (0)partition (1) \WINDOWS
[operating systems]

DigiFlow Installation

multi (0)disk(0)rdisk (0)partition (1) \WINDOWS="Microsoft Windows XP
Professional" /noexecute=optin /fastdetect

multi (0)disk(0)rdisk (0)partition (1) \WINDOWS="Microsoft Windows XP
Professional (3GB)" /noexecute=optin /fastdetect /3GB

Note that the order of these two lines determines whether the default boot is 2GB or 3GB. In
the above example, the standard 2GB boot is the default. Reverse the order of the two lines to
make the 3GB boot the default.

2.3 Installation with framegrabber

If you are installing DigiFlow in a machine equipped with a BitFlow R2, R3, R64 or R64e
series framegrabber then some additional steps are required. These require administrative
access to implement.

2.3.1 Framegrabber installation

The framegrabber should be installed and tested using the BitFlow installation procedure.
You will require the BitFlow drivers for version 5.00, 5.20 or 5.30. Later versions may also be
supported (contact Dalziel Research Partners for details). You should note that on some
systems the BitFlow installation procedure can hang; if this occurs, try installing after
rebooting Windows in Safe Mode.

The BitFlow framegrabber requires a configuration file (.cam, .rcl or .r64) for the camera
being used. Configuration files for cameras known to work with DigiFlow may be found at
http://www.dalzielresearch.com/digiflow/cameras/.

If you have a multi-user system where most users do not have administrative access, we
recommend that you change the permissions on the BitFlow software to allow all users to
change the camera configuration file if and when they need to. This is achieved using the
Registry Editor (regedit.exe; accessible from the command prompt) to adjust the permissions
on all keys in the registry relating to ‘BitFlow’ by adding the ‘Authenticated Users’ security
principle with ‘Full control’. Failure to do this would mean that only users with administrative
access could change the camera configuration.

2.3.2 Camera configuration

DigiFlow requires information over and above what is provided in the configuration file for
the framegrabber card. This additional information about the camera capabilities and users
preferences is stored in DigiFlow_Cameras.dfc; consult §13.3 for details of the format of this
file. Cameras not listed in this file have not been tested, although there is a reasonable chance
that all that is required (for a camera supported by the BitFlow frame grabber) is the addition
of appropriate entries, provided a suitable camera configuration file is also available for the
BitFlow framegrabber. Please contact Dalziel Research Partners if you require any help or
guidance with this.

2.3.3 Local security policy

In the ‘Local security policy’ (found in the ‘Administrative tools’ section of the ‘Control
Panel’), open the ‘Local Policies: User Rights Assignment’ option. You need to add
permission for all DigiFlow users to the following items:

I Adjust memory quotas for a process
I Increase scheduling priority

I Lock pages in memory
It is suggested that you do this by giving full control to ‘Authenticated users’

These adjustments are necessary to ensure that DigiFlow is able to manage the machine
performance adequately to ensure trouble-free capture.

http://www.dalzielresearch.com/digiflow/cameras/

DigiFlow Installation

2.3.4 Video capture configuration

It is strongly recommended that video capture is to a disk other than that containing the
operating system in order to obtain adequate performance. The necessary disk system
bandwidth may be in excess of 240MB/s in some cases (e.g. with a Dalsa 4M60 camera), thus
requiring a Mode 0 RAID array, or using Windows to ‘stripe’ across multiple disks. However,
for most cameras 40MBY/s is sufficient and this may be achieved via a fast IDE or SATA disk
(but not the one the operating system is on!).

The capture process in DigiFlow can be configured in two ways. Either you can directly
specify the capture file and location each time (risking the user specifying a disk system with
insufficient bandwidth), or setting up DigiFlow to capture to a fixed location and require the
user to ‘review’ (and possibly edit) the sequence in order to copy it into their own directory
space. For multi-user systems, this second is generally preferred as it allows users to utilise the
capture facility like a video recorder while preventing retention of unwanted video footage.

The default configuration takes the second option, and assumes that the capture location is

V:\Cache\CaptureVideo.dfm. We recommend that you configure your system so that this
directory exists (either by appropriate naming of the capture disk, or by setting up a share to
an appropriate point and then connecting to it). This directory must not be compressed and
must have full access for all DigiFlow users. Once you have created this directory, you should
run File: Live Video: Setup (see 85.1.5.3 for further details) to create the initial
V:\Cache\CaptureVideo.dfm. It is strongly recommended that you do this before writing any
other data to the capture disk. Details on how to change the name or location of the cache
file may be found in 13.2.
It is important that the space DigiFlow reserves in this file remains as a single contiguous
block on the disk drive. If it becomes fragmented for any reason then, due to the very high
data transfer rates required, DigiFlow may not be able to write to the disk as fast as data
becomes available from the camera and so timing errors may result.

Once created, V:\Cache\CaptureVideo.dfm will be flagged as Read only by the operating
system (although DigiFlow will still be able to write to it). The file will not shrink if a smaller
sequence is captured, but may grow if one larger than that specified during File: Live Video:
Setup is requested (note that there is a risk of fragmentation if this occurs). It is important,
therefore, that you go through the review process outlined in 85.1.5.2, rather than simply
copying this file, as in general only a part of the file will contain valid data.

Consult §13.2 on DigiFlow_LocalData.dfc should you wish to change the name or location of
V:\Cache\CaptureVideo.dfm.

DigiFlow Basics

3 Basics

3.1 Starting DigiFlow

It is recommended that you use a new directory for each new set of experiments and for
each new project. In this way the DigiFlow strategy of storing localised status files will
facilitate use of DigiFlow in the various different contexts. In such an environment it is
frequently most convenient to start DigiFlow from the command prompt (see figure 4) within
the appropriate directory structure, although other strategies such as multiple shortcuts or
setting up associations for Windows Explorer are also possible.

e+ | Command Prompt

S :is2od suserssstuart

S tsUserssStuart *digif low_

Figure 4: It is frequently most convenient to start DigiFlow from the command prompt.

If you wish to run DigiFlow from a command prompt (strongly recommended), it is worth
putting this directory on the path so that DigiFlow may be started by simply typing pigiFlow
at the prompt, and placing a shortcut to the command prompt on the topmost level of the Start
button. It is also worth pinning a shortcut to the command prompt to the start menu (and/or
task bar for Windows 7), and in the properties setting the Start in path to an appropriate
location.

If you are not familiar with the use of the command prompt, then the following brief list of
the most useful commands may be of some value.

Command Description

ca folder Changes to the directory (folder) located within the current
directory.

cd .. Move up one directory level.

cd \ Move to the topmost (root) directory on the current drive

dir List all files in the current directory.

dir *.dfi List all .dfi files in the current directory.

dir *.dfc /s List all dfc files located either in the current directory, or any
subdirectories.

move file dest Move file to a new directory dest. Can also be used to rename
folders.

copy Srce dest Copy the file srce to dest.

xcopy Srce dest A more flexible form of copy.

9

DigiFlow Basics

xcopy Srce dest /s/d | If srce and dest are directories, then will copy all the files in the
directory and any subdirectories to dest, but only if the srce version

is newer. This might be used, for example, as
xcopy expt*.dfd results /s/d
to update a collection of DigiFlow drawings (dfd files) in a results

folder.

ren file new Rename file with the name new.

A very useful feature of Windows XP and later is that the <tab> key will expand a file name.
For example, if you are in a directory that contains subdirectories named Exptl, Expt2 and
Expt3, then typing ca e followed by <taob> will expand this to ca Expt1. Pressing <tab> a
second time will change this to ca Expt2, and so on. To find out more about the commands
available at the command prompt, then search for command prompt in the Window’s Help
and Support Centre and select Using Command Prompt. Alternatively, if you know the name
of the command but want more details of its options, type the command followed by /> at the
command prompt (see figure 5 for an example).

+| Command Prompt

S iwUserssStuart >od A7
Dizplays the name of or changes the current directory.

CHDIR [-D]1 [drive:1[lpathl
CHDIR [..1
CD [+D]1 [drive:]1lpathl
Ch [..1
. Specifies that you want to change to the parent directory.

Type CD drive: to display the current directory in the specified drive.

Type CD without parameters to display the current drive and directory.

llze the D szwitch to change current drive in addition to changing current
directory for a drive.

If Command Extensions are enabled CHDIR changesz as follows:

The current directory string is converted to use the same case as
the on disk names. So CD C:“\TEMP would actually set the current
directory to C:sTemp if that iz the case on disk.

CHDIR command does not treat spaces as delimitersz. so it iz posszible to
CD inte a subdirectory name that contains a space without surrounding
Prezs any k to continue .

Figure 5: Help is available for a command at the command prompt by adding /2 after the command.

If you prefer to start DigiFlow directly from the desktop or start menu, you will need to
create a shortcut at that point and set the Start in directory appropriately (see figure 6). It is
strongly recommended that you do not normally run DigiFlow from the directory in which the
program resides.

~10-

DigiFlow

Basics

PIx

DigiFlow Properties

General | Shortcut | Compatibility | 5 ecurity

Target type:

DigiFlow

Application
Target location; Bin

Target: C:AProgram FllestDigiFlowsDigiF low, exe

Start ir: S\ sershShuarty

Shortcut ey [Mone

Bun:

Marmal window hd

Comment:

FEind Target...] ’ Change Icon...] ’ Advanced...

[0K H Cancel][Apply]

Figure 6: Properties dialog for a short cut to start DigiFlow.

DigiFlow supports a number of command line arguments. The most common use is to
specify either an image file or movie to be loaded when DigiFlow starts, or a dfc file to be run.
In both these cases, simply type pigiriow at a command prompt, followed by the name of the
image file/movie or dfc file.

Additionally, there are a number of command line switches that can be used in special
circumstances. These are given in the following table.

Switch Description

/7 Give the command line options for starting DigiFlow.

/allowautorun Causes files named _autorun.dfc to be started automatically when
they are created in the current folder. Note that they will be
deleted once they have been run.

/archive Turns on the .dfa archive file generation system when not enabled
by default.

/noarchive Turns off the .dfa archive file generation system.

/dfa Identical to /archive.

/autopreprocess Turns on the auto-preprocess mechanism (using .dfb filter files).

/noautopreprocess

Turns off the auto-preprocess mechanism (using .dfb filter files).

/bitflow:N

For machines with more than one BitFlow framegrabber installed,
specifies which board this instance of DigiFlow is to use. Note:
there should be no space between the colon and the number.

/camera:camerafile

Specifies that a particular camera configuration file should be
used rather than the default (specified through the BitFlow
sysReg Utility. Note: there should be no space between the colon
and the name of the camera file.

/camerabuffer:option

Specifies the type of buffering to be used for the capture file. One
OfZ"(default)","buffer","nobuffer" Or "writethrough".

/con

Start up a conole window at the same time as starting DigiFlow.

—-11 -

DigiFlow Basics
(The console window can also be started from dfc code using
open console () O open file())

/debug Turns on all logging options (to DigiFlow.log) for debug purposes.

/dev

Enable certain features related to internal performance
monitoring. Intended for use by the developer.

/disablewritequeue

Disable the threaded writing of images, thus forcing the process
generating the image to wait until the image has been written
before moving on to the next stage.

/enablewritequeue

Enable the threaded writing of images. This speeds up processing
by allowing the process generating the images to proceed to the
next image before the write is complete. Enabled by default.

/disableparallelwrite

Certain aspects of reading and writing images may have problems
if accessed simultaneously by multiple threads. Use of this flag
introduces mutexes (blocks of code where a thread has mutually
exclusive execution) to prevent simultaneous access. This has a
detramental impact on performance.

/enableparallelwrite

Certain aspects of reading and writing images may have problems
if accessed simultaneously by multiple threads. Use of this flag
turns off the mutexes (blocks of code where a thread has mutually
exclusive execution) to prevent simultaneous access. Allowing
simultaneous access improves performance.

/dpi:Nn

Tells DigiFlow to assume the display has n pixels per inch. This
IS used to work out the size of some of the visual elements in the
user interface. Note that including
DigiFlow.Options.Display.dpiand
DigiFlow.Options.Display.Scaling in DigiFlow_LocalData.dfc
sets the assumed pixels per inch and scaling (respectively) of the
screen.

/stack:multiple

Sets the multiple for stack size allocation. If not specified, thenthe
default multiple is 1.0. This switch can be used in an attempt to
decrease or increase the size of the stack created for separate
computational threads in event of memory problems.

/timing

This turns on a performance timing feature incorporated in some
of the DigiFlow facilities.

/wine

Changes some features to improve performance when running
DigiFlow under Wine on Linux.

The final option for starting DigiFlow is to double-click in Windows Explorer on a file

associated with DigiFlow.
3.2 Main Window

The main DigiFlow window follows that common for most applications with a Multiple
Document Interface (MDI). The menu bar at the top provides access to the majority of the
facilities, while the toolbar underneath gives a more convenient method of accessing the more
widely used functions. A typical example is shown in figure 7.

—12 —

DigiFlow Basics
Toolbar /—| Menu Bar

Whars St e NI F hawy]
B Gt vew _ depn e Took fndm tRD
b W SR P [B mipi S s EniEm Llwel Skl window
jon FESTIRSITITRS S0 DR NTAAL) Y =]
N Dl st e PRI S MOV

“Juw-u Dbt sl o 2 (23]

’11....&»..: uur.m.l ” S L) ‘ Image
\ ! = window
Thread
running
indicator
— —\ Resize
grip
cursor Current
coordlnate time Process
details

Figure 7: The basic DigiFlow window.

As is normally the case for Windows applications, the main window and the client
windows may be resized by dragging the frame of the window. Holding down the control key,
while dragging the boundary of a client window, will cause the contents of the window to be
zoomed so as to make the best use of the available space. If you do not hold down the control
key, then the window size is changed without changing the zoom applied to its contents.

3.3 Obtaining help

As is common with most Windows applications, help while using DigiFlow can be
obtainined by pressing the f1 key. This will start an instance of Internet Explorer and bring up
an html copy of this manual. DigiFlow will automatically scroll to the position within the
manual that is most relevant to the dialog or process you have open at the time. Subsequent
presses of f1 will utilise the same tab in Internet Explorer, provided this remains open.

Some users, particularly when first starting, may prefer to have the manual automatically
keeping track with their activities. This can be achieved by turning on the AutoHelp facility,
either from the Help menu, or by clicking the questionmark button () on the toolbar. When
activated, an instance of the Internet Explorer browser will be activated and track your
activity, providing timely help.

As an option to using the html version of this manual, the manual is also provided as
DigiFlow.pdf.

~ 13—

DigiFlow Basics

3.4 Image Selectors

DigiFlow uses image selectors to specify image streams for input to and output from a
given process. Four types of image stream are supported:

Single images. These contain just a single image.

Movie. A movie contains multiple images stored in a single file.

Sequence. A sequence is a collection of related files, typically identified by a numeric part
of the file name that increases by one between neighbouring images in the sequence.

Collection. A collection is a group of image files that have no special relationship to each
other. Collections may be subdivided into two groups: homogeneous collections and
heterogeneous collections. In a homogeneous collection, all the images within the collection
have the same format (same size, colour depth, file type, etc.). With a heterogeneous
collection, the format may vary from one image to another. At present, most processes within
DigiFlow do not support heterogeneous collections.

Image selectors may specify not only raster format image files, but also vector format files.
DigiFlow supports many standard raster formats, including .bmp, .tif, .gif, .png, .jpg, and .avi
along with special formats to provide backward compatibility with Diglmage (.pic and .mov,
the latter now renamed .dfm in DigiFlow). DigiFlow also introduces the new DigiFlow Image
format, .dfi, to allow images to be saved with full floating point precision, and the DigiFlow
Pixel format (.dfp) provides text output specifically tailored for raster images.

Vector format files include Enhance Meta Files (.emf) Windows Meta Files (.wmf) and
DigiFlow Drawing format (.dfd). The last of these provides output formatted as plain text
containing both data and drawing commands. This text may be imported into other
applications, or read back into DigiFlow to reconstruct the image or drawing it represents. If
GhostScript is installed on the system (see GettingStarted.pdf), then Encapsulated PostScript
(.eps) files can also be opened with DigiFlow.

DigiFlow also provides a specialised file format (.dft) for storing particle tracking data.
While these may be treated as images, in general the functionality available through the
specialised particle tracking facilities is to be preferred.

The specialised DigiFlow and Diglmage formats (.dfm, .dfi, .dfp, dft and .dfd) are described
more thoroughly in §11.2.

3.5 Archive files

The concept of an archive file was introduced to DigiFlow in version 3.4 as a method of
both collecting multiple image files that form part of a sequence, and of storing additional
details about an image or a sequence of images when the file format being used does not
provide a mechanism for storing this information.

DigiFlow archive files use a .dfa extension appended on to the corresponding image file or
sequence name. For example, if a .dfa file is generated for a sequence of images image000.png,
image001.png, ... image732.png, then the name of the .dfa file will be image###.png.dfa.

If the use of archive files is enabled, then when reading the image sequence back in as
image###.png, additional information not present in the .png files themselves (such as the
method used to construct the sequence and the timing of the sequence) will be recovered from
the .dfa file. Alternatively, attempting to open image###.png.dfa will both read the sequence
image###.png and recover the additional information from the .dfa file.

The use of DigiFlow archive files is enabled or disabled through the Open Image and Save
Image dialogs (see 84.1 and 84.2). For some builds of DigiFlow, .dfa generation is disabled by
default. Under these circumstances, .dfa support may be turned on by including the switch
/dfa on the command line.

For further details on the format of .dfa files, refer to 812.11.

— 14—

DigiFlow Basics

3.6 Sifting

A key concept associated with input image streams is sifting. In DigiFlow, sifting is the
process by which images are extracted from in input stream. The extraction process may result
in all the images being extracted, or only a subset of images (typically specified by a start
number, an end number and a step). It may also result in a subregion of the image (a
rectangular window within the image) being returned, or, in the image being modified to
conform to some reference. Further details of the sifting process are given in 84.3.

3.7 DigiFlow Macros

DigiFlow includes a powerful interpreter and associated macro language. The language is
referred to as dfc code. While the programming language for dfc code is specific to DigiFlow,
it follows the general syntax and conventions of many other modern high-level languages. In
addition to the basic functionality expected of such languages, DigiFlow provides a vast range
of functions tailored specifically to tasks for which DigiFlow is ideal. This includes not only
image processing functions (ranging from contour tracing to Fast Fourier Transforms), and
data analysis functions (such as statistics, least squares fits), to numerical solution of the
equations of motion (e.g. Goudnov solution of shallow water equations and stream function-
vorticity formulation for two-dimensional Boussinesq flows).

The present manual contains introductory documentation for the use of dfc functions and
code. However, much of the detailed documentation for the individual dfc functions is to be
found in the interactive help system Help: dfc Functions. The most convenient way of
accessing this is frequently through the dfcConsole feature described in 85.2.10. The
DigiFlow macros\ subdirectory (found in the folder where DigiFlow is installed) contains a
number of documented examples of macro code.

3.8 Threads

One important aspect of DigiFlow is that it supports not only multiple image windows, but
also multiple processing threads. This has two important benefits. First, it allows DigiFlow to
continue to be used interactively while it is processing simultaneously one or more sequence
of images, thus allowing real-time inspection of the progress. Second, for PCs with multiple
processors, the execution time of a single process can be greatly reduced. (It should also be
noted that more than one copy of DigiFlow may be used simultaneously).

If the user attempts to close a window that is in use with an active thread, then the system
will warn the user that closing the window will also kill the thread. Depending on the version
of DigiFlow you are using, windows that are playing a role in an active thread have the name
of the thread indicated in the window status bar at the bottom of the window and have a
‘sloshing tank” Symbo| me sme h mm in the bottom right-hand corner.

The user may also control the individual threads more directly, stopping them, pausing or
resuming them, or changing their priority. This is achieved through the View Threads menu
item (§5.3.10), or the corresponding & button on the main toolbar. (All active process threads
may be suspended by clicking ® on the toolbar.)

3.9 Text output

Some of DigiFlow’s features include graphical and text output. In such cases it may be
desirable to include more than simple plain text. To achieve this, fully licenced copies of
DigiFlow support LaTex-like math-mode text formatting. For example, in Analyse: Time
Series: Summarise (see 85.6.1.6) it is possible to specify the titles of the axes of the graph
produced. Specifying it as the string "Dimensionless height
$\big (\frac{h}/{\alpha”2H 0}\big)s" would produce the label

_ 15—

DigiFlow

Dimensionless height (%)
o/,

Basics

Although DigiFlow does not understand the full range of LaTeX commands and macros, it
can interpret those most likely to be of use in figures and graphs. The list includes:

Upper and lower case greek letters (e.g. \Alpha or \zeta)

$ \ddot \lbrace \P \supset

\I \div \Ibrack \partial \supseteq
\# \dot \le \phantom \surd

\$ \dots \left(\pm \tan

\% \downarrow \left[\pounds \tanh

\& \Downarrow \Leftarrow \prime \textbf

\, \ell \leftarrow \prod \textit
\2dots \equiv \Leftrightarro \propto \textnormal
\: \euro w \qquad \textrm

\; \exists \leftrightarro \quad \therefore
\aleph \exp w \rangle \tilde
\angle \footnotesize \leq \rbrace \times
\approx \forall \Il \rbrack \tiny
\backslash \frac \In \Re \underline
\bar \ge \log \right) \Uparrow
\bf \geq \mathbf \right] \uparrow
\big \gg \mathit \rightarrow \wedge
\BIG \hat \mathrm \Rightarrow \wp

\Big \HUGE \minus \S \yen
\bigsizes \huge \mp \scriptsize \\

\bullet \Im \nabla \sim w

\cdot \in \ne \simeq \

\circ \infty \neq \sin \{
\copyright \int \normalsize \sinh \}

\cos \it \notin \small \~

\cosh \langle \oplus \sgrt

\dagger \LARGE \oslash \subset

\ddagger \large \otimes \subseteq

\dddot \Large \overchar \sum

Thereare some minor restrictions and additional requirements for the DigiFlow LaTeX-like
syntax compared with standard LaTeX. For example, the standard LaTeX
$\left (\frac{a}{b}\right)$ should be stated in DigiFlow as
S\left ({\frac{a}{b}}\right)$. The additional pair of braces tells DigiFlow that the
fraction a/b is controlling the size of the large left bracket. This additional pair of braces does
not affect the processing of the string by LaTeX. A further example is that DigiFlow accepts
LaTeX macros such as \alpha whether or not it is in ‘maths mode’ (i.e. between s. . $).

This LaTeX-like text formatting (available only with fully licensed copies of DigiFlow)
may also be used in dfc code, for example through the draw text(..), draw axes(..) and
plot_titles(..) commands.

— 16—

DigiFlow Basics

It is not possible to define additional LaTeX-like macros from within LaTeX-like formatted
text. However, additional macros may be defined from within dfc code; see §11.4 and the dfc
help for further details.

A powerful feature of this component of DigiFlow is the way it works to support the use of
Encapsulated PostScript (.eps) files in LaTeX through the psfrag macro package. See §5.1.12
for further details.

17—

DigiFlow Common dialogs

4 Common dialogs

4.1 Open Image
The Open Image dialog box is used throughout DigiFlow to open source image selectors

(83.1). |
Open image file @
Look in: | \) FrontCover J & 1 rﬁ(Ea-
J Fixed0.dfi L] Fixeda0.dfi
I_Ileedl dfi || Fixedat . dfi
|| &) Fixedz. dfi || Fixeda2. dfi
| Fixeds. dfi | Fixedas. dfi
] Fixeds. dfi (&) Fixedad.dfi
| Fixeds. dfi | Fixedas. dfi
P >
Dbject name: |FixedB1.png

Objects of llmage files(* pic;” brp;* tif:* dfd;*. dfp;” dfi;*.d L] Cancel
[~ Compact list V' Numbers as Hi Preview

v Set current directory

Colour component

,_ _,_I_J_] _J_l !— FlGB homBayer filter

i
[ogs o foss [5.0s tnes £
(a)
Open image file
Look jn: | & (RN ~ & & ek B
) Fixedo.dfi |l Fixeds0. dfi
||l Fixed1.dfi |»}FixedB0.png
||] Fixeds# dfi || FixedB1.dfi
| &) Fixedao.dfi % }FixedB1.png
(| Fixeda1.dfi |&l] FixedBi#. dfi
| &) Fixeda dfi %] FixedB#.png
|< >
Dbject name: |FixedB1.png

Objects of Ilmage files(* pic.” brp;* tif:* dfd;* dfp;” dfi;*.d LJ Cancel
[V Compact list V' Numbers as H Preview

v Set curent directory
Colour component

[— JJJ_] 4]4’ [— HGB fromBayelflItel

[o0s (T B0 imecs

(b)
Figure 8: The Open Image dialog box under Windows XP. (a) Showing all files and (b) using
Compact List option.

The Open Image dialog box consists of a standard Explorer-style display of folders, files,
file types, etc., along with a preview pane on the right-hand side. This preview pane will
attempt to display the currently selected file.

DigiFlow supports a range of industry standard image formats, plus some special formats.
The special formats both provide compatibility with the earlier Digimage system, and provide

~ 18—

DigiFlow Common dialogs

facilities (e.g. floating point data representation) not found in industry-standard formats. These
non-standard formats are described in more detail in §11.2 (DigiFlow drawing format) and
812 (DigiFlow image file formats). Note that DigiFlow expects the user to specify the
extension of the file. It is therefore important that all extensions are visible in the dialog (refer
to 82.2 for how to achieve this).

To select a single image or a movie, simply click on the name of the file containing this
object. If you prefer, the name of the file may be typed at the File name prompt. If you type in
the file name a preview will not be generated automatically, but can be requested by clicking
the Preview button. If manually entering the file name, then it is important that you specify the
file extension to remove any potential ambiguity.

To select a sequence, the name of the sequence must be typed at the File name prompt,
using hashes (#) to indicate the varying numeric part of the file name. Alternatively, click on
any member of the sequence and check the Numbers as #### box. This will convert (starting
from the right-hand end of the file name) any digits found into the appropriate number of hash
characters, thus allowing easy specification of the sequence. However, numbers enclosed in
parentheses or square brackets (i.e. (..) or [..1) will not be converted to hashes. This allows
numeric data to be included unambiguously in the file name. Again, the Preview button may
be used to generate a preview if it is not generated automatically.

The precise behaviour of the Compact list check box depends on which version of
Windows you are using. The motivation, however, is to provide a more compact way of
accessing a large number of numbered images in a given folder. Under Windows XP, the
Compact list check box will provide a more compact summary of those present by displaying
the name of the first few in a given sequence, and using the compact hash notation to
summarise the rest. An example of this is given in figure 8, where figure 8a shows all the files
(without Compact list checked) and figure 8b shows how the number of files visible is
decreased and sequences are replaced by hashes in the file name when the Compact list box is
checked.. Selecting the summary containing hashes is equivalent to selecting the entire series.
(Note that clicking on Compact list will retain the files specified at the Object name prompt,
but remove any selection in the view window.)

Unfortunately, this simple Compact list option is not available under Windows Vista or
Windows 7. Instead, checking Compact list searches for .dfa DigiFlow archive files (see 83.5)
and displays only them. Provided all the images and sequences have been created with the
archive facility enabled, then the net effect is very similar. An example of this is shown in
figure 9.

Whichever version of Windows you are using, if you select an image file (rather than a .dfa
file) then the .dfa file is read only if the Read .dfa archive box is checked. However, if you
select the .dfa file itself, then it will always be read, along with the image or sequence of
images.

~ 19—

DigiFlow Common dialogs

AT T T ===
85 Open mmage le ==
Lok [. Dgfowy - ~Em
k! Neme Date m&ﬁed Type *
-~
B junk24,png 29/05/2012 21:32 PNGw
Racent Flac
Y Ejunk25.png 200520122132 PNGw
- B junk26.png 29/05/2012 21:32 PNGw
Deskio W junk2T.png WS 2AN PNGw
cy B/ junk28.png W51 PNGF
= B jurk29.png 90520022102 PNGr
Liesime By jurk30.png 29/05/2012 21:32 PNG =
A By/juniLpng 0052002132 PNGw
By jurk32.png 29/05/2012 21:12 PNG
Conpuer g iunk2.png WSR2 PNG
& B jurkddpng W56 21 PNG
Netwodk LN ;um}‘?.pr-g 29/05/2612 2132 9NL-’ -
By wnk36.0na 2970542012 21:12 PNGe ™
. " '
Obiectpave ANSSHGN O
Obyects ol hpa lmageﬂe:!‘oc"hno‘Il'dﬂ'an,'.m('.dm:_] Concel
Image companent
™ Compact st N Nunbers 20 2H2tt Paarvisw : v = N
¥ Baad dla arctwre W Set cunert draciory ?:&llimﬂamﬂm I ,_‘ it Jor ot 5o Il
Mo:f - !
i (a)
8 Open mmage e
Lockre | . Dgflw I R = s)
ny Neme Date modified Type *
-l -
Ccey L kRS png dia 1052002212 DFAFI -
L junk.dfrm,dfa OS2 1047 DFAFi
E [linewGradientpng.da WYL 1152 DFAF
Deskios L pivtestli.dfm.dfa WHIWD 1520 DFAF
sy & Document 29/05/2012 22:40 File fol
—y 1. Configuration 29/05/2012 2113 File fol
LiReams L Bin 29/05/2012 18:11 File fol
-'& L 8in 29/05/2012 1811 File fol
). Debug 29/05/2012 1811 File fol
¢) 2Lib 28/05/2012 2249 File fol
Q . DaraAcquisition /052002 09:15 Filefol
Netwok L. PattemMatching 23/05/2612 0826 File fol
i dfcFunctonDLL 2370542012 0825 Filefol =
. m '
Onectpane [AEITEAE = [Gee |
Otyects ol hpw |inckect|" dla".chy) - Carcel
Image companent $
W Compact kst M Nunbers 20 2HSH Peirview v > 3
RGH hom Bayer Sier [_ .) [—
¥ Fasd.dla srchwe W Set cunert deeciory e 2 & p ,__J_‘.J- JH _J“ .5_’
hves 4 - |

(b)
Figure 9: The Open Image dialog box under Windows 7. (a) Showing all files and (b) using Compact
List option. Note that only thos files for which a .dfa archive file was generated will be shown when
the Compact list box is checked.

Note that the default settings of the Number as ####, Compact list and Read .dfa archive
check boxes is remembered from one invocation of the dialog to the next.

A collection of images may be specified using the mouse in combination with the <shift>
key to select a range of files, or the ctrl keys to select or deselect individual files.
Alternatively, the names may be typed at the File name prompt, each name enclosed by
double quotation marks. The collection is sorted into alphabetical order for display and
processing. (If a collection is specified in this manner then any hash characters will be
interpreted as hashes. Similarly, checking Number as #### will be ignored.) In general, a
sequence is preferable to a collection as it offers a greater level of control.

—20—

DigiFlow Common dialogs

A collection of images may also be selected using wildcards. This may be achieved in two
ways. If you use the standard Windows wild cards (? to represent a single character, and * to
represent a variable number of characters) then the dialog will display only those files that fit
the description; you may then select them in the normal manner. Alternatively, you may use %
in place of ? and $ in place of * to do the selection directly. For example, typing Sheep*.* will
cause the dialog to display sheep2.tif, sheep.bmp, sheep.jpg, sheep.pic and sheep.tif to be
displayed in the dialog box, which may then be selected using the mouse and shift key.
Alternatively, Sheeps$.$ will achieve the same result, selecting all five files.

If the selected image contains true colour, then the Colour component list box is enabled.
This list box allows selection of whether the image is to be treated as full colour, or how the
colour information is converted to a greyscale for processing by DigiFlow. For example,
selecting RGB will allow DigiFlow to process the red, green and blue image planes separately
(where this makes sense), while green will take the green component of the colour image and
treat it as a greyscale image, or hue will process the colour using a hue/saturation/intensity
representation of the image. The options greyscale and mean all produce a similar effect,
although precise details of how the resulting image is constructed from the red, green and blue
components differs. The table below gives the relationships.

Key Returns Comments

RGB Three colour planes Full colour image

Mono 0.11*red + 0.59*green + 0.30*blue Same as grey.

Red red Red component only.
Green green Green component only.
Blue blue Blue component only.

hue Image hue (colour)
saturation Image saturation (purity)
intensity Image intensity (brightness)
cyan 1-—red

magenta 1-—green

yellow 1 —blue

grey 0.11*red + 0.59*green + 0.30*blue Same as mono.

mean (red + green + blue)/3 Mean of three components.
max max(red, green, blue) The brightest component.
min min(red, green, blue) The darkest component.

An image containing only a single plane of data may contain colour information if captured
from a camera fitted with a Bayer colour mosaic filter. To provide support for this and since it
is unlikely that the image file will contain information that DigiFlow can use to automatically
detect such an image, when DigiFlow detects a single plane of data in the image to be opened
it provides the following supporting options:

Key Returns Comments

(single plane) P Standard image

RGB from Bayer filter | Three colour planes Interpret as a full colour
image using a standard Bayer
filter layout

times 2 2*p Intensities rescaled

times 4 4*p Intensities rescaled

times 8 8*P Intensities rescaled

times 16 16*P Intensities rescaled

_21—

DigiFlow Common dialogs

times 32 32*P Intensities rescaled
times 64 64*P Intensities rescaled
div 2 P/2 Intensities rescaled
div 4 P/4 Intensities rescaled
div 8 P/8 Intensities rescaled
div 16 P/16 Intensities rescaled

4.2 Save Image As

The Save Image As dialog is essentially the same as the Open Image dialog (84.1), but is
produced when the name of the output image selector (83.1) is required.
B Save current image an s3]

Save i | Natomatc: —:J & 5 E-
Neme Date modified Type *

2006_03Macch

2006_L0October

E 2007_03Maech

0952ptamber

-~ =
File fol

File fol

Recan Flace

File fol

File fol

Dazkiop ny
ML

BreakingWave:

_Synthetcimage: File fol
File fol
File fol

File fol

LR s DynMask
.~ LargePVImages

Overtuer File fol

By irdl01png) PNG »r
» o
% By imi002.png il PNG »
» wrd03.pr 9740 PNG
Netmodk {5003 png d _ x _h_ &
B ordl0d.0r0 07/04/2005 1451 PNG =
‘
Otyact pane i d E Sam
Soveseipn [image e pc” bep” W i dp i 7] Corcel |
. Image companent
[Compact kst Poarviaw I

f X s 3 | ™
¥ Create dla wchin 7 Sak cubnk drechon) = | | |

Figure 10: The Save Image As dialog box.

If an image selector of the same name does not exist already, then the file name must be
entered by typing at the File name prompt. The extension to be used should be specified
explicitly as DigiFlow uses this to determine the file type to be created. It is therefore
important that all extensions are visible in the dialog (refer to §2.2 for how to achieve this).
Simply selecting a type from the Save as type list will not necessarily have the desired effect
if more than one possible type is indicated.

Note that some file types have a range of options such as bit depth and compression. These
are normally controlled from outside the Save Image As dialog box using the Options...
button in the parent dialog. Refer to 84.4 for further details.

DigiFlow supports a range of industry standard image formats, plus some special formats.
The special formats both provide compatibility with the earlier Digimage system, and provide
facilities (e.g. floating point data representation) not found in industry-standard formats. These
non-standard formats are described in more detail in 811.2 (DigiFlow drawing format) and
812 (DigiFlow image file formats).

The Compact list check box operates in the same way as for the Open Image dialog
described in 84.1. Here, the Create .dfa archive check box replaces the Read .dfa archive and
causes DigiFlow to create a .dfa archive for the output it produces (see 83.5).

_22 —

DigiFlow Common dialogs

4.3 Sifting input streams

When processing an image stream it is often desirable to select only a subset of the stream
for processing. This subset may contain only some of the images from the stream, and/or it
may contain only part of each image. Within DigiFlow this process of selecting a specific part
of an image stream for processing is referred to as ‘sifting’. When sifting is available, the
corresponding dialog will have a Sift... button (typically one for each input selector) that starts
a tabbed dialog box controlling the sifting process. The following subsections describe the
various sifting options.

4.3.1 Selector timing
The Selector Timing tab of the Sift dialog allows the user to specify which times from a
multi-image image selector (83.4) will be used for a process. _
T Sift X

()

Timing | Region | Match Intensity |

23

In File:

] Frame @—j 110 17 fps
From ¢« Step To ’Nv
[12 R AR E =[5 = ¢| Resstton

|3.75003 2 [oe2s005 ¢ [16.875135 ¢ [Default colows

The current frame number

oK | Cancel |

Figure 11: The standard Selector Timing tab of the Sift dialog.

This tab allows the preview of the image selector and specification of the processing start
and end points as well as the step between the images to be processed.

The buttons down the right-hand side allow the image selector to be played, the speed of
this preview controlled by the hare and tortoise buttons. The slider allows the currently visible
frame to be dragged to any time. The Frame edit box and spin control allow more precise
movement of the preview frame. The 4 and ™ buttons move to the currently specified limits
for the processing.

The frame numbers for the start and end points may be typed in the From and To edit
boxes, and the spacing in the Step edit box. The corresponding time boxes below will be
updated automatically.

Clicking the ¥ buttons adjacent to the From or To edit boxes will set the corresponding
from or to position to the current position, shown by the slider and the edit boxes immediately
above (time) and below (frame).

23

DigiFlow Common dialogs

Alternatively (but less precisely), holding <shift> while dragging the slider will allow
specification of the timings.

When the From and To times are set, or Step is not unity, then this information is displayed
on a yellow background at the top of the image preview.

For files that do not store timing information, the DigiFlow assumes by default that the
files are separated in time by one second. This may be changed using In file, in which the
image spacing may be specified in either seconds or, using the lower of the two controls, in
frames per second. These two controls are disabled for files that store time information, but
display the relevant details.

Reset to All resets the start and end points to include the entire selector.

Checking the Default colours control will cause the preview image to be displayed using
the DigiFlow default colour scheme rather than the colour scheme stored in the image file.

4.3.2 Selector region
The Selector Region tab of the Sift dialog allows the user to specify a region within an
image selector (83.4) that will be used for a process.

Timing Fegion] I atch Intensit_l,l] Fix Defects]
Fraorn time
To time
Fixel region
Region type
i
{+
i
-
Pixel window
400 i‘ Mamed region
& o [= 4
= 4
Size Position
4k j‘ 4|k jl
| Zoarm Ih |
End Diraw... | Zoom Dut |
Coordinate for the top of the window to be processed
0] | Cancel |

Figure 12: The standard Selector Region tab of the Sift dialog.

For a process requiring more than one input stream (and hence having more than one image
selector in its dialog box), one of the streams (typically the first in the dialog box) will be the
master stream. If the region for this stream is changed, then the region for the other (slave)
streams will be changed automatically to conform to (typically made the same as) that for the
master stream. It remains possible, however, to change independently the region for the slave
selectors, provided the size of the region for the slave selector is compatible with that for the
master selector.

24

DigiFlow Common dialogs

The type of region is selected by the Region type group of radio buttons. The example
shown in figure 12 is for a master selector; the Conform option is not available here, but
would be visible above All when sifting slave selectors.

If Pixel window is selected, the pixel coordinates of the left, right, top and bottom of the
window may be specified in the edit controls within the black rectangle. If preferred, the size
may be increased without shifting the centre of the region, or the location of the region may be
changed without adjusting the size, using the Size and Position controls, respectively.

Alternatively, clicking the Draw button opens a full size window that allows the window to
be moved and resized dynamically using the mouse (see figure 13). (Hint: it is sometimes
worth dragging a corner of the window to increase its size and thus make it easier to grab the
edge of the region window.) The Zoom In and Zoom Out buttons may be used to control the
magnification while drawing. Similarly, you may swap between this window and the Sift
dialog box to use the various edit and spin controls to move the region around. Click on the
End Draw... button to close the drawing window and re-enable the other controls on the Sift
dialog.

trang %900 | Match ieenity | P Darects

PN Derturme 15 Lottt g dlagd owi]
R I R e

flmpon o=

400 = HNaved segen

End Dram Zoom Du

Doncirats ins e led of fae vancims A3 be procesed

o Coancs

Figure 13

=4 =4

If Named region is selected, then previously saved regions are displayed and may be
selected. This provides a convenient method of using the same region in a range of different
processes. The four buttons to the right of the list box may be used to manage these named
regions. New named regions may be created either by clicking the New button, in which case
a subdialog is produced to allow specification of the region, or by clicking the Name button
(when Pixel window is selected) to give a name to a pixel window. The Edit button allows
alteration of an existing window, while Delete removes the region from the list. Note that
selecting a named region that is a Pixel window will update the controls in the Pixel window
group. Switching back to Pixel window allows editing of these values, while Name may be
used to overwrite the old values with the new ones, or to create a copy.

25

DigiFlow Common dialogs

Edit Region §|

Image to Draw on Diraw...

400
P T ezt oy R

=
R
o

Region nare |Junk

Ok | Cancel

Figure 14: Editing a region.

4.3.3 Matching intensities

Quantitative measurements often require that the intensities are matched between different
frames and sequences. The intensities of the raw image streams may fluctuate due to a number
of reasons. One common one is the mismatch in frequencies between the illumination and the
camera frame rate. Depending on the type of light source and the shutter speed of the camera,
this mismatch may lead to a modulation of nearly 50% of the signal amplitude, while
automatic gain features can lead to similar results. While it is in general best to avoid these
problems by using continuous or high frequency light sources, this is not always practical.

The Match Intensity tab in the Sift dialog (figure 15) provides a basic mechanism for
correcting the intensities of input image streams to match them to some fixed reference. The
basic strategy is for the image to contain two reference regions that contain approximately
uniform intensities that should not change with time. These two regions are then used to
generate a linear mapping between the input image and a reference intensity, thereby adjusting
the intensities in preparation for processing.

— 26—

DigiFlow Common dialogs

& Sift HE
Timirig] Fegion Match Intenszity] Fix Defects]

tdatch Intensity
Hamed region Match to selector

™ Mone
* Local

Reference from |"E:-:ptD2.m0v"
T First image Set values | File... |
+ Set values
Region & = Region B
Intensity ,m— o Intensity ,r
EES I: IS
g0 o [0 s BT
s Ca—
Size Pasition Size Pasition
<« i‘ i il <« i‘ | i‘

Integer value

Ok | Cancel |

Figure 15: The Match Intensities tab provides the ability to directly relate an image to reference
values.

The Match Intensity facility is turned on and off using the radio button group in the top-
left; .when off (None), then the intensities are read without alteration. The Match Intensity
facility can be enabled either using details provided locally (Local), or with details saved
previously (Named), in a similar manner to that used for Regions.

A locally defined Match Intensity reference consists of a pair of rectangular regions,
Region A and Region B. The location and size of these regions is controlled by a variety of
controls for specifying the left, right, top and bottom of each of the rectangles. Additionally,
as with the Regions dialog, the regions may be drawn on an image and dragged to their
desired location by clicking the Draw... button (see figure 16).

Each region requires an intensity to be associated with it. When Reference from is set to
Values, then the Intensity controls in the Region A and Region B groups is enabled. The user
may directly enter the desired (target) reference here, or by using File in Match to selector to
select a suitable image, then the Match button will read the intensities from the specified
image. Alternatively, if Reference from is set to First image, then the reference intensities are
not entered at this point, but rather they are determined automatically from the first image in
the stream to be processed.

Once the various controls for a Local Match Intensity have been set, their values may be
saved for use elsewhere by clicking Name.... This prompts for a user-supplied descriptive
name, saves the settings, and switches the dialog into Named mode.

Selecting an entry from Named matches loads the corresponding settings for use. If you
wish to alter the settings of a saved match, load it by selecting from the list, then switch to
Local mode. Make any necessary changes, then click again on Name to name and save it (you
may re-use an existing name).

_27—

DigiFlow

D02 may [0 s StaartEesosec WGravityCanmmnt WarthaDepth 2\)
CHAm PO MDD G- a)

Il 00041} LESSA, 165

77, 0000 me 1005

Frane: 0000005} Treast

Figure 16: Drawing regions for intensity matching.

4.4 Modifying output streams

Common dialogs

This section describes the various modifications that may be made to the output streams.
These modifications are accessed via the Options... button in the output stream select group.
The precise contents of this dialog will vary depending on the output file type that has been

selected.

“B Options @ §|

Save Optians] Llser Eomments]

Colour scheme

[default] File farmat

lirput] Bit depth |[autamatic) Py

[local] a

bipolar Z

gleyscale =

I Compreszion lewvel |3

ik 0 =

negative

zchlieren Rezample

zingle cycle

single cycle - aperture f* Mane

zingle cycle - double brightres: " Source

zingle cycle - half brightness » e BediEn Ii
First indest | =

=T
ak. | Cancel |

Figure 17: The Save Options dialog.

4.4.1 Setting output stream colour

The colour scheme for the output stream is selected from the list of known colour schemes
in the Colour scheme list box. Selecting the (input) member will set the colour scheme to be

the same as for the master input stream.

If you wish to add a new colour scheme or modify an existing scheme, you must use the

View: Colour Scheme... menu option. Refer to 85.3.6 for further details.

_28—

DigiFlow Common dialogs

4.4.2 Full colour

For output formats such as .bmp, .png or .jpg that support true colour images, a Full colour
checkbox is produced. If checked, then the output is saved as in a 24 bit true colour format. If
not checked, then a greyscale version of the output is saved, along with the selected false
colour map (the false colour map is not saved for .jpg files).

4.4.3 File format

The File format group invokes various options that may exist for the specified file type. The
contents of this group will depend on the file type specified: in many cases there are no
options and so the group is left empty.

The Bit depth field determines the number of significant bits saved for each pixel in the
image. Most image formats use 8 bits, but for high resolution images, or images that result
from numerical computations, a greater depth may be desired. If the .dfi format is specified for
the file type, then bit depths of 8, 32 and 64 bits are possible.

When available, the Compression level edit and spin control will determine whether or not
the image is to be compressed using a lossless compression. A value of zero indicates no
compression, with positive integers giving various levels of compression. Typically
compressing an image reduces its size by around a factor of two, but at the cost of slower
access (although for a very slow hard disk the access speed may improve with compression).
The additional time taken to compress an image will depend in part on the level of
compression requested, and in part on the structure of the image. If a process seems
particularly slow, but still producing the correct answer, try reducing the level of compression.

In the case of an .avi file, selecting zero causes full, uncompressed images to be saved,
whereas setting Compression level to 1 will use the Cinepak compression (installed by default
with Windows). For other compressions specify a value of 2 for Compression level which will
then cause the standard Windows Video Compression dialog to be produced when DigiFlow
is ready to save the first frame of the output stream. (Note that most of the .avi compression

options are ‘lossy’ in the sense that only an approximation to each image is saved.)
Yideo Compression @

Compressor;
i f £ Cancel

J J Configure...

- T e 2t |

Figure 18: Standard Windows Video Compression dialog.

For .jpg images, the compression applied is ‘lossy’. The higher the level of compression,
the greater the fraction of information lost. This is controlled by the Quality control. Note that
in general the lossy nature of the compression in .jpg images means that they should not be
used for the storage of intermediate results.

4.4.4 First index

By default, the first image in a sequence produced by DigiFlow will be given a zero index
(numerical part of the file name). The First index control may be used to change the index for
this first image. In either case, subsequent images will always be produced with unit
increments from this value.

4.4.5 Resampling
When the .dfi image format is selected, it is possible to rescale the output stream before it is
saved and then reverse this rescaling when the image is subsequently read in. Typically this

—29_

DigiFlow Common dialogs

option is used to reduce the resolution of the saved image, but maintain its size by
interpolating back to the original size before using the image again.

This feature is enabled using the Resample check box. When enabled, the resolution of the
saved image is controlled by the Factor edit control which accepts a floating point value for
the relative resolution of the saved image. For example, a value of 0.5 will cause the saved
image to have only ¥4 of the number of pixels of the original in the file, but through
interpolation the missing pixels are reconstructed when the image is read in again. This option
is particularly valuable for use with images produced by the synthetic schlieren (85.6.4.3) and
PIV (85.6.5.2) facilities.

4.4.6 Save user comments
“& Options EJE|

Save Options User Comments l

This experiment wasz first performed az part of the GEFD Surmer S choal.

Here, N™2 = 1.4/ and “omega = 1/5]

ak. | Cancel |

Figure 19: User comments tab.

Some file formats (e.g. .dfi, .dfd and .dft) allow user comments to be saved along with the
images. These comments are specified using the User Comments tab of the Save Options
dialog.

4.4.7 Encapsulated PostScript streams
DigiFlow can produce Encapsulated PostScript (.eps) output either using the Export to EPS
option in the File menu (see 85.1.12) or by specifying an .eps file as the output stream. In the
latter case the normal Options dialog has an additional EPS button that invokes the dialog

shown in figure 20.
Encapsulated PostScript format &|

Title

* MNone
" Taop |
" Bottorn

Text filker
* Nomat
" PSFrag [new style, attempt alignment)
" PSFrag [old stle, all labels leftjustified)

LaTek file
for Ypsfrag
[Frame u]4 | Cancel |

Figure 20: The output options for Encapsulated PostScript (.eps) files.

—-30-

DigiFlow Common dialogs

The PostScript options provide the ability to add a title either above (Top) or below
(Bottom) the image or graphic output, and to add a frame (Frame) around the output.
DigiFlow (commercial version only) provides support for the LaTeX \psfrag macro package.
This enables the text produced by DigiFlow to be readily replaced with text generated by
LaTeX, thus keeping font and style information consistenet and allowing post-plotting
adjustment of the text labels, etc. Selecting Normal produces the eps containing the original
labels, whereas with either of the PSFrag options the text is replaced by a unique character for
each element. At the same time, DigiFlow creates a .tex file that contains the mapping
between these characters and the original text. This .tex file can then be embedded in included
in the main LaTeX document to reproduce the figure. See 85.1.12 for further information on
the Encapsulated PostScript formatting options.

4.5 dfc Help

As will be seen in 85, a large part of DigiFlow’s power and flexibility is gained by the use
of user-supplied macro code. This code is known as dfc code. Examples of facilities that
require such code include Analyse: Time: Extract (85.6.1.5), Analyse: Time: Summarise
(85.6.1.6), Tools: Transform Intensity (85.7.2) and Tools: Combine Images (85.7.3). Details
of the macro code itself are given in 888 and 9. However, this manual gives only a relatively
brief introduction to a subset of the dfc functions available within DigiFlow. Instead, the bulk
of the documentation is provided within an interactive help facility available from within
DigiFlow itself in the Help: dfc Functions menu item, and from the £ button within dialogs
where such information is of value.

The help facility takes the form of the dialog illustrated in figure 21. To find a function
performing a given task, simply type some information about that task into the Search for
box. For example, if you want to find functions that have something to do with drawing, enter
“draw”. You will notice that as you enter “draw”, the Look up list changes as each letter is
typed. When you type the “d”, the size of the items in the list is reduced so that it only
includes those with a “d” somewhere in their names. Similarly, “dr” leads to a further
reduction, excluding those that do not have this pattern, and so on.

Spaces in the Search for box are interpreted as “and” criteria for the search. For example,
entering “dr ma” would reduce the list to those functions with both “dr” and “ma” in their
names, but without the two patterns needing to be adjacent. This, combined with the logical
and descriptive (if somewhat verbose) naming conventions for DigiFlow functions, provides a
very powerful search facility.

At all stages the Look up list is sorted alphabetically. (Note that if Search for is left blank,
then Look up contains all possible functions.)

Selecting an item in the Look up list then brings up the documentation for the function in
the three boxes below. The top of these identifies the role played by the entry within dfc code.
The list box below gives the range of possible entry points to the function. As we shall see
later, many DigiFlow functions are “overloaded” (i.e. they accept more than one type of data),
and may have optional parameters. This list itemises the full range of possibilities. Selecting
an entry point from this list and clicking the Copy button copies this entry point into the
clipboard.

The bottom control on the dialog provides the detailed documentation for the selected
function. This documentation should be read in conjunction with the entry point
documentation. The help system is hyperlinked (e.g. draw_start (..) in figure 21): clicking
on a hyperlink will take you to the corresponding help. Similarly, backward () and forward
() buttons will move through previously selected hyperlinks.

_ 31—

DigiFlow Common dialogs

The General items list box provides access to more general information, such as modifiers
for input and output streams, recent changes to DigiFlow, how to return images from code
specified for tools such as Transform intenstiy, and how to produce simple plots.

DigiFlow dfc Function Help E|
Search for The names of the dfc commands are generally descriptive, although Clase
|dlaw m the order of the descriptive words may not always be clear.

Type into the Search field a guess at any part of the name for the
dfc conmmand pou are zeeking. The Look up lizt will then haw all
— commands containing the search string.
diaw_begin_image 5 Far example, az you type "contour'', the list chanages from all
draw_begin_marks commands, to thase that contain a "'c"" at some point, then to thase
draw_bottom_axiz zuch az "cos", "are cog' and Upikel contour'’ that contain oo™,
draw_colour_scher!'ue until & more refined list of only thoze containing the complete word
draw_embed_drawing "contour” is displayed.
draw_image

Look up

Sirmply zelect frarm the Look up lizt to wisw

draw_inztall_labex_macro General items e e reiean, Ui Gl it
" IMews - latest #.| documentation may be copied by selecting Copy
?{?W—T‘?Eh—?l_z_e | |IMews - old which option, and clicking the Copy button,
Input streams
Function Output streams H| | =

= PN R

draw_mark[hDraw x 0]
drawe_mark[hD rav,<bmay whiray)

Lender a mark on the drawing. M

Lleraw Drawing handle.

This is the handle returned by draw start(. .).
x Integer or real.

The x coordinate of a single mark.
hid Integer or real.

The ¥ coordinate of a single mark.
xArray Array.

The x coordinates of an array of marks.
FArray Array.

The ¥ coordinates of an array of marks.

Figure 21: The help dialog for dfc code.

The help facility may also be started from within a code edit box by right-clicking. Doing
so will cause the word under the cursor to be pre-loaded into Search for field. Moreover, if
that word is a known DigiFlow command, the details will be looked up automatically.

4.6 Code library

DigiFlow incorporates a number of features that will facilitate the re-use of the dfc code
used in facilities such as Analyse: Time: Extract (85.6.1.5), Analyse: Time: Summarise
(85.6.1.6), Tools: Transform Intensity (85.7.2) and Tools: Combine Images (85.7.3). This
section describes the DigiFlow Code Library. Details of the macro code itself are given in 888
and 9.

The dfc Code Library provides convenient method of storing and retrieving user-developed
code. The library itself is stored in a file named DigiFlow_Library.dfs in the directory in which
DigiFlow is started. Note that this file is re-read from the current directory every time the
Code Library is invoked. The DigiFlow_Library.dfs file may be copied from one directory to
another, if the user desires.

The library is accessed via the E Code Library button in appropriate dialogs. Central to
the Code Library dialog, shown in figure 22, is the Entry list that itemises all previously saved
items of code for this DigiFlow facility (a separate list is maintained within the same file for
each different facility). Any code currently specified in the parent dialog box is recorded under
the current key; this will be the default selection upon entry.

To retrieve a previously stored code item, simply select it from the Entry list and click OK
to insert it in the parent dialog. The Code edit box will show the code, while Description will

_32-

DigiFlow

Common dialogs

show any previously saved description. Clicking Cancel will return to the parent dialog

without changing the code in that dialog.

Code Library |
Code
test = | R
n -= 1000000;
tStart = time interwvali);
for i:=0 to n-1 {}:
tEupty = time interval(tStart):
t¥tart = time_interval(): 0
for i:=0 to n-1 {j := i"E:;};
tSquare = time interwval (tStart);
tStart = time interval();
for i:=0 to n-1 {123.0; -1Z3e6; 1Z3=-61;
tHumber := time interwal (cZtart); v
4= S e == FHawmn GmndasaeaT b - —
Process Entry
dicCaonzale Compilertest
Transformintenzity Junk,
Test
| Save bz |
Delete
Ok, | Cancel |

Figure 22: The code library dialog.

The Code and Description may be edited before returning to the parent dialog. The
Process list allows code to be selected from different processes. The Delete button may be
used to remove an entry from the Code Library, and the £2 button gains access to the dfc Help
facility. Finally, the Save As button allows code to be saved into the data base (see figure 23)

under any of the processes.

Save As g|

Process

Transfarml ntenzity

Mame

|Eompilerlesl

Ok | Cancel |

Figure 23: Name under which a Code Library entry is to be saved.

— 33—

DigiFlow Menus

5 Menus

This section describes the main menu options. Some of these will be familiar as they
follow standard Windows conventions, whereas others are specific to DigiFlow. Many of
these menu options can be strung together to create processes that are more complex. Details
of how to achieve this are given in 86.

5.1 File

5.1.1 Open Image

Toolbutton: [&=¢
Shortcut: ctrl+O

Related commands: open_image(..), read image(..), read image details(..),
view(..)

Allows an image selector (83.4) to be opened for viewing. The image is selected through
the Open Image dialog box (84.1). Both images and drawing formats may be opened.
Encapsulated PostScript (.eps) may also be opened if DigiFlow is able to find an installed
copy of GhostScript (see §2.2.2).

5.1.2 Run Code

Toolbutton: ‘l'

Shortcut: ctrl+R

Related commands: include(..)

Opens and runs a DigiFlow dfc macro. Refer to §10 for further details.

5.1.3 Run Macro

Toolbutton: ctrl+shift+R

Shortcut:

Related commands:

Opens and runs a DigiFlow dfc macro from the Macros subfolder within the folder where
DigiFlow is installed. This folder contains various macros and wizards that are of general
value. Refer to 8§10 for further details.

5.1.4 Save As

Toolbutton:

Shortcut: ctrl+S

Related commands: save image(..),write image(..)

This option allows the contents of the active window to be saved. Note that if the active
window contains a sequence or other collection of images, only the currently displayed image
will be saved. To copy an entire sequence use File Edit stream (see 85.1.6) or one of the
related transformation tools.

5.1.5 Live Video

5.1.5.1 Show Live Video

Toolbutton:

Shortcut:

Related commands: process File ShowLiveVideo(..), camera live view(..)

This option creates a new window and streams live video directly to it. Whilst the live view
is intended primarily for previewing camera output, it may be used in conjunction with macros
such as camera grab(..) to acquire single or multiple frames, or with

— 34—

DigiFlow Menus

camera capture file(..), camera_start capture and camera stop_ capture(..) to
acquire entire sequences.
r Cantrols m -

.t
Cameta |0 alsa DAE-512 Bits —|§—

Framegrabber (B oadBunner Channels |4_

Frame B ates Display resolution
Shutter ﬂ fe Full size
N " Half size
Capure [mnp € Third size
Discla — " Quarter size
P 250 = [~ ‘Windaw
Dizplay processing Cameralink
Shutter speed
article streaks Gai —~
T ain
synchronize digplay =]
synthetic schlisren =
Mo zenial port

v Show process dialog

0K

Figure 24: The dialog controlling what is seen in a live video window.

Video captured using this option is fed continuously to the display until stopped by the
user; it is not saved to hard disk (except via the use of dfc code). For this reason, no duration
can be specified. For some cameras, it is possible to set the shutter speed (Shutter, in frames
per second; n frames per second is equivalent to a shutter speed of 1/n seconds) independently
of the acquisition rate (set by Capture, in frames per second). However, many digital cameras
force the two rates to be equal. For some supported CameraLink cameras, the Shutter speed
and camera Gain can be set as integer indices into the range of possible values. The meaning
and acceptable range of values varies between different makes and models of cameras. (Note
that a value of zero indicates unit gain on some cameras, but on others, such as the
UnigVision UP1830CL, unit gain corresponds to a value of 128. The default value is obtained
from the entry for a specific camera in DigiFlow_Cameras.dfc.)

The frame rate for updating the display is independent of the shutter and capture rates.
Typically Display is set to a lower frame rate (there is little point exceeding around 12 frames
per second). Any necessary processing of the incoming data stream to correct the format is
undertaken automatically.

The Display resolution group controls how much of the original image being captured by
the framegrabber will be displayed on the screen (note that this does not affect the data
available through dfc functions such as camera grab(..)). The meaning of the various
options is self-explanatory.

In some cases, simple real-time processing of the image prior to display will greatly assist
with the setting up and running of the experiment. The Display processing group controls the
type of processing that will be done. These are described in more detail for the Capture Video
option in 85.1.5.2. To suppress processing, select none from the list box. For large images, it
may be best to use Display resolution to reduce the resolution and thus the computational
burden of undertaking any processing.

- 35—

DigiFlow Menus

The Tools: Slave Process family of functions (see §5.7.5) provides a convenient way of
accessing an even broader range of additional functionality, ranging from focusing tools to
real-time optical flow calculation.

Particle Streaks

If Display processing is set to particle streaks then the dialog shown in figure 25 is
displayed to provide processing of display output while at the same time capturing the raw
video to a file. There are four display options: Threshold, Maximum, Minimum and Direct.

For Threshold the incoming image is segmented into particles (bright points) and
background (dark points) by varying the Threshold control. Using relatively simple
processing, the particles so identified may be converted into comet-like streaks that slowly
fade with time. The length (in time) of these streaks is determined by the Length control.

The Maximum and Minimum options work in a similar way except that rather than
segmenting the incoming image, the brighter (Maximum) or dimmer (Minimum) of the
incoming and stored images is used. Again the length of the streaks can be set using the
Length control.

When Direct is selected, then the incoming images are displayed without any further
processing.

The Reset button clears the display of all earlier times.

Threshold

i E B

Lenath

)

1]
o5 NEEHENE
Displayfes ¢ Threshold
2510 ﬂ % Marimum
" Minimum
" Direct

=

Reset

E it

Dizplay step

Figure 25: Particle streaks preview dialog.

The rate at which the screen is refreshed is set by Display fps. Note, however, that the
desired rate may not be achieved if the computational load is too great.

The Display step group of controls is used to aid the viewing of very large images that may
be larger than the available display area. The edit and spin controls set the step between
displayed pixels (hence a value of 2, for example, will give a half-resolution image). The grid
of buttons in the bottom left allows the view port into a larger image to be moved around in a
manner that is efficient to display. These options are only enabled if the Window option in the
Live Video dialog is checked.

Synthetic Schlieren

If Display processing is set to synthetic schlieren then the dialog shown in figure 26 is
displayed to provide processing of display output while at the same time capturing the raw
video to a file. This allows real time visualisation of a synthetic schlieren image (see 85.6.4).
There are three processing options: Difference is the simplest (and computationally fastest)
technique that provides a qualitative output proportional to the magnitude of the gradient in

— 36—

DigiFlow Menus

the density perturbation. The Horizontal gradient and Vertical gradient options perform more a
more sophisticated analysis that returns a semi-quantitative output of the specified component
of the gradient in the density perturbation. Note that these two options distinguish between
positive and negative gradients.

Semi-quantitative Synth Schli...

Type

™ Difference

" Harizontal gradient
% ‘ertical gradient

Gain
1 L]

3

L]
10 s | -]+
Dizplay fps [g ill

Digplay

| j Feset

Direct

Exit

Figure 26: Synthetic schlieren preview dialog.

The Gain control determines the relationship between the gradient and the intensity of the
display. The Reset button forces the reference image to be recaptured.

The rate at which the screen is refreshed is set by Display fps. Note, however, that the
desired rate may not be achieved if the computational load is too great. The Direct button turns
off the streaks processing and displays directly the camera input.

The Display step group of controls is used to aid the viewing of very large images that may
be larger than the available display area. The edit and spin controls set the step between
displayed pixels (hence a value of 2, for example, will give a half-resolution image). The grid
of buttons in the bottom left allows the view port into a larger image to be moved around in a
manner that is efficient to display. These options are only enabled if the \Window option in the
Live Video dialog is checked.

5.1.5.2 Capture Video
Toolbutton:
Shortcut:
Related commands: process File CaptureVideo(..), camera live view(..),

camera_ capture file(..), camera start capture(..),
camera_ stop capture(..)

Using this facility, a video sequence may be captured from one of the digital video cameras
supported by DigiFlow.

37—

DigiFlow Menus

File: Capture ¥ideo @

r Controls
[huration Frame rates L

—
" Number j ¥
= Time ’Wﬂ Shutter ﬂ

Capture [2520 Ir=T|

Cameralink I=T]
Shutter speed j Display |25 ﬂ

Gain = Digplay during
Statuz I o

caphure

£

Mo zerial port
Preprocess frame Region Save options

& Default [all) Bits
" Mone [last ugzed)

" Fast ; Impact
ast acquire Splash

7 Untangle =
Dizplay proceszing Dizplay rezolution Output
T — & Full e e
changes " Half size
particle streaks C Thid s
synchronize display I #1ze
synthetic schlieren " Quarter zize
" Fifth size
[~ Show process dialog £ Siuth size
Camera |Dalsa DAG-512
width (525 Height [515
Board |HDadHunner Bits |8
The acquigition rate [frames per second])8 | Cancel |

Figure 27: Dialog box controlling the capture of video.

The basic timing for the video sequence is controlled by a combination of the Duration and
Frame Rates groups. The first of these sets the length of the sequence, either as a specified
number of frames (if Number selected), or as time in seconds (Time selected). For some
cameras, it is possible to set the shutter speed (Shutter, in frames per second; n frames per
second is equivalent to a shutter speed of 1/n seconds) independently of the acquisition rate
(set by Capture, in frames per second). By checking Shutter = capture, then the two of these
are forced to be equal. For some supported CameraLink cameras, the Shutter speed and
camera Gain can be set as integer indices into the range of possible values. The meaning and
acceptable range of values varies between different makes and models of cameras. (Note that
a value of zero indicates unit gain on some cameras, but on others, such as the UnigVision
UP1830CL, unit gain corresponds to a value of 128.)

The frame rate for updating the display is independent of the capture rate. Typically Display
is set to a lower frame rate (there is little point exceeding around 12 frames per second). This
setting does not affect the data stored to disk. For some systems the bandwidth requirements
of displaying the image while acquiring to hard disk exceeds that available. In such cases the
Display during capture check box should be cleared, thus suppressing the display during the
capture, although the display is still updated before capture begins and after capture finishes.

For some camera and framegrabber combinations, the raw data coming from the
framegrabber may not be in the correct format for display. This typically occurs with multi-tap
cameras; most single-tap cameras produce data in the correct format and require no additional
processing. If additional processing is required, the Preprocess frame group determines what
should be done in this situation. The Untangle option forces the data to be untangled before
displaying or saving to hard disk. This option is the most processor and memory bandwidth
intensive, and so may not function adequately on all systems, especially during the capture

— 38—

DigiFlow Menus

process when much of the bandwidth is already taken up. To overcome this, the Fast acquire
option untangles the images before and after the capture process, thus giving an intelligible
preview, but turns off the untangling during the capture. DigiFlow will automatically untangle
the image subsequently when it reads the image file produced in this manner. The remaining
option, None, turns off all processing.

The Display resolution group controls how much of the original image being captured by
the framegrabber will be displayed on the screen (note that this does not affect the data stored
to disk). The meaning of the various options is self-explanatory.

In some cases, simple real-time processing of the image prior to display will greatly assist
with the setting up and running of the experiment. The Display processing group controls the
type of processing that will be done. Note that this does not affect the data written to disk. To
suppress processing, select none from the list box. For large images, it may be best to use
Display resolution to reduce the resolution and thus the computational burden of undertaking
any processing.

The Output group provides a standard interface to select the destination for the captured
image. However, by default DigiFlow will be configured to always capture to a fixed location
(see 813 for details) to avoid the user having to select a disk drive with appropriate
characteristics and to force the user to go through a compulsory review process to extract only
those parts of the image stream that are of value. If this feature is enabled, then the Output
group will be disabled (the file name CaptureVideo.dfm will be visible) and following
completion of the sequence capture, the Edit Stream dialog (see 85.1.6) will be started
automatically to control this second step.

If you do not want to capture the entire field of view of the camera then you may choose
the region you wish to save through the Region list. The region must have been defined within
DigiFlow previously (e.g. using Edit: Regions; see 85.2.7, or as part of a Sift operation). Note
that there is a time overhead in extracting a region from an image. Consequently, although the
amount of data to be stored is reduced, the total time taken may be increased in some
circumstances. However, if the region to be saved is more than around 20% smaller than the
full view, then it could well be worth capturing a more limited region.

After pressing OK, DigiFlow opens an image preview, creates a Display processing dialog
(see below) if display processing was selected, and then prompts the user to start the
acquisition as illustrated in figure 28.

Live Video

\‘?I/J Start video capture?
-

Requested: 24,0 Images/'s For 1440 frames (60,0 seconds)

Cancel |

Figure 28: Message box starting the video capture.

After the sequence capture has finished, the performance is displayed in a message box,
such as shown in figure 29. The precise text in the message box will depend on whether or not
the compulsory review feature is enabled. Note that the ‘achieved’ timings may not be precise,
especially for relatively short sequences.

-39 -

DigiFlow Menus

Yideo Capture @

il) Capture complete
1440 images saved in 60,012 seconds

Achieved: 23,995 Images)s; 29,713 MBytes/s
Requested: 24.0 Images/'s

CPL tirme required: 71.812 5; Missed: 0 frames
Acg buffer: O ; Proc buffer: 0 ; Save buffer: 0
You musk now review the movie before it can be saved.

OF will start the review process,
CANCEL will discard the movie

Cancel |

Figure 29: Message box at end of video capture.

If the computer fails to keep up with the bandwidth requirements of the capture process,
then this will be indicated by there being some missed frames, and a lower than expected
frame rate being achieved. The amount of CPU time required is a strong function of any
display processing required. The synthetic schlieren option was selected for the example
illustrated in figure 29. This was performed on a 1GHz dual processor machine. Clearly more
CPU time was required than the capture time, but each processor was busy only around 60%
of the time. A single processor machine, however, would not have managed to keep up with
the bandwidth requirements.

The review process will utilise either the File: Edit Streams (see 85.1.6) or File: Camera
File (see 85.1.7) dialogs. For most cameras, the former will be used as all that is necessary is
to copy across the parts of the captured sequence that are actually needed. However, for some
cameras, it can be desirable to impose a flat-field correction during this copy process. Where
the DigiFlow camera database suggests this is desirable, DigiFlow will start the File: Camera
Flle dialog instead. In either case, if Cancel is selected in response to the dialog (figure 29) at
the end of the capture process, you can still access the captured sequence by manually
accessing one of these two dialogs and selecting the Input from capture cache check box.

Further information on how to generate a flat-field correction may be found in 85.1.5.4.

5.1.5.3 Setup

Toolbutton:

Shortcut:

Related commands:

This menu item controls the configuration of the cache file used when DigiFlow is
capturing a digital video sequence directly from an attached camera. As noted in 82.3.4, it is
important that the cache file is located on a disk other than that containing the operating
system, and that the capture file is in a single large contiguous block, rather than many
fragments scattered over the disk. Typically, the disk drive will only be able to keep up with
the camera if the drive can devote all its time to writing the video data. This will not be the
case if there is other disk activity occurring for that drive (as would be the case if it contained
the operating system), or if the heads of disk drive have to continually move backwards and
forwards across the disk as would occur if the file becomes fragmented.

Ideally, this menu item will be run when the capture disk is empty (e.g. following a
reformat of the disk) or at least nearly so. By default the disk should be assigned the drive
letter v: (either through the Disk Manager or by net use v: ..onto a share) and the directory
V:\Cache should be created before running File: Live Video: Setup. (Details on how to change
the name or location of the cache file may be found in 13.2.)

— 40—

DigiFlow Menus

Live ¥ideo Capture Setup @

Cache file
|V:\Cache\l:apture\a‘ideo.mov

Giga Bytes toreserve (R

You are advized to ensure the space rezerved
exceads that required for the longest sequence you
ever expect to capture. The recommended minimuna
size for thiz cache file is 32GBytes.

Before zetting the zize of the cache file, pleasze ensure
there iz sufficient space on the hard dizsk and that the
digk drive is not fragmented. A fragmented drive wil
lead to timing efrors in the captured sequence.

If you attempt to capture a sequence requinng a larger
cache file, then DigiFlow will increase the size of this
file. Howeser, this may lead to a fragmented cache file
and timitg errars in the captured sequence.

Cancel |

Figure 30: Configuration of the cache file for capturing video sequences.

Figure 30 shows the dialog that is produced. It is recommended that the default size of
50GB is used. While this may seem excessively large, if you make the file too small you may
need to offload all your data and reformat the hard disk to be able to create a single large
contiguous file at a later stage.

Note that if DigiFlow detects an existing V:\Cache\CaptureVideo.dfm, then this dialog will
not be produced. DigiFlow does not provide a mechanism for you to remove or change the
size of the cache file. If you must change the size, then you should delete it from Windows
Explorer then run File: Live Video: Setup again. Note, however, that doing so may lead to
fragmentation of this file, which may in turn prevent the hard disks from keeping up with the
bandwidth from the camera.

5.1.5.4 Calibrating a camera

Calibration of a video camera falls at two different levels. On the one-hand, for some forms
of processing, it is necessary to have a known linear relationship between actual intensity and
the digitised values. Typically, all that is required here is to know the value to which black
digitises. This form of calibration is dealt with later in 86.1. However, for some cameras, an
additional low-level calibration is required to take into account details of the image sensor
where these are not ideal.

This section is divided into two parts: determining the optimal black value for a camera,
and generation of a flat-field correction. Most cameras do not require either of these processes
to be undertaken.

Optimising black

Most image sensors are sensitive not only to visible light, but also to heat. Consequently,
the output potentially depends on camera temperature as well as the incident light. To
counteract this, many cameras have a built in method for eliminating or at least reducing the
temperature-dependent signal. For example, the image sensor may have some rows of blacked
off pixels to assess the temperature-induced component of the signal from the sensor. For
most cameras their built-in approach works fairly well, although there are some where an
additional calibration, adjustment or correction is necessary.

Related to this is the desire, for most forms of processing, to maximise the dynamic range
available on the sensor. This includes ensuring black is digitised to a low but nonzero value.
The reason why having black digitise to zero is that one cannot be sure whether it is digitised
to zero or a negative value. Some methods of determining black are discussed in §6.1. Here
we concentrate on the subset of cameras where the black offset can be set in software but the

— 41—

DigiFlow Menus

camera’s own internal mechanism for setting this is not sufficient. The DigiFlow cameras
webpage (www.dalzielresearch.com/digiflow/cameras/) indicates which cameras require such
calibration.

Once completed, the calibration is stored in the Cameras folder within the DigiFlow
installation process and subsequently picked up automatically when DigiFlow is started. (Note
that in order to complete this calibration, you must have write permission for this folder.)
Unfortunately, for some cameras, it may be necessary to redo this calibration from time to
time if there are significant differences in ambient temperatures, or if the camera is mounted
differently so that its equilibrium temperature changes.

To complete the calibration, start by opening a live view (see 85.1.5.1) then use File: Run
Macro (85.1.3) to navigate to the Wizards subfolder and run Wizard_Camera_OptimiseBlack.dfc.
The wizard will lead you through the process (see figure 31), which is typically completed

with the lens cap on so that no light is falling on the image sensor.
Wizard: Camera - Optimise Black @

This wizard aims to determine the optirnal black level for the carmera
as a function of shutter speed.

For many cameras, the longer the exposure, the greater the 'dark current’ that
is due to the image sensor's sensitivity to infra red, Consequently, if the
carmera does not itself automatically adjust its black level, then it is
necessary to explicitly adjust it.

Many cameras include some blacked off pixels to make this adjustmentwithout
the user being aware, Some, however, need to be controlled explicitly. In such

cases, itis critical that the camera is completely warmed up so that its Wfizard: Camera - Optimise Black @
ternperature is always the same when in use,

The optimurn black level is one where the vast majority of pixels in the image Please ensure the lens cap is on.

are digitised to a very small positive walue, The optimisation process requires

that the irages are essentially black, The easiestway of achieving this is The optimisation will be done at a specific frame rate,

with the lens cap in place, Itis generally best if this frarme rate is relative low,

]Max shutter speed? IMaximum fraction of pixels allowed to be zero intensity?
[B0

Accept Input IEI Accept Input @
|Minimum black value Ok | |Maximum black value 1] 3 |
E Cancel 255 Cancel

Figure 31: Dialogs for Wizard_OptimiseBlack.dfc.

Although the wizard operates on the assumption that it is the exposure time and not the
frame rate which is of paramount importance, the wizard lets you choose the frame rate to be
used. It is recommended that this is no less than one fifth of the maximum frame rate for the
camera. The output of the wizard is fit of the best possible black level over a range of
exposure times, the default maximum exposure time is slightly less than the reciprocal of the
frame rate, whereas the default minim is 1/5000 s. Again, the user has the ability to adjust
these.

For a given exposure, the definition of the optimal black is based on an instantaneous count
of the number of pixels that have an exactly zero digitised value. By default, 2% (a fraction of
0.02) of the pixels are permitted to be zero. The final pair of questions prior to starting the

_42 -

http://www.dalzielresearch.com/digiflow/cameras/

DigiFlow Menus

calculation specifies the range of black values that the wizard should search over. Note that
the wizard can complete the task more rapidly if the lower bound is set close to the actual

level needed.
Wizard: Camera - Optirmize Black @

The optirnal relationship between shutter speed and black lewel has been found:

carnera_set_black(163.226-2505.174¢shutter); Wizard: Carnera - Optimal Black ==

To be used, this relationship needs to be added to the camera calibration file,)) o
Wfrite optirnal black to carnera calibration file?

Cancel Yes Mo Cancel

250.07
200.07
150.0

100.0

50.0

0.0 T T T T T T T
0.005 0.01 0.015 0.02 0.025 0.03 0.035

& = 1/shutter

Figure 32: The output from Wizard_OptimiseBlack.dfc.

While it is working the macro will show in the status bar the various shutter speeds and
black levels it is using. At the end, it provides a plot of the data (in blue) and the best fit (in
magenta) for the optimal black. If desired, this best fit can be written automatically to the
appropriate folder (based on the BitFlow camera file name) within the DigiFlow\Cameras folder.

Flat-field correction

The available flat-field corrections are stored in the Cameras folder within the folder in
which DigiFlow is installed. These comprise of a fixed field noise and a gain. The wizard
Wizard_Camera_FlatFieldCorrection.dfc provides a mechanism for determining and setting up the
flat field correction. To run this wizard, open a live view with File: Live Video: Show Live
Video (see 85.1.5.1) then select File: Run Macro (see 85.1.3) and navigate to the Wizards
subfolder and run Wizard_Camera_FlatFieldCorrection.dfc.

Where a flat-field correction is necessary, it will generally be valid only for a particular
shutter speed, hence the first question asked by the wizard is what shutter speed you will be
using. The wizard will then set the camera to that shutter speed (if possible) and ask the user
to put the lens cap on so that the camera sees only black. Click OK once this has been done,
and the wizard will determine the time average black value over fifty frames. The user is then
asked to make the view white. This is the most difficult and critical step. The user needs to
illuminate the camera as uniformly as possible, preferably using the same lens and aperture as

43—

DigiFlow Menus

will be used subsequently. A good diffuser paced immediately in front of the lens is essential
for this (e.g., a number of thicknesses of tracing film or a piece of opal acrylic), as is a fairly
uniform light source to illuminate the diffuser. The intensity of the digitised image should be
in the upper half of the range, but without any pixels saturating. Once this illumination has
been set up, click OK and DigiFlow will again average the live video over fifty frames.

Once the averaging is complete, DigiFlow converts the ‘white’ image into a measure of the
gain required to achieve a uniform intensity relative to the ‘black’ image, and the user will be
prompted to use this to update the stored calibration. The default camera name under which to
save the calibration is based on the name of the camera file currently in use, whereas the
default name for the correction is a combination of the shutter speed selected at the start and
the date on which the calibration is made.

AcceptInput @
|Shuttel speed? k. |
m Cancel
DigiFlows: User message @ CigiFlouw User rmessage @
Futlens cap on fake white

Cancel Cancel ‘
AcceptInput @
Do wou want to update the recorded flat field correction?
Lo | Cancel ‘
AcceptInput @
Carnera name? ok, |
Optronis CLEO0X2 1280:1024_8hit 10tap 20 HA Cancel
AcceptInput @
|Flat Field Comection name? ok |
Cancel

Figure 33: Prompts controlling the generation of a flat field correction.

5.1.6 Edit Stream
Toolbutton:
Shortcut:
Related commands: process File EditStream(..)
This option provides efficient editing of a single video stream.

— A4 —

DigiFlow Menus

File: Edit Stream =]
|ripat peaty] COutput i
[Input fram capture cache . h da
Source Stream Editted Stream
y [default]
Output image does not exist
o ig irvvalid
[Thiz iz OK]
|"Drop1 008,z |"Dro|:|ﬂm¢.png"
Process. . | File... | Options. .. | {Cave by
v Display Sift Iv Display
Ok | Cloze | Cancel

Figure 34: The Edit Stream dialog for editing a single video stream.

Parts of the Source Stream are copied to the Edited Stream; the parts to be copied are
determined by the Sift button (see 84.3). Typically this is used to change image file format,
reduce the time period, select only specific frames, and/or extract a subregion of the input
stream. Note: if you do not click the Sift button when setting up the input stream, then
DigiFlow might prompt you by starting up the sift dialog itself if it detects no or minimal
changes are to be applied during the editing process.

The Input from capture cache check box disables the File and Process buttons, connecting
instead the input to the capture cache file (see 85.1.5.2), allowing you to extract additional
sequences from the cache file, if desired.

5.1.7 CameraFile

Toolbutton:

Shortcut:

Related commands: process File CameraFile(..)

This option is a variant on File: Edit Stream (see 85.1.6). The principal difference is that it
provides the opportunity to apply a flat field correction to the image while importing it from
the cache used during a video acquisition process. For many video cameras, there is little
point using this facility rather than File: Edit Stream either as a flat field correction is
undertaken in the camera, or relatively little change is justified.

_ 45—

DigiFlow Menus

File: Carmera File @

Zhes® — Flat Field Correction Output s
m s W

Carnera File _
Source Stream Editted Stream

gingle cycl

FFC Name

[rione) A
[default)
Shutters00_20130801 E

|"CaptureVideo. dfm’

[*Junk.dfm"

Test

| | Tesh MMM Ophions. .. | Save fs.. |
I Sift.. ¥ Display
Check box Ok | Cloze | Cancel |

Figure 35: The Camera File dialog for copying a video stream, optionally transforming it using a flat
field correction for the camera.

Parts of the Source Stream are copied to the Edited Stream; the parts to be copied are
determined by the Sift button (see 84.3). If selected, the intensities will be transformed by a
flat-field correction, specified by the combination of the Camera File and the FFC Name.
Typically, the input is taken from the capture file by checking Input from capture cache and
written out to a file format of the users choosing. Note: if you do not click the Sift button
when setting up the input stream, then DigiFlow might prompt you by starting up the sift
dialog itself if it detects no or minimal changes are to be applied during the editing process.

The Input from capture cache check box disables the File and Process buttons, connecting
instead the input to the capture cache file (see 85.1.5.2), allowing you to extract additional
sequences from the cache file, if desired.

Details of how to generate a flat-field correction may be found in 85.1.5.4.

5.1.8 Merge Streams

Toolbutton:

Shortcut:

Related commands: process File MergeStreams(..)

This option allows two video streams to be merged into a single stream to provide an
extended sequence.

—_ 46 —

DigiFlow

Figure 36: The Merge Streams dialog for combining image streams sequentially.

File: Merge Strearns

— First

Inputs

— Second

"Dropl1 3008 & |"Densm¢m¢.dfi”
Process... | File... | Process... | File... |
Sift.. | Sift.. |
t
Outputs ‘&
— Output
[default)
Output image does not exist
of is invalid
[Thiz iz QK]
I"Combined.avi" Ok |
Cancel |

Menus

Two input selectors are provided: First and Second. These are written to the Output
selector in the order suggested by their names. The timings of the two input selectors need not
correspond, but the regions must conform. The First selector is the master, dictating the region

to be used.

5.1.9 Export AVI
Toolbutton:
Shortcut:

Related commands: process File ExportAVI(..)

This option provides an efficient mechanism for exporting a sequence of images, drawings
or a DigiFlow movie to a standard Windows AVI movie file.

47 —

DigiFlow

File: Conwvert to AWT

B dd
. h COutput

=
65*

I+t
Source Stream Editted Stream
Fraom time ‘/ [default]

Output image does not exist
& : o iz invalid
p ‘ [Thiz iz OK]
F .
Wil
|G, i |“Dutput. avi"
Process... | File... | Optiors... Sawve Az
IV Display Sit...
Contral

%S
= Frame rate =X

Rescale (1000

ﬂ [v Compress {gg?;&m i
- ask.
ﬂ % Miosndt RIF

Compress the A4 file

Figure 37: The Export AVI dialog.

The dialog consists of a single input and a single output selector. The latter should be
directed to an .avi file. The playback speed of the resulting .avi file is set by Frame rate, while
Rescale allows the input image to be rescaled (typically reduced in size) before copying to the
movie. If Compress is not checked, then the full raw data is saved to the .avi file. If Compress
is checked, then the type of compression is determined by the list box to the right. Only a
subset of the compressions methods available are listed explicitly in this box. However,
specifying (ask) will cause DigiFlow to prompt the user with the complete range of methods
available at the point where DigiFlow is ready to save the first image in the output stream (i.e.

the user will be prompted after OK has been clicked; see figure 38).

Yideo Compression @

LCompressar:

[T

Microsoft MPEG-4 Video Coddid

Cancel
J Configure...
’_ About...

Figure 38: Compression options when exporting to an .avi file.

5.1.10 Print View

Toolbutton: &
Shortcut: ctrl+P

Related commands: print view(..), ask printer(..)
Print out the currently selected viewing window. The menu version of this facility produces
a dialog box allowing the user to select the printer, whereas the toolbar version simply prints
to the currently selected printer.

_ 48—

Menus

DigiFlow Menus

5.1.11 Print Visible View

Toolbutton:

Shortcut: shift+ctrl+P

Related commands: print view(..), ask printer(..)

This command is the same as File: Print View (see 85.1.10) except that only the currently
visible part of the view is printed.

5.1.12 Export to EPS

Toolbutton:

Shortcut:

Related commands: export to eps(..)

Converts the currently selected viewing window into an Encapsulated PostScript (.eps) file.
Section 2.2.2 describes how to set up an .eps printer driver that allows both bit image and
vector graphics to be converted to .eps format. If the .eps printer is not set up, then DigiFlow
will convert vector graphics to a bit image before generating the .eps file.

When using the printer driver, not only can the user specify the name of the output file
(figure 39a), but some control over the format is also provided (figure 39b). In particular, a
title may be added either above or below the figure, and the figure may be given a frame.
Further, using the Text filter group, it is possible to suppress all text on a figure, or to replace
each element of text with a unique letter combination. These text filtering options are
provided for convenience with manuscript submissions where some journals wish all text
removed from figures, while others use systems such as the LaTeX \psfrag package to replace
the original text and fonts. Selecting Normal produces the eps containing the original labels,
whereas with either of the PSFrag options the text is replaced by a unique character for each
element. At the same time, DigiFlow creates a .tex file that contains the mapping between
these characters and the original text. This .tex file can then be embedded in included in the

main LaTeX document to reproduce the figure.
Export 1o EPS

Sevain [0 DgFlm | &y
) MnshseOpeCone. _EdRSreams RuriserOuL I prk.eps Encapsulated PostScript format
e } LIPS _JExecutatie _aShonaAsThess
My Recest LIBase JFreolnagel 3 Sy NS .
Documents ~ 2 Title
> = HabiSysten Test &
" ,} LopCalodstor irkecfoos i Teredverage Naone
_JCombnainagss b) TimeSenes " Tap
Destran L Corfiguration _lhvevides o Trarstonvdrtensty ™ Botom
AT ARt JMacr iy 2 TrarafonnToworkd
LaOebug Pertidalrackng Twean]
- IDepostonater) PattemMatching e L Text filter
My Docurserds
L churayewes aProcessDils Slcers " Maomal
S Functoniil JCustR veSchier ey | ey .
wd JOrectStraan Baciorbwn o {* PSFrag [new style, attempt alignment)
=~ FREER P R
My Comput | LI99=c Reloase e " PSFrag (old style, all labels left-ustified)
_JDo0ment _JRcadRLnrer = ndZeps
o < > LaT e file |Junk_[e:,:
.] for Ypsfrag
MyNelwarh Fle gane =) |
Flaces oK C. |
1 ancel
Save 35 hpe PostScript Ses |* ez pa) -l Cancel \ [Frame

Figure 39: The dialogs controlling the saving and formatting of the exported eps file.

For example, when the drawing shown in figure 40a is exported, all the text is replaced by
single characters. Close inspection shows that these characters appear to be positioned
incorrectly, but this is necessary to resolve differences between the way Windows positions
characters, and the way psfrag determines their positioning from the eps file.

49 —

DigiFlow Menus

(b)
Figure 40: Example of exporting a drawing through psfrag with the PSFrag (new sytle) option. (a)
Before exporting. (b) The resulting eps file.

At the same time as producing the eps file, DigiFlow also generates the following LaTeX

file that contains a psfrag wrapper:
\begin{figure}

\psfrag{a}[cc] [B1]{0.0}
\psfrag{b}[cc] [B1]{$10.0S}
\psfrag{c}[cc] [B1]{$20.0S}
\psfrag{d}[cc] [B1]{$30.0S}
\psfrag{e}[cc] [B1]{$40.0S}
\psfrag{f}[cc] [B1]{$50.0S}
\psfrag{g}[cc] [B1]{60.0}
\psfrag{h} [cc] [B1] {x}
\psfrag{i}[cr] [B1]{$0.0S$}
\psfrag{j}[cr] [B1]{$5.0%}
\psfrag{k}[cr] [B1]{$10.0S}
\psfrag{l}[cr] [B1]{$15.0S}
\psfrag{m} [cr] [B1]{$20.0S}
\psfrag{n}[cr] [B1]{$25.0S}
\psfrag{o}[cr] [B1]{$30.0S}
\psfrag{p}[cr] [B1]{$35.08}
\psfrag{qg}[cr] [B1]{$40.0S$}
\psfrag{r}[cr] [B1]{$45.0S}
\psfrag{s}[Bc] [B1]{Sy$}
\psfrag{t} [Bc] [B1]{$-0.13}
\psfrag{u} [Bc] [B1]{0}
\psfrag{v}[Bc] [B1]{S 0.1$}
\psfrag{w} [Bc] [B1]{ST'S}

\includegraphics{junk2.eps}
\end{figure}

Each of the \psfrag{..}[..]1[..1{..} Statements gives the letter code, the required
alignment relative to the point specified in the eps file, how the point specified in the eps file
relates to the character rendered in the eps file, and finally the text to be typese in place of the
letter code. Due to incompatibilities between Windows and psfrag, it is necessary for
DigiFlow to position the characters in the eps file above and to the right of the reference point
or else confusion arises in the height and width of the string. Thus each of the entries has [B1]
as the second of the positioning codes. The LaTeX text, however, is rendered in the correct
place via the first of the positioning codes, as illustrated in figure 41a, although if there is a
change in the size of the font some further adjustments may be necessary to improve the
spacing between some elements. Here, for example, the font size has been increased and the x
axis and y axis titles would look better if they were moved away from the axes. This may be

achieved, for example, by adding \raisebox (..) (..) inthe above example. In particular,
\psfrag{h}[tc] [B1l]{\raisebox{-10 pt}{$xS}}
\psfrag{s}[Bc] [Bl]{\raisebox{5pt}{Sy$}}

—50-

DigiFlow Menus

(a) (b)
Figure 41: LaTeX output using automatically generated psfrag replacements. (a) Straight from the
LaTeX generated by DigiFlow. (b) After small adjustments to the positions of the x and y axis labels.

Such adjustments are less frequently necessary if the original graphic is produced with text of
much the same size as will be used in the final version. With DigiFlow drawings, this may be
achieved readily by including a call t0 draw set base scales(..) near the start of the
drawing.

Note that .eps files may also be specified for the output stream from most of DigiFlow’s
menu options. If this is done, then the dialog in figure 39b replaces that normally produced by
the Options button.

Some journals require the figures to be complete as .eps files rather than relying on \psfrag
within the LaTeX. This does not prevent you, however, from using \psfrag in their production.
The following process allows you to process the text with LaTex and end up with a stand-
alone .eps file.

1. 1. Include the graphic plus all the psfrag commands in a LaTeX file with
\thispagestyle{empty}. Probably best if standard PostScript fonts are used, so have
something like:

\documentclass{article}
\usepackage{psfrag}
\usepackage{mathptmx} % PostScript fonts
\usepackage[T1] {fontenc}
\thispagestyle{empty}

\begin{document}
\input{myfig} % The figure in myfig.tex

\end{document}
2. Compile to create the .dvi and .ps, as normal. The output should all be on a single page.
3. Open the output .ps with GhostView. Select PS to EPS from the File menu. Select
Automatically calculate BoundingBox, give the file a name (e.g. myfig.eps) and save.
4. Check that the myfig.eps can be read OK and has the correct bounding box.

5.1.13 Export Visible to EPS

Toolbutton:

Shortcut:

Related commands: close view(..)

This command is equivalent to File: Export to EPS (see 85.1.12) except that only the
currently visible part of the view is used to generate Encapsulated PostScript.

_ 51—

DigiFlow Menus

5.1.14 Export to simple EPS

Toolbutton:

Shortcut:

Related commands: export to simple eps(..)

The standard method of generating PostScript, described in §5.1.12, utilises a Windows
printer driver to make the conversion. Vector graphics remain as vectors, while raster images
remain as rasters. However, the Encapsulated PostScript produced tends to be cumbersome.
Occasionally, Encapsulated PostScript with a simpler structure is desired. The present Export
to simple EPS option does not utilise the Windows printer driver, but generates the
Encapsulated PostScript directly. The big limitation of this option, however, is that it only
produces raster formatted files. If applied to vector drawings, then these are first converted to
a raster format.

5.1.15 Close

Toolbutton:
Shortcut: ctrl+W
Related commands: close view(..)

Close the active window. This is equivalent to clicking on the close button at the top
right corner of the document window.

5.1.16 Close All
Toolbutton:
Shortcut:
Related commands: close all views(..)
Close all open views.

5.1.17 Exit

Toolbutton:

Shortcut:

Related commands: exit digiflow(..)

Closes DigiFlow and all open image windows. This is equivalent to clicking on the close
button %l at the top right corner of the main DigiFlow window. If DigiFlow detects that any
processes are currently running then it will prompt the user to ensure DigiFlow should still be
closed as this will terminate those processes.

5.2 Edit

5.2.1 Copy

Toolbutton:

Shortcut: shift+ctrl+C

Related commands:

Copies the currently selected image or drawing to the system clipboard. The image or
drawing is available to other applications in both raster and metafile formats.

52

DigiFlow Menus

5.2.2 Copy as Bitmap

Toolbutton: EF":'

Shortcut: ctri+alt+C

Related commands:

Copies the currently selected image or drawing to the system clipboard, placing it there as a
bitmap regardless of its initial form.

5.2.3 Copy as Text

Toolbutton:

Shortcut: shift+ctrl+alt+C

Related commands:

Copies the file name or description of currently selected image to the system clipboard.

5.2.4 Zoomed Copy
Provides a group of options that allow images to be copied to the clipboard at a size that
differs from the full resolution image.

5.2.4.1 Double size
Copies the currently selected image to the system clipboard, doubling the size of the image
using bicubic interpolation, where appropriate.

5.2.4.2 Full size

Toolbutton:

Shortcut: shift+ctrl+C

Related commands:

Identical to Edit Copy (85.2.1). Copies the currently selected image to the system
clipboard, doubling the size of the image using bicubic interpolation, where appropriate.

5.2.4.3 Half size

Toolbutton:

Shortcut: shift+ctrl+alt+C

Related commands:

Copies the currently selected image to the system clipboard, halving the size of the image
first.

Copies the currently selected image to the system clipboard, reducing the linear resolution
of the image by a factor of three.
5.2.4.4 Quarter size

Copies the currently selected image to the system clipboard, reducing the linear resolution
of the image by a factor of four.
5.2.4.5 Zoom

Copies the currently selected image to the system clipboard, adjusting the resolution using
a user-specified factor (see figure 42).

Copy with Zoom

|Zoom factor Ok |
m Cancel

Figure 42: Dialog selecting scale factor for image to be placed on clipboard.

- 53—

DigiFlow Menus

5.2.5 Properties

Toolbutton: I%

Shortcut: ctrl+\

Related commands: read image details(..)
Displays the properties for the selected window.

“B Image Properties

Process] Motes] Folmat]

Process creating image

Higtnalyse_PIY AcceptDifference ;= 0100000 ; #
dighnalyse_PIY Accuracy ;= "emw high'';

dlgfinalyze_ P Allovd djuzt .= bue;

dighnalyze_PIY AlzoDistorted ;= true;

dighnalyze_PlY AlzoReverse := tue;

dighnalyse_PIY Automaticlnterogation = false;

dighnalyze_PIY Automaticheans := true:

dighnalyze_PIY Automatic alidation ;= falze;

dighnalyze_PIY. Classifectors = true; String
digtnalyze_PIY. CoordSystem := "[pixel]'":

dighnalyze_PIY Difference := "Absalute";

dlgtnalyze_ P DisplapDnExit ;= true;

dighnalyze_PIY DistortedPaszses = 1:

dighnalyze_PlY Experiment = "PINT est3. maov";

diginalyze_PIY E=periment_tatchintensity. Kind := "Conform'';
dlgtnalyze_ P Experiment_Options Dizplay ;= true;

dignalyze_PlY Experiment_Region Kind := "4ll";

dighnalyze_PlY Experiment_Time. TimeStep = 2 29890E-02;

|String

ak. | Cancel |

Figure 43: Process that created the image.

The Process tab contains comments supplied by the user at the time when the image was
created. Note that this tab is only available when the image is supplied by a file format that
supports the storage of this information. The contents here is exactly that that invoked the
command (either interactively or from a dfc macro).

“B Image Properties

Frocess Motes lFUrmat]

Uszer comments

"J 0 Uger comments

Uszer notes attached to the image

ak. | Cancel

Figure 44: User comments.

54

DigiFlow Menus

The Notes tab contains comments supplied by the user at the time when the image was

created. Note that this tab is only available when the image is supplied by a file format that
supports comments.

“B Image Properties E| El

Processl Motes Format l

B asic: format Calour scheme

Width Name [idefaul] Change
Height IT Black ’—

Storage format l_ Intensity ’_

Zoom settings

Zoom IT
% Pan ID—
y Pan IU—

Aszpect ratio [1.0

“afidth of the image

ak. | Cancel |

Figure 45: Image format.

The Format tab contains information describing the format of the image. This information
is available for all image types.

5.2.6 Coordinates
Toolbutton:
Shortcut:

REkHedConﬂnandSZcoord_system_create(..), coord system mapping(..),
coord system add point(..),coord system destroy(..),
coord system set default(..),coord system list(..),
coord system mapping(..),coord system get mapping(..),
coord system get points(..),coord system translate(..),
coord system translate pixel(..),

coord system units(..), coord system apply region(..),
pixel coordinate(..), world coordinate(..)

Provides the ability to define, edit and delete coordinate systems providing a mapping
between the pixel coordinates of an image and some user-defined coordinate system.

Note that once defined, the coordinate system is stored in the DigiFlow_Status.dfs file in the
directory from which DigiFlow was started. This file uses the standard dfc syntax but is run

automatically upon starting DigiFlow. In some cases you may wish to make a copy of the
relevant part of the coordinate system for backup purposes.

— 55—

DigiFlow Menus

Coordinate Systems E|

Coordinate System Name

Mer

Copy...

Delete

[B |
[[Oem |

Default Spstem
Current default

Test
el ok

Figure 46: Selection of coordinate system.

The top-level dialog provides the ability to select the active coordinate system for the
current window by clicking on the desired entry in the list box, or to make changes to the
available coordinates.

The Edit, New and Copy buttons are used to adjust an existing coordinate system, create a
new coordinate system, or create a copy of an existing coordinate system (respectively). A
more complete description of these buttons is given below. The Delete button will remove the
currently selected coordinate system from DigiFlow, while Make Default will register the
selected system as the default for other operations.

Note: details of all coordinate systems defined, and which system is the current default, are
stored in the DigiFlow_Status.dfs file located in the directory from which you started DigiFlow.
These details are local to instances of DigiFlow started from that directory, although you may
either copy the DigiFlow_Status.dfs file to another directory, or open it in an editor and extract
the details of the coordinate system for use in a dfc macro. Refer to §

5.2.6.1 New coordinate system button
To create a new coordinate system, click on New. This starts a dialog allowing the name,
type and units of the new coordinate system to be specified.

Hew Coordinate System E|
Name | Uitz |mrn
System Type
" Pirel
™ Function | J

{* Mapping |Linear tranzformation: 1%y ﬂ Cancel

The name for the new coordinate system

Figure 47: Give a name and type to the new coordinate system.

The Name of the coordinate system is arbitrary. The user should select a name that is
meaningful to the task at hand. This name will subsequently be used for identifying the
coordinate system. The Units are also arbitrary. They may refer to some standard measure of
length, or to a dimensionless unit. The name of these units is recorded for later use in
captions, titles, etc.

There are three possible types of coordinate system that may be specified. Pixel coordinates
have a one to one correspondence with the pixels in the image and are the least flexible.

— 56—

DigiFlow Menus

Function coordinates have a user-specified mapping between the pixel and user
coordinates. This form of mapping is the most precise, but will only be of use where there is
some external method of determining the required mapping functions. Four functions are
required, separated by semicolons. The first two functions give the world x and y coordinates
as functions of the pixel coordinates i and j, while the third and fourth give the pixel
coordinates as functions of the world coordinates.

Mapping coordinates are generally the most useful. These systems are specified through a
combination of mapping functions and identification points where both the pixel and user
coordinates are known. A least squares mapping is then used to generate the unknown
coefficients in the mapping functions and complete the transformation. There are a number of
pre-defined mapping functions, or the user may specify their own. The format of the mapping
function specification is an arbitrary name followed by a colon then a list of basis functions,
each separated by a semicolon and expressed in terms of the generalised coordinates x and y,
and optionally the time t. The points defining the unknown coefficients are specified using the
Edit button of the parent dialog.
5.2.6.2 Edit coordinate system button

The Edit button starts a dialog that may be used to edit the Units and Mapping functions for
the coordinate system. As noted above, the coordinate system may also be time dependent, in
which case Use Time-dependent Mapping should be checked and the points defining the
coordinate system should span both space and time.

Edit Coordinate System @
MName |Test Urits

Mapping |Linear: 1w ﬂ

[Uze Time-dependent Mapping

EditPoints| ok | Cenedl |

Unitz of length

Figure 48: Editing coordinate systems.

To specify the points used for the mapping, the Edit Points button should be clicked, which
will allow the user to specify points in the window that was active before entering the
coordinate system dialogs. At the same time a modeless dialog box, which should be used to
indicate the specification of the points is complete, is started.

Coordinate points are specified within the window by clicking at the desired location. This
places a plus mark (+) at the position. The plus mark may then be dragged to a new location,
if desired. Double-clicking the plus mark activates a dialog for specifying the user coordinates
for this point.

_57—

DigiFlow Menus

Coordinate Marker El
Pizel Position Dielet
Elele
% [194.0 i
-
z QK

[Lock Cancel
‘wiorld Position
%
Time
L]

The » world coordinate for this marker

Figure 49: World coordinates for a point when defining a coordinate system.

This dialog gives the current Pixel Position of the point (and allows this to be edited), and
provides the ability for the user coordinates to be defined in the World Position group. If a
time-dependent mapping were specified, then the Time for this point must also be specified.

Clicking Delete will remove the point, while checking Lock will prevent the point being
dragged around the image accidentally.

Editting Coordinate Markers g|

Click on image to add new coordinate marker
Click and drag to mowe marker
Double-click marker to edit world coordinates

Click Finizshed to exit.

Figure 50: Indicate that you have finished editing the coordinate system markers.

When you have finished adding and/or editing the coordinate system markers, click the
Finished button in the dialog shown in figure 50.
5.2.6.3 Copy coordinate system button
The Copy button provides the ability to make a copy of an existing coordinate system.
Copy Coordinate System E|

Existing Mame |Te$t

Mew Mame | kK. |

¥ Copy points Cancel

Mame for the new coordinate system

Figure 51: Copy a coordinate system.

5.2.6.4 Coordinate system creation wizard

As an alternative to manually defining a coordinate system as outlined in the above
subsections, DigiFlow provides a wizard for this purpose. This wizard,
Wizard_CoordSystem.dfc, takes the form of a dfc macro and can be found in the folder in which
DigiFlow is installed. The purpose of the wizard is to take an image of a regular grid of
features, location the features and form a coordinate system from them.

One way of forming the grid of regular features is to use one of the
CoordinateSystemGrid_*.pdf files found in the DigiFlow installation folder. When printing these
out, make sure they are printed at the correct scale rather than ‘shrink to fit’! These grids,
constructed from the following PostScript segment, can readily be printed out on paper or

overhead transparency and placed in the flow. (It may be necessary to laminate a paper grid!)
%1PS-Adobe-3.0

— 58—

DigiFlow Menus

% Select paper size (e.g. a4 or a2)
a4

/inch {72 mul} def
/mm { 25.4 div inch } def

% Make all subsequent measurements in mm
1 mm dup scale

% Set the spacing of the features
/FeatureSpacing 10 def

/radius 0.75 def
% Page size: can be much bigger than the actual page size!
/Width 1000 def
/Height 1000 def

o)

0 setgray % Make black

0 FeatureSpacing Height
{/y exch def
0 FeatureSpacing Width
{/x exch def
x y radius
0 360 arc
closepath % make sure start and end are connected
£fill}
for}
for

Set the number of identical copies you want and print
/#pages 1 def

showpage

$SEOF

Figure 52 shows such an image captured from such a coordinate system grid. Here the grid
was printed with features spaced at 20mm on an A2 format with the subsequent pages
laminated and then carefully taped together. Once you have an image of your grid, simply start
the wizard and it will lead you step-by-step through the definition of your coordinate system.
Note, however, that the wizard requires the actual coordinate system to be closely aligned
with the pixels and that the mapping required for the coordinate system is close to linear.

bEsses e way

.
:
-
.
2
.
i

Figure 52: Image of coordinate system grid used with the Coordinate System Wizard.

_ 59—

DigiFlow Menus

5.2.6.5 Coordinate system test wizard

This wizard, Wizard_TestCoordinateSystem.dfc, is intended as a tool for checking the
consistency and accuracy of a coordinate system and, optionally, removing points defining the
coordinate system that may be outliers (e.g. due to them having incorrect data assigned to
them). When run, the wizard will lead the user through the process.

5.2.7 Region
Toolbutton:
Shortcut:

Related commands: region create(..), region destroy(..),get region(..),
region list(..)

In most cases the creation and modification of regions is handled as part of the sifting
process started with the Sift button when specifying an input image stream, as described in
84.3.2. In some cases, however, it may be desirable to specify a region independently from
processing any images (e.g. creating a region used during the capture of live video, as seen in
85.1.5.2). Selecting Edit: Region will start up a dialog containing only the Regions tab from
the normal Sift dialog, as shown in figure 53. The only point in invoking this is to look at,
define or modify a named region. The only lasting effect of this dialog is any changes in the
definition(s) of narped regions.)
&2 Edit Region (-2l

Region |

Pizel regio

Region type

Al
" Pixel window

& Named region

™ Default colours

Pizel window
|51 1 j Named region
100 j [517 j New...
|1 o0 :—] Edit...
Size Position Delete
<l || <Ll 4 ==

Coordinate for the right of the window to be processed

»

1

[l
[
>
o
Q

ok |

Figure 53: The Region tab from the Sift dialog is produced in response to Edit: Dialog.

— 60—

DigiFlow Menus

5.2.8 Process again

Toolbutton: %

Shortcut:

Related commands: get process details(..)

Users often wish to reprocess an image, perhaps making minor changes to the control
settings, or maybe to apply the same process to a different set of images. The Process again
facility provides a convenient method for doing this.

To use this feature, simply open the image for which you wish to replicate the process, and
click on the Process again button (or select from the Edit menu). DigiFlow will then recover
the process settings from the image and, where possible, use them to initialise the dialog that
was initially used to create the image.

Note that this feature only works with DigiFlow-specific formats such as .dfi, .dfd or .dft
files as other formats do not provide an appropriate mechanism for storing the settings used to
create the image.

5.2.9 Dialog responses

The purpose of this facility is to provide an aid for those trying to create dfc files (see §8)
to run processes, and to provide an alternative user interface to many of the DigiFlow
processing facilities.

Dialog Responses @

Rezponse vanables Process

dighnalyze PNV Accuracy = "High'';
dighnalyze. PV Automaticlnterrogation =
dighnalyze PN AutomaticMeans :=

dighnalyze PN Clazsifyectaors =
digtnalyze_ PPN, .CoordSestem ;= [pmel]
digénalyze PN DisplayOnE it =

digtnalyze_ PP Experment ;= PIVTest2 mov
digtnalyze_PPV Expenment_Jptions. Dlspla_l,l =

dighnalyze PV ImageQuality .= "High';

dighnalyze PV Automatich slidation = ’ 1;
D.

dighnalyze_ PN Esperment_td atchlntensity. Klnd = Conform

dighnalyze_PIY. Espenment_ Hegmn Kind = Conform

1:

dlgtinalyse PIY

dlgtinalyze PTWTrack
digénalyse_PT'ectors
digtnalze_ShowdsStreaks

dig&nalyse_SyntheticSchlierenP
digtnalyze_SyntheticSchlisrent
digénalyse_Timedwverage
digFile_E ditStream

digT ools_Combinelmages

digT oolz_Transformlntensity

dighnalyze_PIY. IntenogahonFlameStep =
digénalyze PNV .OneStrean = -
dighnalyze_PIY Resolution ;= "High';
dighnalyze PN WectarBackground = "Yorticity'':
dighnalyze PV Yelocity = Vel dhi':
dighnalyze PN WelocitySeals -= 10,0000 ;
dighnalyze PV Velocity_Options. DeleteE:-:lstmg = -1:
dighnalyze PN Welocity_Options.Comrments := "Mao user comments'':

digtnalyze_ PPN Welocity_Options.Colour ;= "[default]”; Save | Reset |

digénalyze PN Welocity Options.Display = -1;

digtnalyze_ PN WorticityScale .= 500000 2 Didlog | Execute |
Copy | Paste |
Undo | Close |

Figure 54: The Dialog Responses dialog that contains details of the responses corresponding to the
latest invocations of the dialogs.

The Process list box indicates the dialog for which responses are required. This list is
empty when DigiFlow is first started in a directory, but gradually fills as more DigiFlow
features are used. Upon exit from DigiFlow, all this information is saved in the
DigiFlow_Dialogs.dfs file that is created in the DigiFlow start directory.

Selecting a dialog from the Process list causes the corresponding response lines to be
displayed in the Response variables edit box on the left-hand side of the dialog. Note that the
entries in this edit control are always displayed in alphabetical order, and the list will only
contain assignment statements. Entries in the edit box may be edited, selected, copied, etc., as
is standard for edit boxes. Users may find it useful to copy the contents of this edit box to .dfc
files they are creating.

61—

DigiFlow Menus

If the responses variables are edited, then they may be saved by clicking Save; alternatively
Reset restores them to their previous values. The user will also be prompted to save any
alterations if a different dialog is selected from the list.

The corresponding dialog may be started (e.g. to provide updated values) by clicking the
Dialog button, while clicking Execute will cause the corresponding process to be started.

5.2.10 dfcConsole
+aor

Toolbutton: i:=1;

Shortcut: ctrl+E

Related commands:

The dfcConsole provides an interactive tool for writing, editing and debugging dfc macro
code.

A dfeConsole: SAUsers\StuartimghDigiFlow\Balls, dfc EI@
Execute
hW = mew wview(5lz 51Z);: =
nPts := ask integer("How many balls do you need to keep in the air?", Line(s]
ctrl. fog = falge;
ctrl.size -= 10;
ctrl_ xPan -= -0.1;
ctrl. yPan = -0.2: E J|T
ctrl. shadow = true;
ctrl.colourWith = x index(nlts) /nlts: [Qlelpete!
ctrl.viewDistance = Z; WView...
debug = true; —
k = 0; Reset| Ermor
*¥ = random array(3 nPts);
ur = (random array(3? nPts)-0_5)/50; |a ﬁ
d}.av ;= {random array{3 nlPcs)-0.5)/2E0; i1 Wi
Code
while {(true) [
view points 3d(hV, xy, ctrl); ﬂ @ @
wiew title(hV, "ITteraticn: "th);
®y t= ouv: o =
ur = where(xy < 0,-uvidur, uv): ﬂ
®y = wherel(xy = 0,0,xv); =q | o
uvr = whered(xy = 1,-uvtduar,uv); =li] <0l
xy = where{xy = 1,1, xy); X‘# #P‘ﬁ
sleep for(0.0l});:
Fdebug o= view variables () .\fﬁ %‘ ﬁ
k += 1; =| =
L %
e s o S
i
random array () e J{; E
random array(ay.2y) Gueries
random arvay(ny, 0y, 85) Show | Clear
random arrayimnx, iy, 2z, m02é) —
_____ - v Enable [7]
Generate an array of random numbers. -
4 I 3 Cloze
[Araw] & |random array
duy = [02,0:2] random array
min=-0.172E-02
max=0.156E-02

Figure 55: The dfcConsole dialog is resizable.

This resizable window contains an edit control allowing interactive editing of the dfc code
to be run, alongside a series of controls allowing control over the execution environment and
providing timely information.

The main window (top left) in the dfcConsole allows interactive editing of dfc code. Syntax
is colourised and, matching parentheses, braces and square brackets are highlighted as they are
entered (or when the <shift> key is depressed adjacent to a bracket). The buttons in the Code

— 62—

DigiFlow Menus

group down the right-hand side provide the basic editing functionality in conjunction with
standard short cuts such as ctrl+Z for undo (or shift+ctrl+Z for redo).

The Execute group may be used to selectively execute code. If there is no text selected,
then Line(s) will execute the current line. If there is an active selection, then Selection will
execute the selected code, and Line(s) will execute not only the selected text, but all the lines
on which some text is selected. Regardless of the selection, All will cause the entire code to be
executed. If Auto reset is checked, then using All will first discard any existing variables, etc.,
from the interpreter. Note that <a1t><enter> is equivalent to clicking Line(s).

Most of the control buttons are disabled while the code is executing. Amongst the
exceptions are the stop ™ and pause I buttons. Clicking the stop button ™ will abort the
currently executing code, while the pause button I WiII temporarily suspend execution. When

mtervals of about 1s) in the bottom-left control of the console. If not toggled, then the "
button will cause the line currently being executed to be displayed when it is clicked.
Checking Breaks (&) causes break points, indicated by an ampersand in the code (see §88.12.5)
to be executed as and when they are found by the interpreter. If cleared, then the break points
are ignored. Note that the status of the Breaks (&) control may be changed by the user as the
dfc program runs.

The Interpreter group controls the internal state of the DigiFlow interpreter. Reset will
clear all variables and functions from the interpreter, while View displays the variables and
objects defined within the interpreter using the view variables(..) interface. If an error
occurs, then Last Error will redisplay the last error message.

Below the code window is a documentation window. When DigiFlow detects a function
name under the cursor in the code window then it will display the documentation for this
function. This documentation (which is also accessible through the dfc help facility) is
hyperlinked to aid navigation. Standard forward and back navigation buttons are provided to
the right of the window. A given help topic may be pinned (or unpinned) using Bs or by
double tapping the <alt> key on the keyboard. Double-clicking on a line from within the
documentation window will cause the corresponding text (e.g. the definition of the entry point
for a function) to be inserted at the cursor in the main edit window.

The two windows at the bottom of the dfcConsole provide information about the contents
of variables. When the cursor is on a variable name, and that variable has a defined value
(typically the result of executing part of the code), then a summary of its contents will be
displayed in the left-hand window.

The bottom right-hand window serves two separate functions. As the user types in code, a
list of possible corresponding function names will be shown in this window. Double-clicking
on any of the entries in the list will cause the corresponding help text to be displayed in the
documentation window. This provides a convenient method of determining the name and
usage of the most appropriate function if you do not know its name in advance. At run-time
the bottom right-hand window takes on a different role and displays the output resulting from
a Query (see 88.12.4 for further details). The Show button in the Queries group may be used
to switch between the possible function list and the query output whilst editing code.

Standard file open & and save B buttons are provided to handle dfc code, along with a
dedicated button = to reopen the last dfc code edited. The dfcConsole will automatically
reopen the last code edited if it did not complete cleanly its execution, and also saves
snapshots of the code prior to execution, etc., in DigResponses.log.

The search facility is provided by a group of three buttons, &, B and B, that search
forwards or backwards for, or highlight all the text that matches that in the edit box beneath

— 63—

DigiFlow Menus

the buttons. Cut (ctr1+x or), COpy (ctrl+C Of) and paste (ctri+v or) operate in the
standard way. Additionally, indenting (ctrl+space or 3ii), unindenting (shift+ctrl+space

0, . il . A .
or «ii), commenting (ctr1+/ or %) and uncommenting (shift+ctrl+/ or ¥) can help with
the laying out and testing/documenting of dfc code.

Utility buttons to delete all code #¢, help £ and code library B buttons are provided for
convenience. Similarly, the font size may be increased a8 or decreased A,

Information about where a running code is currently executing can be found by clicking the

—hir

..... button. This will cause the line currently being executed to be displayed in the dfc help

of the line currently being executed, updated typically every second. Note that these facilities
can have a significant impact on the execution speed.

When toggled, the smart indent button, [, will attempt to align elements of the code in an
intelligent way. The settings button, e, opens the subdialog shown in figure 56. This dialog
controls syntax and variable highlighting, and whether the calculator interpreter is
automatically reset each time All is clicked.

DigiFlowe dfcConsole se., @

Interpreter
¥ Autoreset

Code editor
v Calour syrtas

v ColourSections

[Colour values

Cancel |

Figure 56: dfcConsole settings for controlling syntax highlighting, etc.

Note that using either the Close or [X] buttons to close the window will prompt to save the
dfc code it contains. This feature is bypassed if you close the main DigiFlow window which
will simply close the window without prompting for the dfc code to be saved.

5.3 View

5.3.1 Zoom
5.3.1.11In

Toolbutton: .ﬁ}

Shortcut: alt+Z, or up_arrow

Related commands: view zoom(..)

Zoom in the current window by a factor of two. Note: if the ctr1 key is held down while
clicking the toolbutton or using the up arrow, then the window is resized to fit the new zoom.

5.3.1.2 Out

Toolbutton: JE}

Shortcut: shift+alt+z, or down_arrow

Related commands: view zoom(..)

Zoom out the current window by a factor of two. Note: if the ctr1 key is held down while
clicking the toolbutton or using the down arrow, then the window is resized to fit the new
zoom.

— 64—

DigiFlow Menus

5.3.1.3 Full size

Toolbutton: J@'

Shortcut: ctri+1

Related commands: view zoom(..)

Zoom the current window to full size (one pixel on the display for each pixel in the stored
image). Note: if the ctr1 key is held down while clicking the toolbutton, then the window is
resized to fit the new zoom.

5.3.1.4 Custom

Toolbutton: .E"
Shortcut:
Related commands: view zoom(..)
Starts the zoom dialog box that allows a broader range of zooms to be selected, and also
allows specification of the aspect ratio for the displayed image.
Zoom and Aspect Ratio g

The current zoom

Figure 57: The custom zoom dialog box.

The two slider controls are linked with the two edit boxes. The Zoom setting controls the
number of pixels on the display used to display a single pixel in the stored image in the
horizontal direction. In contrast, the Aspect Ratio control determines the shape of the virtual
pixels to be displayed. For images captured through Diglmage, the aspect ratio should be set
to 0.68 for PAL systems, or 0.75 for NTSC, thus recovering the original aspect ratio of the
images.
5.3.1.5 To Window

Toolbutton: Eﬂ

Shortcut: shift+ctrl+Q

Related commands: view zoom to fit(..),view zoom all to fit(..)
Changes the zoom to fit the current window.

5.3.1.6 All Full Size

Toolbutton:

Shortcut: shift+ctrl+1

Related commands: view zoom allf(..)

Changes the zoom of all windows to 100%, and fits the windows to the size of the images.
5.3.1.7 All Half Size

Toolbutton:

Shortcut: shift+ctrl+2

Related commands: view zoom all(..)

Changes the zoom of all windows to 50%, and fits the windows to the size of the images.

— 65—

DigiFlow Menus

5.3.1.8 All Third Size
Toolbutton:
Shortcut: shift+ctrl+3
Related commands: view zoom all(..)
Changes the zoom of all windows to 33%, and fits the windows to the size of the images.

5.3.1.9 All Quarter Size
Toolbutton:
Shortcut: shift+ctrl+4
Related commands: view zoom all(..)
Changes the zoom of all windows to 25%, and fits the windows to the size of the images.

5.3.2 Fit Window

Toolbutton: Eﬂ

Shortcut: ctrl+Q

Related commands: view fit to zoom(..),view fit all to zoom(..)
Resizes the current window so that it fits the zoom of its contents.

5.3.3 Cursor

Under all cursor modes, holding down the left mouse button will cause a duplicate cursor
to be displayed at the same pixel location on all the other open image windows. At the same
time, the current intensity and other related data (e.g. velocity) will be displayed in the status
bar for that window. This feature is valuable when trying to assess the relationship between
features in different images. As described below, the cursor can also be set to display other
information or to perform other tasks when the buttons are clicked.

If you hold down alt and click the left mouse button, then the duplicate cursor will continue
to be displayed in the location of the click on all windows (and on the window you clicked)
until you click again without the ctrl key held down. (Clicking again while holding down cirl
will cause a further duplicate to be placed on all the windows, and so on.)

Left Middle Wheel Right
Click: Show Click: Play/pause Step through movie

duplicate cursor on movie or sequence. or sequence

all windows.

Drag: Move rapidly
through a movie or
sequence.

shift Drag: Scroll (pan) Zoom current view.
current view.
ctrl Click: Play/pause Step through movie
movie or sequence in or sequence in all
all views*. views.
Drag: Move rapidly
through all movies or
sequences*.
alt Click: Add cursor
marker to all
windows (removed
by next click)
shift+ctrl Drag: Scroll (pan) all ~ Click: Move all Zoom all vies.

views.

movies or sequences

— 66—

DigiFlow Menus

to frame of the
clicked view.*

shift+alt

ctrl+alt

shift+ctrl+alt

*Sequence animation controls only operate on views that do not have their synchronisation
button activated.

5.3.3.1 Show Where

Toolbutton: EH

Shortcut: ctrl+alt+M (ctrl+M to turn off)

When the left mouse button is held down on an image, a popup window will appear next to
the cursor showing the current pixel and (if defined) world coordinates. Clicking the right
button (while the left button is still depressed) will produce a message box showing the
coordinates, as seen in figure.

Cursorn Position

i,j: 584, 487; %,y 3.873, 0,231 ; L:0,064209; ¥:0,000076; 5:-2,019712

Figure 58: The message box produced when the right-hand mouse button is clicked whilst the left-
hand button is held down. The coordinate i, is in pixel coordinates, while x,y are in the current world
coordinates. In this case a velocity field was being explored and U and V represent the velocity, and S
gives the scalar field (here vorticity) on which the velocity is displayed.

5.3.3.2 Measure Distance
alz
Toolbutton: ==

Shortcut: shift+ctrl+M (ctrl+M to turn off)

When the left mouse button is held down on an image, a popup window will appear next to
the cursor showing the distance between where the left-hand button was depressed and the
current location of the mouse pointer. Clicking the right button (while the left button is still
depressed) will produce a message box showing the distance.

Measured distance

i0,j0-=i1,j1: 392,0,667.0 -»970,0,321.0 == (578.0,-346.0); <673.6,-30.9%degrees=
0,30 == x1,y1: 3.525,0.276 -»3.971,0.189 =3 (0.147,-0.087) m; <0.171 m,-30.746degrees>
Angle from horizontal; 30,905 [30,746]

Angle from vertical: 59.095 [59.254]

Figure 59: The message box produced when measuring distances with the cursor. The first line gives
the pixel coordinates of the start and end points, along with the Ax and Ay in pixels (within brackets)
and the distance and angle (within <..> pairs). The second line repeats this for world coordinates. The
last two lines give the principal angle from horizontal and vertical, respectively, for the line with the
first value in each case being in pixel coordinates, whist the second gives the same information with
reference to the world coordinate system.

5.3.3.3 Move Image

Toolbutton: 'ﬂ“g

Shortcut: shift+ctrl+alt+M (ctrl+M to turn off)

When the left mouse button is held down on an image, moving the mouse will pan the
image. The mouse wheel can be used to zoom the image.

67—

DigiFlow Menus

Note that holding down shift while using the mouse will temporarily activate this feature
regardless of the toolbar settings.

5.3.3.4 Move All Images

Toolbutton: ';.m:{['

Shortcut:

Similar to Move Image (85.3.3.3), but moves and zooms all open images.

Note that holding down shift+alt while using the mouse will temporarily activate this
feature regardless of the toolbar settings.

5.3.4 Vectors

534.1 Increaseﬁength

Toolbutton: A

Shortcut:

Related commands:

Increase the length of velocity vectors and similar arrows. For finer control, see View:
Appearance (85.3.5).

5.3.4.2 Decrease Length

Toolbutton: 'Hu

Shortcut:

Related commands:

Decrease the length of velocity vectors and similar arrows. For finer control, see View:
Appearance (85.3.5).

5.3.4.3 Reset Length

Toolbutton:

Shortcut:

Related commands:

Resets the length of velocity vectors and similar arrows to their defaults. For finer control,
see View: Appearance (85.3.5).

5.3.5 Appearance
A=

Toolbutton: ==

Shortcut: ctrl+A

Related commands:

This tool provides a variety of tools for adjusting the appearance of an image. The scope of
the tools depends on the format of the image; in particular, if the image is integer or floating
point, and whether it contains a single plane of information or multiple planes.

Image Apprarance m Image Apprarance m
Data plane ¥ Vistie Coboun scherre Data plane ¥ Vistie Coboun scherre
[cai Scsrg T Scsrg [detd] "
V Advat bus v Adat W Lockrato | | (meon ofad)
o [visw el
dukthm bepoda
Scabs 5125 darkcyan Beck oo gepecale
darkgesn negalive
- ¥ deakgey R cthecmn
I Ao ain darkimaoent Whis [100 1 | [inge cpce
o — duieed 0 N e —_— nghe cpche - spait
k¥ep 116 darkpebow Viticly - g 4 9
paTrr - -
& — Rt T P e e e
I pasep c -
pee_| twea | || e | oeel_|

Figure 60: Dialog for adjusting the appearance of an image. This example shows the features

available for an image containing a velocity field.

— 68—

DigiFlow Menus

The Data plane control will show the data planes available within the image. For simple
images, only one data plane will be listed, but for velocity fields, for example, both velocity
(vector data) and a background image (scalar data) will be listed. The appearance of each data
plane type can be changed by selecting it in the Data plane control, then making the required
adjustments. For example, if a velocity plane is selected, then the scale of the vectors, the
spacing between the vectors, and the colour in which they are plotted may all be changed.
Additionally, a check box allows the removal of any mean velocity. For scalar data, the colour
scheme and the mapping between the scalar values and the limits of the colour scheme can be
changed. Some of this latter functionality is also available through the Colour scheme dialog —
see 85.3.6.

5.3.6 Colour scheme

Lnninn]
Toolbutton: {u
Shortcut: shift+ctrl+C

Related commands: view colour(..), colour scheme(..), add colour scheme(..),
delete colour scheme(..)

Used to select the colour scheme for the active image, or define a new colour scheme. The
Select Colour Scheme dialog box invoked by this option provides the ability to add, remove
and alter colour schemes.

Select Colour Scheme

Colour Scheme Cuztamize
[Adjust intenzity

[image default]

[wignw default] ! Y

bipolar T

bipolar - inverse

circular Black

areyscale | 0
negative 1
ratidiom - bipalar]
randam - conistant _

randarm - inverted bipalar Saturation

randor - linear | . |
randarm - random 3
schlieren |

zingle cypcle

zingle cycle - aperture Gamma
zingle cycle - double brighthess

zingle cycle - half brightness

test Add. |

t ake default
Ok | Cancel |

Delete. .. |

Figure 61: Dialog used for selecting the colour scheme for an image.

A specific colour scheme may be selected by clicking on the name in the list box. The (image
default) scheme is the scheme in use when the window was created. The (view default) is that
in use for the image when this dialog was entered.

Note: This dialog is modal for free versions of the DigiFlow licence, but modeless
(allowing switching between other elements of DigiFlow) for full licences.

Checking Adjust intensity and moving the sliders or typing a value into the associated edit
boxes may alter the appearance of a given scheme. For example, by setting Black to 1.0 and
Saturation to —1.0, a scheme with the negative colours may be produced. Colour schemes
created and added through the dfc function add colour_ scheme(..) are saved in
DigiFlow_Status.dfs and will be included in the list of available schemes.

— 69—

DigiFlow Menus

Clicking on Add brings up a dialog for adding new colour schemes. Details of these new
schemes are added to the DigiFlow_Status.dfs file and thus remain available the next time
DigiFlow is started in the same directory.

Newr Colour Scheme g|

Name |Knud

File |C:\DiglmagetLUT s\Output 3.LUT

ak. | Cancel

Mame of file containing colour scheme

Figure 62: Add a new colour scheme.

DigiFlow understands the Diglmage colour schemes. These may be added, as illustrated in
figure 62, by simply giving them a name and typing the full path specification of the colour
scheme. For Diglmage, the colour schemes are stored in the %DigImage%\LUTs directory under
the name Output##.lut, where ## represents a two digit number, starting with 00 for the first
Diglmage colour scheme.

Alternatively, specifying an image in the File edit box will install the colour scheme stored
in that image, or construct a colour scheme of your own. The following example uses a short
piece of dfc code to construct and install a colour scheme that is white in the middle tending
towards red for low values and blue for high values. In this particular case, the scheme is
tweaked so that its equivalent greyscale intensity varies parabolically. (It is often useful to
have a colour scheme that works in both colour and monochrome.) The parabolic nature will
emphasise extreme values more than small values. Such a scheme can be useful for displaying

vorticity, for example.
Initialise arrays to white
red := make_array(1l,256);
green := red;
blue := red;

Make basic colour scheme as two linear ramps
for k:=0 to 63 {

z := k/64;

p = 128 + k;

q := 127 - k;

red[p] := 1 - z; # Remove red
blue[qg] := 1 - z; # Remove blue

};
for k:=64 to 127 {

z := (k-64)/64;

p = 128 + k;

q := 127 - k;

red[p] := 0; # No red

green[p] := 1 - z; # Remove green
blue[g] := 0; # No blue

green[qg] := 1 - z; # Remove blue

};

Make parabolic in grey value

grey := 0.299*red + 0.587*green + 0.114*blue; # Current grey
equivalent

p := x_index(256)/255;

limit := 0.8; # Limiting grey value for ends

target := 1 - 4*1limit*(p - 0.5)"2; # Target grey equivalent

—70 -

DigiFlow Menus

scale := target/(grey max le-8); # The required scaling
red *= scale;

green *= scale;

blue *= scale;

Install the colour scheme
add_colour_scheme ("test", red, green,blue);

Now test the colour scheme
im := x index(512,64)/511;
hV := view(im) ;
view_colour (hv, "test");

5.3.7 Toggle colour

g
Toolbutton: =
Shortcut: ctrl+B
Related commands: view toggle colour(..),
When an image is displayed using false colour, clicking this button will temporarily switch
to greyscale. Clicking a second time will return the image to the original false colour scheme.

5.3.8 Toolbar
Turns on or off the toolbar at the top of the main DigiFlow window. It is recommended that
you leave this turned on.

5.3.9 Slaves

Slave windows are a special type of window that are tied to a normal window — the master
window — in such a way that when the master window is updated, any changes are reflected in
the slave window. For example, if the master window is part of a sequence, then stepping
through the sequence will update not only the master window, but also its slave.

A given master window may have one or more slave windows. When a master window is
closed, its slaves are closed automatically (without prompting). Closing a slave window does
not alter the state of the master nor force it to close.

For a more comprehensive array of slaves, refer to Tools: Slave Process in 85.7.5.

5.3.9.1 3D View

Toolbutton: @

Shortcut:

Related commands: siave view 3d(..)

This option takes a copy of the image in the current active window and uses the values it
contains to create a three-dimensional surface plot in a new slave window. The special slave
window has its own toolbar that controls the three-dimensional rendering and allows re-
orientation and other visual changes. This window is illustrated in figure 63.

— 71—

DigiFlow

Menus

i IR
1) ilx_:_"‘fs;“

- 0,004 (128) Ay €13, 5@

6,y 86413, 139,252 wen Frame: 1) (6,

%9402 B1FF 11| 194, 505 .71 32605, 139,616 e Frarve 040.0005)

Fow REUREZEFF Ak 194,505 132509, 139,616 W otheesd ..

Figure 63: A three-dimensional slave view.

The buttons on the toolbar are divided into five groups. With the exception of the + and
buttons (the second group), the first four groups of buttons act as a set of radio buttons in
which only one button may be pressed at a time. The pressed button then selects the drawing
attribute that is to be changed using the plus or minus buttons. A brief summary of the buttons

is given below.

Button

Description

_';T}

Enable rotations about the x axis. Once enabled, then the = and ¥+ buttons
rotate the plot about the x axis

Ja

Enable rotations about the y axis. Once enabled, then the = and "+ buttons
rotate the plot about the x axis

Enable rotations about the y axis. Once enabled, then the = and "+ buttons
rotate the plot about the x axis

Decrements the number associated with a render setting. The render setting
is selected by clicking on the corresponding radio button in the toolbar menu.

Increments the number associated with a render setting. The render setting
is selected by clicking on the corresponding radio button in the toolbar menu.

Enable panning the three-dimensional view left or right. Once enabled,
then the = and "+ buttons pan the plot left or right.

L

Enable panning the three-dimensional view up or down. Once enabled,
then the = and * buttons pan the plot up and down.

_ 72—

DigiFlow Menus

Enable moving the camera closer or further. Once enabled, then the = and
+ buttons move the view position in and out.

IP

Enable changing the vertical scale of the plotted data. Once enabled, then
the = and * buttons decrease and increase the scale.

Enable changing the spacing of the grid lines plotted on the surface. Once
enabled, then the = and + buttons change the spacing..

Toggle the grid on and off.

Paint the surface

Toggle hidden line removal

Toggle depth fog on and off.

Activate spotlight.

Change the colour of the background.

Toggle display of axes.

XIS B & &8 O

Reset settings.

Note that the view produced is displayed as a bitmap. This may be saved, printed and/or
converted to an Encapsulated PostScript plot.

5.3.10 Threads

Toolbutton: H

Shortcut:

Related commands: as_thread(..), is running(..), wait for end(..),
pause thread(..), unpause thread(..), kill thread(..),
get thread prioritiy(..), set thread priority(..),
process, process_as_thread

Starts the dialog box showing and controlling the various active processing threads.

Thread Control '

Thread Marne

X
Status

Priarity

High A

" oas -
Ok | Cancel |

Figure 64: The thread control dialog box.

Each thread is given a name composed of a brief description of the process responsible for
the thread and an identification number. The latter is used to provide a unique identification of
a particular thread.

_ 73—

DigiFlow Menus

To make any changes to a thread, first select it from the list. The current status and
execution priority of the thread will then be displayed. The thread may be paused or resumed
by clicking the corresponding buttons. Alternatively, clicking Stop will close the thread,
terminating the associated process in a relatively graceful manner. Once a process thread has
been stopped, it may only be restarted by starting the process again from the beginning. In
contrast, a thread that has been paused may always be resumed.

Any threads still running when DigiFlow is exited will be stopped and cannot be restarted.

Note that Normal priority is one step lower than the default priority for most Windows
applications, thus preventing a DigiFlow process from unacceptably impacting the overall
performance of Windows.

5.3.11 Pause all threads

Toolbutton: CE

Shortcut:

Related commands:

This tool causes all threads currently running in DigiFlow to be paused until the OK button
is pressed. Note that pausing these threads does not prevent you from opening images,
changing colour schemes, or even starting new processes: it is only threads that were running
at the time the tool was activated that are paused.

DigiFlow Paused @

i DigiFlow has been paused.
- Click OF ko recommence.,

Figure 65: Message box indicating all processing within DigiFlow has been paused.

Note: it is advisable not to use this tool while using the File: Live Video features.
5.3.12 Refresh

Toolbutton: %

Shortcut:

Related commands:

Causes the currently selected view to be refreshed from the corresponding file, if one
exists. This is necessary if you wish to see any changes that have been made to the file since it
was originally displayed. This is particularly valuable when editing .dfd files or viewing
images made by external programs, for example.

5.3.13 In Parallel

Toolbutton: ?:r

Shortcut:

Related commands: in parallel(..)

From DigiFlow version 2.0 (excluding the free version), DigiFlow is able to execute some
facilities in parallel when it detects multiple processors, allowing a significant speed-up of
these facilities. Note, however, that due to overheads in the parallelisation, plus limited
memory and disk bandwidth, the speed-up is less than the increased cpu usage. In general,
when doing standard processing, better performance can be achieved by running two jobs at
the same time on DigiFlow without the In Parallel facility invoked, than will be achieved by
running the two jobs in succession using the In Parallel facility.

— 74—

DigiFlow Menus

Note that the current cpu usage is shown in the main DigiFlow status bar at the bottom of
DigiFlow. With multiple processors, invoking In Parallel should increase the cpu usage
beyond 100%. In version 2.0 the parallelisation is coded explicitly in only a small number of
facilities, although it is expected that in future versions parallel execution will be much more
widely available within DigiFlow.

5.4 Create
This menu is currently disabled.

5.5 Sequence

This menu is only available when the active window contains a movie, sequence or
collection of images. The menu largely replicates the functionality available from the toolbar
along the top of these windows.

[JPRD4S.dfm [S:\Users\Stuart\imgiDigiFlowA] = B .
Ol lmlun]p »o| kD> Sl B 2] ¢ = 4]

Figure 66: The movie tool bar.

Button Section Description
[l §5.5.1.12 Play backwards in a loop

44 85.5.1.6 Play backwards quickly (Review)
L | §5.5.1.2 Play backwards

[| 85.5.1.3 Stop playing sequence

1] §5.5.1.4 Pause current movie animation

[2 §5.5.1.1 Play forwards

(313 85.5.1.5 Play forwards quickly (Cue)
[85.5.1.11 Play forwards in a loop
44 §5.5.1.9 Jump to the start

<] §5.5.1.8 Move back one frame

[} 85.5.1.7 Move forwards one frame
27 85.5.1.10 Jump to the end
{'l} 8 Speed up the playback

T 8 Slow down the playback

e §5.5.1.13 Synchronise with another view
85.5.1.14 Control dialog for additional control over
B §5.5.1.15 Joggle between two frames

_ 75—

DigiFlow Menus

"@ 85.5.1.16 Joggle across multiple frames

+ 85.5.1.17 Set first frame for loop

=F— | 855118 Frame track bar showing location in sequence
,'I, 85.5.1.19 Set last frame for loop

5.5.1 Animate

5.5.1.1 Play

Toolbutton: b‘

Shortcut: alt+up; Click middle mouse button

Related commands: animate view(.., "play")

Plays the image selector (§3.4) from the current location onwards.

Clicking the middle mouse button will play the movie (unless it is already playing,
forwards or backwards, in which case it will pause it). Holding the middle button down while
dragging the mouse to the right (left) will move rapidly forwards (backwards) through the
movie.

5.5.1.2 Play Backwards

Toolbutton: "

Shortcut: alt+down; Double click middle mouse button

Related commands: animate view(..,"playbackward")

Plays backwards the image selector (83.4) from the current location.

Double clicking the middle mouse button will play the movie backwards. Holding the
middle button down while dragging the mouse to the right (left) will move rapidly forwards
(backwards) through the movie.

55121

5.5.1.3 Stop

Toolbutton: M

Shortcut:

Related commands: animate view(.., "stop")

Stops the playing of the image selector (83.4) from the current location. The sequence is
left with the final frame played visible, but internally the movie, sequence or collection is
returned to its starting point. Playing the movie forwards again will start from the beginning,
or backwards will start from the end.

5.5.1.4 Pause

Toolbutton: I

Shortcut: alt+space; Click middle mouse button

Related commands: animate view(..,"pause")

Pauses the playing of the image selector (83.4) from the current location. The sequence is
left with the final frame played visible, and play operations will restart from this point.

Clicking the middle mouse button will pause the movie if it is already playing (either
forwards or backwards. If the movie is not already playing, then clicking the middle mouse
button will play it.

— 76 —

DigiFlow Menus

5.5.1.5 Cue

Toolbutton: 44

Shortcut:

Related commands: animate view(.., "cue")

Plays the image selector (83.4) at ten times the normal speed (showing only every tenth
frame).

5.5.1.6 Review

Toolbutton: 44

Shortcut:

Related commands: animate view(.., "review")

Plays the image selector (83.4) backwards at ten times the normal speed (showing only
every tenth frame).

5.5.1.7 Step Forwards

Toolbutton: D’

Shortcut: alt+right; Mouse wheel, middle mouse button

Related commands: animate view(.., "step")

Step forwards one frame in the image selector (83.4), starting from the current location.

Rotating the mouse wheel will step the movie forwards or backwards, depending on the
direction of rotation. Holding the middle button down while dragging the mouse to the right
(left) will move rapidly forwards (backwards) through the movie.

If the ctrl key is held down at the same time as using the above mouse controls, then the
command is applied to all open windows.

5.5.1.8 Step Backwards

Toolbutton: 'C:]

Shortcut: alt+left; Mouse wheel, middle mouse button

Related commands: animate view(.., "stepbackward")

Step backwards one frame in the image selector (83.4), starting from the current location.

Rotating the mouse wheel will step the movie forwards or backwards, depending on the
direction of rotation. Holding the middle button down while dragging the mouse to the right
(left) will move rapidly forwards (backwards) through the movie.

If the ctrl key is held down at the same time as using the above mouse controls, then the
command is applied to all open windows.

5.5.1.9 Start of Movie

Toolbutton: 44

Shortcut:

Related commands: animate view(.., "start")
Move to the start of the image selector.

5.5.1.10 End of Movie
Toolbutton: "H
Shortcut:

Related commands: animate view(..,"end")
Move to the end of the image selector.

— 77—

DigiFlow Menus

5.5.1.11 Loop

Toolbutton: 3

Shortcut:

Related commands: animate view(.., "loop")

Plays the image selector (§3.4) forwards in a continuous loop.

5.5.1.12 Loop backward

Toolbutton: 3

Shortcut:

Related commands: animate view(.., "loopbackward")
Plays the image selector (83.4) backwards in a continuous loop.

5.5.1.13 Synchronise
+11
Toolbutton: 1+

Shortcut:

Related commands: animate view(.., "sync")

Causes this image selector (83.4) to be slaved to another selector. The other selector will
provide the time information for synchronous advancement of this selector.

5.5.1.14 Control dialog

Toolbutton:

Shortcut:

Related commands:

This option fires up a dialog providing more detailed control over the animation of the
image selector.

Animate Sequence E|
00 Frame |3 il Time |3_25 s e
[| ﬁ
0 Play a7

Fram Step Ta
= T = Infie G =

163 g

0o 5 163 . B3 .

Action Speed
Od 4w n|[» o —fF— 1 Pt |
'«|4"|<‘<]|<]|D|“>|»¢|»l|ﬂlmi@

Cloze

Play

Figure 67: The dialog box that provides detailed control of image animation.

The buttons and controls in this dialog box are similar to those found for the selector
timing tab in the Sift dialog in 84.3.1. In addition, the dialog provides more detailed control
over the animation speed.

Note: This dialog is modal for free versions of the DigiFlow licence, but modeless
(allowing switching between other elements of DigiFlow) for full licences.

_ 78—

DigiFlow Menus

5.5.1.15 Joggle between two frames

Toolbutton: |E:'

Shortcut:

Related commands: animate view(..,"joggle2")

This causes the sequence to flip back and forwards between two consecuitive images. This
can be useful for looking at the relative movement or relationship between the images.

5.5.1.16 Joggle across multiple frames

Toolbutton: 12

Shortcut:

Related commands: animate view(.., "joggle6")

This causes the sequence to repeatedly play multiple (six) images and then jump back to
the first. This can be useful for looking at the relative movement or relationship between the
images.
5.5.1.17 Set first frame for loop

Toolbutton: 1|'r
Shortcut:

Related commands: animate view (.., "setfrom")
animate view(..,"resetfromto")

Sets the first image (the From image in the control dialog in 85.5.1.14) to be the current
frame. Any subsequent playing of the sequence will start at this image. Note the range over
which the sequence is played can also be set by selecting a range by holding down the shift
button while using the frame trackbar (see §5.5.1.18).

5.5.1.18 Frame track bar

Toolbutton: _
Shortcut:
Related commands:

The trackbar shows the current position of the image within the sequence. Grabbing the
track bar with the mouse allows rapid movement through the sequence. A range of images
may be selected by using the snift key in conjunction with the mouse. Any subsequent play
or loop operation will be restricted to the selected range, although the track bar can still be
used to access images outside that range. Clicking the bar while holding down the ctr1 key
will reset the range to the entire sequence.

The range of the track bar may also be set using the buttons detailed in §85.5.1.17 and
5.5.1.19.

5.5.1.19 Set last frame for loop

Toolbutton: 1'|r
Shortcut:

Related commands: animate view(..,"setto")
animate view(..,"resetfromto")

Sets the last image (the To image in the control dialog in §5.5.1.14) to be the current frame.
Any subsequent playing of the sequence will start at this image. Note the range over which the
sequence is played can also be set by selecting a range by holding down the shift button
while using the frame trackbar (see §85.5.1.18).

— 79—

DigiFlow Menus

5.6 Analyse

5.6.1 Time information

5.6.1.1 Time average

Toolbutton:

Shortcut:

Related commands: process Analyse TimeAverage(..)

Calculates a variety of averages and other statistics for an image selector.
Analyser Tirme Sverage IEI

Input gt] Output =
w W

Sequence Heverage
[default]

Output image does not exist
or i irvvalid
[Thiz iz OK]

|"*+DispHttHH. i |"*hveB. i

Frocess... | Optians... | Save Az

v Display Sift ¥ Display

Contral

%5 — Method
% Arithmetic " Min
" RMS " Maw

 Std. Dev. (g
™ Geometric s
" Harmonic

Cancel |

Figure 68: Compute the average of an image selector.

The Input group contains the controls used to determine the image selector to be sampled.
This selector may be specified from a file by clicking the File button, in which case the
standard Open Image dialog box is produced. Finer control over which parts of the input
stream are to be processed are determined via the Sift button; see 84.3. Alternatively, the
output of a different process may be utilised by clicking the Process button (refer to 87 on
chaining processes for further details).

Note that this tool can process not only images from any DigiFlow supported format, but
also velocity fields and other complex data stored in .dfi files. The output stream preserves the
data format of the input stream. For example, if the input stream is a velocity field, then the
output stream will also contain velocity information.

The time average image is saved to the file specified in the Outputs group by clicking the
Save As button. If this process is acting as the source for another process, the Save As button
Is suppressed (refer to 87 for further details). The colour scheme and compression options to
be used for the output stream is set by clicking the Options button (84.4).

The Method radio buttons select the averaging procedure adopted. Arithmetic returns the
standard arithmetic mean, while RMS calculates the root mean square image. The image
fluctuations are represented by the Std. Dev. option, while Geometric and Harmonic provide
the other forms of averaging. These are summarised in the table below.

- 80—

DigiFlow Menus
Method Formula Comments
Arithmetic 10t b This is the standard mean
ﬁi; [value.
RMS 108, y2 The root mean square value.
ZM»P
ng‘ ']
Std. Dev. T 1 N2 Y2 Standard deviation of the
=y'p? _(1 piJ image series.
n i=0 n i=0
Geometric o \Yn Geometric mean.
I Pij
i=0
Harmonic r/ﬂi 1 Harmonic mean.
i=0 Pl
Min nn{lln P Minimum value.
iz0 |
Max n-1 Maximum value.
max P,

5.6.1.2 Weighted time average

The weighted time average facility provides an extension to that provided by the more
simple averaging. In particular, the following table defines the weighted means. Here, Pj is the
intensity at a given pixel from the image at time i, and A; is the weighting applied to that

pixel/image.
Method Formula Comments
Arithmetic n-1 5 This is the standard mean
;A i value.
n-1
DA
i=0
RMS n-1 y2 The root mean square value.
AP?
i=0
n-1
A
i=0
Std. Dev. - 1 2\V2 Standard deviation of the
Z AP? AP image series.
i=0 | =0
n-1 n-1
A A
i=0 i=0
Geometric L % S A Geometric mean.
HF)IA j i=0
i=0
Harmonic n-1 1 1 Harmonic mean.
DA/ s
i=0 i=0 A Pl
Min n-1 Minimum value.

m_ion P, only for Aj=0

81—

DigiFlow Menus

Max Maximum value.

n-1
m%x P, only for Ai=0

The user interface for the weighted mean is similar to that for the simple mean facility (see
85.6.1.1), but has an additional (optional) Weighting selector for specifying a second input
stream to provide information with which to construct the weighting Ai. The weighting itself
is constructed by the code specified in Expression. This code should return an array of the
same dimensions as the input Sequence, or a two-dimensional array of the same size in those
two dimensions. This array can be constructed from the input Sequence and (when specified)
the input Weighting. If Weighting is specified, then this image is available to the code through
the array variable 2 and the compound variable &. If Weighting is not specified, then » and B
point to the input Sequence. In both cases the input Sequence is also available through the
array variable » and compound variable o.

For simple images, the array variables » and » will have two dimensions, whereas for more
complex images » and » will have more than two dimensions. The information in these
multidimensional arrays will also be available through individual components of the
compound variables & and o. For example, if the first input Sequence contains a velocity field
generated by the PIV facility (see 85.6.5.2) then o.u and ¢.+ will contain the two components
of the velocity field, and (depending on the options selected during the processing) o.scalar
may contain the vorticity field. Full colour images are supplied as their red, green and blue
components with a three-dimensional » array: »(:,:,0] contains the red component,
P[:,:,1] contains the green component, and »[:,:,2] contains the blue component. For
convenience, these are also supplied as 0.red, 0.Green and 0.B1ue. The £ button may be
used to search for or provide information on specific DigiFlow functions. The %2 button may
be used to search for or provide information on specific DigiFlow functions.

One common use of the weighted average facility is for computing the temporal average of
velocity fields where there may be an incomplete spatial coverage for the velocity at any
particular time. In such cases, only points with valid velocity vectors should contribute to the
temporal mean. This may be achieved by specifying the sequence of velocity fields to the
input Sequence and simply specifying a<>0; as the Expression as the PIV subsystem sets the
velocity to exactly zero when it is unable to determine a velocity. More sophisticated
averaging can be achieved by using the Quality output from the PIV subsystem to construct a
more continuous measure of quality to be used as the weighting.

_82—

DigiFlow Menus

Analyse: Weighted Time Awverage g|

|put 9‘\‘

Sequence Weighting

Optional:

Freview of the image using
o congtruct the weigting

|'"elttitt i’ |
Process... | File... | Process... | File... |
[v Dizplay Sift [v Dizplay
Contral Dutput |
= 2
Hethod LY ‘4—»
* Afithmetic ™ Geometric Hyverage
" RMS A E— [default]
T Std. Dev. ¢ min
™ Man
. Output image does nat exist
Expreszion or is invalid
e D:| [Thiz iz OF]

|"AbsF| escaled Weightedie

Options... | Save Az, |

[v Dizplay

£l ok] cancal |

E xpression used to determine weighting

Figure 69: Dialog controlling the weighted time average.

5.6.1.3 Harmonic analysis

Toolbutton:

Shortcut:

Related commands: process Analyse HarmonicAnalysis(..)

One valuable method of analysing periodic signals, such as waves, is by harmonic analysis
to determine the phase and amplitude of the component of the signal at a given frequency or
set of frequencies.

DigiFlow provides a convenient method of analysing a sequence for a given frequency and
harmonics (integer multiples) of that frequency. The Input sequence should span one or
preferably more periods of the frequency you wish to analyse. The Sift button should be used
to ensure the period being analysed represents a time of steady oscillation. In general, the
more images available within this period the better the results.

The Fundamental frequency to be analysed can be specified in a number of ways, with the
Period stated in either time or frames, or the Frequency in Hertz (cycles per second) or
radians per second. For best results, the input sequence should correspond to an exact multiple
of the fundamental period. If the Conform input to period box is checked, then DigiFlow will
automatically truncate the input sequence so that it is as close as possible to a multiple of the
period.

In addition to analysing the fundamental frequency, DigiFlow can simultaneously analyse
harmonics of this frequency, plus the mean (zero frequency) component. Unlike many other
DigiFlow facilities, the Harmonic Analysis tool will generate the names of the harmonic files
automatically from the files specified in Output for the fundamental. If the name for the

- 83—

DigiFlow Menus

fundamental file is amp.dfi, then the x2 harmonic is saved in amp[x2].dfi. Similarly for other
harmonics. (Note that even if the Number as #### or Compact list boxes are checked in the
Open Image dialog then DigiFlow will not treat the number within the square brackets as part
of a sequence number.)

Analyse: Harmonic Analysis E|
Input - D Controls .
h Fundarmental Harmnoric 4 oA
Sequence i [~ =0 i
Periad (11,0 5 -
£.13495 frams
v w2
Frequency
o Hz [%3
DB283 rad/s [=4
]
|"yl3ﬂ#ﬂﬂ.dfi" [v Conform input to period
Process... | File... DOutput fields
" Comples amplitude
= o
W Display & fmplitude and phaze
Output ‘%
Amplitude or Real Phasze or Imaginary
[default
|"amp.dfi" |"phase.dfi
Dptions... | Save As... | Options... | Save fz... | Ok
v Display [¥ Display ﬂ
Cancel

Figure 70: Dialog controlling harmonic analysis within DigiFlow.

(a) (b)
Figure 71: Example of harmonic analysis, showing (a) amplitude and (b) phase of the fundamental
frequency of an internal gravity wave.

Once the harmonic analysis has been completed, it is a simple matter to reconstruct the
flow field at an instant in time. Alternatively, the field may be decomposed into the different
wave components using a Hilbert Transform. A tool for achieving this is found under the
Spectral recipes in Tools Transform Recipes. Figure ?? illustrates the results.

84—

DigiFlow Menus

-

Figure 72: Hilbert Transform yielding waves with k, > 0 and k, > 0. (a) Amplitude. (bmase-. N

5.6.1.4 Time series
Toolbutton:
Shortcut:
Related commands: process Analyse TimeSeries(..)
Extracts a time series of the intensity along some line or curve and forms an image with
one spatial and one temporal dimension.

|puts Sl Output i
(S R

Input Image Timeseres Image
[default]

Clutput image does naot exist

or i invalid
[Thiz iz Ok]
|*wGrad i GETE
Frocess... | File... | Options... | Save fs...

™ Dizplay Sift ¥ Dizplay

. ———— Section Contrals ——
L Series,ﬂ—il of ,T ;l;me direction
= Upwards

" Mone From = W " Taright
;?'””’” Fromy [1.00000 —

o review
(+ Between to* |1.00000 T
" ylx) tay [0.00000
® 0] [~ SetrSteps Caoordinate system
s vz |

¥ Draw sections on input Reset All | Ok | Cancel |

Froduce time series of line between twa points

Figure 73: Dialog box controlling the extraction of time series information from an image sequence.

This facility takes a single input stream, and creates one or more output streams. The input
streams are normally sequences, while the output streams are normally individual images.

The Input group contains the controls used to determine the image selector to be sampled.
This selector may be specified from a file by clicking the File button, in which case the
standard Open Image dialog box is produced. Finer control over which parts of the input

- 85—

DigiFlow Menus

stream are to be processed are determined via the Sift button; see 8§4.3 for further details.
Alternatively, the output of a different process may be utilised by clicking the Process button
(refer to 85.7.5 for further details).

Note that this tool can process not only images from any DigiFlow supported format, but
also velocity fields and other complex data stored in .dfi files. The output stream preserves the
data format of the input stream. For example, if the input stream is a velocity field, then the
output stream will also contain velocity information.

A number of time series may be generated simultaneous in this manner, each representing a
different section through time image, and each written to a different Timeseries Image. You
may move between each of the possible time series using the Series edit control and
associated spin control. Individual extraction codes are enabled or disabled via the Use check
box, while the Reset All button may be used to turn off all and reset all extraction time series.

For each time series, the section through the image may be specified in a variety of ways.
The Column and Row radio buttons allow data to be extracted from a given column or row
within the image. In both cases, this data is written to the output image as a row of pixels,
with each successive time being placed above the previous one.

The Between radio button allows two points to be specified, and the data extracted from
the line joining the two points using a specified number of steps. The points may be specified
in either pixel or world coordinates by selecting the appropriate Coordinate sytem.

Alternatively, expressions may be given to determine the line or curve along which data is
to be sampled. These curves may be specified either as y(x), x(y), or parametrically as x(s) and
y(s). Depending on which of these is selected, the formula supplied by the user should be cast
in terms of x, y or s. The formula may also include time Time.tNow and/or the frame number
Time.fNow (the limits on the selector times and frames are also available through Time.tFrom,
Time.tTo, Time.tStep, Time.fFrom, Time.fTo and Time.fStep). In addition, the variable
Time.iNow provides an iteration counter. This will always start at zero and increase by one for
each image processed (in contrast, the first value for Time.fNow depends on where in the input
sequence the sequence to be processed starts, and its increment depends on the stepping
between the images to be processed). In all cases, the user can specify the number of sample
points and the coordinate system to be used.

The direction of the time axis on the resulting images may be specified using the Time
direction group.

Each Timeseries Image created has the samples taken across its width (from first to last
left to right), and time increasing from bottom to top. The file that receives this image is
specified in the Outputs group by clicking the Save As button. Note that a different
destination is provided for each time series activated. If this process is acting as the source for
another process, the Save As button is suppressed (refer to 87 for further details). The colour
scheme and compression options to be used for the output stream is set by clicking the
Options button (84.4).

In addition to the standard image formats for the output of each time series, this facility
supports simple ASCII data files with a .dat extension that provides a more convenient
format, including precise details of the pixel or world coordinates from where the data came.

Note that subpixel precision is obtained for all the samples by using bilinear interpolation,
where appropriate.

— 86—

DigiFlow Menus

5.6.1.5 Time extract

Toolbutton:

Shortcut:

Related commands: process Analyse TimeExtract(..)

Using a user-specified formula, extract a one-dimensional array of data from each image in
a sequence, and use this to construct an image with one spatial and one temporal dimension.

Analyse: Time Extract E|
Inputs D~ Series number = Output =
i | w>
|nput Image) Timeseries Image
Seriez [Z‘ of [detaull]
W Use Fieset &l
. N Output image does not exist
Time direction o iz invalid
* Upwards [Thiz iz QK]
" Taright
|""elttitt. i |""Urmn. dfi”
Process... | Flle Ve Optiohs. .. | Save Az
P A
™ Displ) (.5calar or [Vorticity ¥ Dizpl
i Sift... QLsvectar or G i
Q.wvector or Oy 3
IR |
Extraction code
x rme o) J{_‘:c?

s

Cancel

Figure 74: Dialog controlling the extraction of calculated data from an image to form a time series of
this data.

This facility takes a single input stream, specified through, and creates one or more output
streams. The input streams are normally sequences, while the output streams are normally
individual images.

The Input group contains the controls used to determine the image sequence to be sampled.
This selector may be specified from a file by clicking the File button, in which case the
standard Open Image dialog box is produced. Finer control over which parts of the input
stream are to be processed are determined via the Sift button; see 84.3 for further details.
Alternatively, the output of a different process may be utilised by clicking the Process button
(refer to 87 for further details).

Note that this tool can process not only images from any DigiFlow supported format, but
also velocity fields and other complex data stored in .dfi files. The output stream preserves the
data format of the input stream. For example, if the input stream is a velocity field, then the
output stream will also contain velocity information.

The Extraction code should take the current image and return a one-dimensional array of
data to be added to the time series, and the Variables box lists some of the variables
describing the image that are available for use in the code; a more comprehensive list may be
viewed by clicking the Variables button.. A number of time series may be generated
simultaneous in this manner, each with a different Extraction code, and each written to a
different Timeseries image. You may move between each of the possible time series using the
eSeries edit control and associated spin control. Individual extraction codes are enabled or

87—

DigiFlow Menus

disabled via the Use check box, while the Reset All button may be used to turn off all and
reset all extraction time series.

Each Timeseries Image created as one axis as time and the other as the ordinal position of
the one-dimensional array returned by the Extraction code. The direction of the time axis is
specified by the Time direction group. The file that receives this image is specified in the
Outputs group by clicking the Save As button. Note that a different destination is provided for
each time series activated. If this process is acting as the source for another process, the Save
As button is suppressed (refer to 87 for further details). The colour scheme and other output
options to be used for the output stream is set by clicking the Options button (84.4).

The basic image from the input stream is supplied to the Extraction code in the array
variable r. For simple images this will be a two-dimensional array. However, for more
complex image formats (such as velocity fields stored in .dfi files), » will contain more than
two dimensions. In such cases DigiFlow will also provide the same data split into its
individual component two-dimensional arrays in the compound variable o. For example, if the
input stream contains a velocity field generated by the PIV facility (see §5.6.5.2) then ¢.u and
o.v will contain the two components of the velocity field, and (depending on the options
selected during the processing) o.scalar may contain the vorticity field. If the input stream
contains a DigiFlow drawing (typically one or more .dfd files), then DigiFlow provides the
drawing is available through its handle np, in addition to a bitmap version of it in the array
variable r. Additional drawing commands may be added to the drawing handle, or it may be
incorporated into a compound drawing using draw_embed drawing (. .).

Full colour images are supplied as their red, green and blue components with a three-
dimensional » array: p[:,:,0] contains the red component, r[:,:,1] contains the green
component, and p[:,:,2] contains the blue component. For convenience, these are also
supplied as 0.Rred, 0.Green and 9. Blue.

DigiFlow also provides time information about the input stream through the Time
compound variable. Typically this contains Time.fNow and Time.tNow giving the current
frame number and time (in seconds) relative to the start of the entire input stream. An
additional variable Time. iNow gives an iteration counter that is the frame number relative to
the start of those that are actually being processed. Details of the entire input stream are
provided through Time.fFirst, Time.fLast and Time.tFirst, Time.tLast that provide
details of the first and last frame/time that exist in the input stream. Moreover, Time. fFrom,
Time.fTo and Time.tFrom, Time.tTo provide information about which part of the stream is
being processed.

Although the main variables available are listed in the Variables list box this list does not
include any additional modifiers for the individual data plane variables beginning with o.
These modifiers include the description, scaling and (where appropriate) spacing of the data.
A more comprehensive list may be viewed by clicking the Variables button. For further
details, refer to the PIV data example in 85.7.2.

The Extraction code may be as simple as returning a subarray (e.g. »[(100,10:507), or it
may be the result of a complex calculation on the image. The £ button may be used to search
for or provide information on specific DigiFlow functions. Examples of more complex
processing are given below.

Depth of gravity current

For example, suppose you have an experiment of a gravity current propagating along a
channel and want to produce a time history of the depth of the current. The first question is
how to measure the depth. There are a number of possibilities.

— 88—

DigiFlow Menus

The simplest measure of the depth would be the height from the bottom to the point where
the density fell below some threshold. Suppose we have previously processed a sequence
using the dye attenuation facility described in 85.6.3.1 and have an image stream that
represents the concentration/density of the current. This could be defined as the number of
pixels that exceed some threshold in intensity. In this case the Extraction code would be
y_count (P > 0.1)/y_size(P), Where the threshold is 0.1. Dividing by y_size () means
that the resulting depth will be normalised by the height of the input stream.

A more robust measure would be to use the integral of the concentration over the depth.
This is achieved simply by looking at the vertical mean as a function of position by
y_mean (P). This gives a measure of the hydrostatic pressure excess at the base of the current.

Concentration power spectrum

As a more complex example, suppose we have a series of LIF images from turbulent flow
(these may have been processed using the LIF facilities described in §5.6.3.2), and you would
like to know how the power spectrum of some region evolves in time. The region might vary
for each image. In particular here we are looking at Rayleigh-Taylor instability and are
interested only in the region where the two layers are mixing. In this case the camera was
turned on its side. We could rotate the image (e.g. using rotate image clockwise(..) Of
transpose (. .)), but for this example we will work in the rotated space with x vertical and y

horizontal. A suitable code segment is given below:
Threshold for fluctuations

thresh := 0.05;

Determine fluctuations

Fluct2 := y_rms(P)AZ - y_mean(P)A2;

Fird first location where threshold exceeded

iStart := -1;

for 1:=0 to x_size(P)-1 {

if (iStart = -1 and Fluct2[i] > thresh) {

iStart := 1i;

b
b

Fird last location where threshold exceeded

iEnd := -1;
for i:=x size(P)-1 to 0 step -1 {
if (iEnd = -1 and Fluct2[i] > thresh) {
iEnd := 1i;

i
i
Compute power spectrum within this region
Spect := power spectrum column (P[iStart:iEnd, :]);
Determine and return mean
x_mean (Spect) ;

To determine the region over which we will compute the concentration power spectrum we
probe the magnitude of the concentration power spectrum, calculated from the root mean
square and mean intensities (concentrations) in the y direction, looking for the first and last
columns that satisfy a threshold condition. (Note we could use the function
x_transition index(..) In place of the loops for improved computational efficiency.)

5.6.1.6 Time summarise

Toolbutton:

Shortcut:

REkﬂedconﬂnandSZprocess Analyse TimeSummarise(..)

The Time summarise facility is similar to the Time extract facility, except that it is tailored
towards extracting and graphing scalar quantities from an image sequence.

— 89—

DigiFlow Menus

Figure 75 shows the dialog controlling this facility. The Input group contains the controls
used to determine the image sequence to be sampled. This selector may be specified from a
file by clicking the File button, in which case the standard Open Image dialog box is produced.
Finer control over which parts of the input stream are to be processed are determined via the
Sift button; see 84.3 for further details. Alternatively, the output of a different process may be
utilised by clicking the Process button (refer to 87 for further details).

The Extraction code should take the current image (provided in P for simple images)
and return a scalar value to be added to the time series. This code may be as simple as
returning the intensity at a specific point (e.g. »(100,10]), or it may be the result of a
complex calculation on the image (see below for further details).

The result of the Extraction code is rendered on a graph against time. The method of
representing the individual data points is determined by Draw with to specify line or mark
type, and Colour to set the colour to be used. Multiple data sets may be plotted on the same
graph by specifying different Extraction code, Draw with and Colour for each Series that is
selected by Use.

The extracted data are all rendered on the same graph, specified by Output graph in the
normal way. In this case, Output graph would normally be a vector format image (.dfd, .emf or
.wmf file), but this may be saved as a raster image, if preferred. The x axis represents time,
while the y axis is used for the extracted data. The limits on the y axis are set by yMin and
yMax. The titles for the two axes are given by x Title and y Title. With fully licensed copies of
DigiFlow these may contain LaTeX-like text formatting commands. For example, the string
Dimensionless height $\big(\frac{h}/{\alpha”2H 0}\big)$ would produce the label

Dimensionless height (%)
o/,

See 83.9 for further details.

A number of time series may be generated simultaneous in this manner, each with a
different Extraction code, and each written to a different Timeseries image. You may move
between each of the possible time series using the Series edit control and associated spin
control. Individual extraction codes are enabled or disabled via the Use check box, while the
Reset All button may be used to turn off all and reset all extraction time series.

The basic image from the input stream is supplied to the Extraction code in the array
variable p. For simple images this will be a two-dimensional array. However, for more
complex image formats (such as velocity fields stored in .dfi files), » will contain more than
two dimensions. In such cases DigiFlow will also provide the same data split into its
individual component two-dimensional arrays in the compound variable o. For example, if the
input stream contains a velocity field generated by the PIV facility (see §5.6.5.2) then o.u and
o.v will contain the two components of the velocity field, and (depending on the options
selected during the processing) o.scalar may contain the vorticity field. Full colour images
are supplied as their red, green and blue components with a three-dimensional r array:
P[:,:,0] contains the red component, p[:,:,1] contains the green component, and
p[:,:,2] contains the blue component. For convenience, these are also supplied as o.Rred,
0.Green and 0.51ue. The % button may be used to search for or provide information on
specific DigiFlow functions.

DigiFlow also provides time information about the input stream through the Time
compound variable. Typically this contains Time.fNow and Time.tNow giving the current
frame number and time (in seconds) relative to the start of the entire input stream. An
additional variable Time.iNow gives an iteration counter that is the frame number relative to
the start of those that are actually being processed. Details of the entire input stream are

—-90-—

DigiFlow Menus

provided through Time.fFirst, Time.fLast and Time.tFirst, Time.tLast that provide
details of the first and last frame/time that exist in the input stream. Moreover, Time. fFrom,
Time.fTo and Time.tFrom, Time.tTo provide information about which part of the stream is
being processed.

The main variables available are listed in the Variables list box. This list does not,
however, include any additional modifiers for the individual data plane variables beginning
with o. These modifiers include the description, scaling and (where appropriate) spacing of
the data. A more comprehensive list may be viewed by clicking the Variables button. For
further details, refer to the PIV data example in §85.7.2.

Analyse: Time Summarise E|
|mput: 9‘\; Senes number Output i
: b
’ Series [=laf [1g ‘-
Input Image I‘ Output Graph
SRR v Use Reset All finputl
Diran with
Line A
Dot
Cross
[N [
[Toncit.di Colour | *Fractal dfd"
Process... | File... | White ~ Optiors... | Save bz |
Black,
[Dizplay ; v Dizplay
Sift... Cyan =
e
Estraction code Aues .
win (oo
Count boxes
boxes := fractal box count (image:=P threshold:=0_5) wMax (20
A Ounly want to wuse mid-renge for the fik = Title
k0 := count (hoxes[:, 0] < 10]; |.|_. i
k1l := countiboxes[:,0] = 100]: ime: 1)
Fit a power law uTitle
fic := fit expressioniexpr:="l:lnisize);", varNanes: " -
i Returs the olope |Fractal dimension
-fit.coeff[l];
W ariables
< >
The code zegment, using the image P, retuming a scalar = ﬂ'_? |)4 | Cancel

Figure 75: The Analyse: Time Summarise dialog.

Evolution of fractal dimension

In the example shown in figure 75 (the code is repeated below for clarity) we want
determine the evolution of the fractal dimension of a contour from a series of LIF images.
Here we can make use of DigiFlow’s in-built box counting algorithm in conjunction with its

ability to fit least squares curves.
Count boxes
boxes := fractal box count (image:=P, threshold:=0.5);
Only want to use mid-range for the fit

k0 count (boxes[:,0] < 10];

k1l count (boxes[:,0] < 100];

Fit a power law

fit := fit expression (expr:="1;ln(size);",
varNames:="size;",values:=boxes[k0:k1l,0], rhs:=boxes[k0:k1,17,
rhsExpr:="1n(n);", rhsNames:="n;") ;

Return the slope
-fit.coeff[1];

—91-—

DigiFlow Menus

The net result (just visible in the preview of the output image) is a time series showing the
evolution of the fractal dimension. In reality, it is advisable to plot the individual box count
verses box size curves for individual images before embarking on processing such as that
described above in order to ensure a power law relationship exists in the range of box sizes
selected (here between 10 and 100 pixels).

Evolution of mean intensity along line

Suppose we want to know the mean intensity along some line within an image. Obviously,
if the line is simply a line or column then we need simply specify mean(p[10,:7), for
example, for the mean intensity of column 10. However, if the user wishes to specify the line
interactively, we might use

if (Time.iNow = 0) {
For first iteration, find line and determine points
hview := get_active view();
line := get_mouse_line (hView) ;
dx := line.x1 - line.x0;
dy := line.yl - line.y0;
if (abs(dx) > abs(dy)) {
x := make_array (0,abs (dx));
y := line.y0 + x*dy/dx;
x := line.x0 + dx/abs(dx)*x_index(x) ;
} elseif (abs(dy) > 0) {
y := make_array (0,abs (dy)) ;
x := line.x0 + y*dx/dy;
y := line.y0 + dy/abs(dy)*x_index(y) ;
} else {
x := make_ array(line.x0,1);
y := make_ array(line.y0,1);

b7

Extract values for specified points and determine the mean
points := sample values (P, x,y);

mean (points) ;

In this case, we use Time. iNow to detect the first time through and set up the x and y arrays to
contain the points on the line specified by the user drawing it on the input image stream. Here
we rely on the input view being active at the time the code segment starts, allowing its handle
to be determined by get_active view(..).

5.6.2 Ensembles

5.6.2.1 Ensemble mean

Toolbutton:

Shortcut:

Rekﬂedconwnands:process Analyse EnsembleMean(..)

It is frequently desirable to determine the behaviour of flows across an ensemble of
experiments. The Ensemble Mean facility provides one of the basic building blocks for
analysing an ensemble of experiments.

—92_

DigiFlow Menus

Analyse: Ensemble Mean Bl

Input Clutput

m . =y . Ersemble Mean
JPRD 45 MO add.. Sift..
"Del. oy 4 [input] 2
"De2.mov" v Master
v Dizplay
Remove | Reset

|"iunkm¢ﬂ#. it

Options... Save bz,

|"JF'F|D45.MDV" v Display
|S Al zerghStuarts mghDigiFlowt,

Controls
Kind
{* Arithmetic { Geometric
" RMS " Harmonic
" Std Dev. ¢ Min
" Max

v lgnaore Zenos:

Cancel

Figure 76: Dialog controlling the calculation of ensemble means.

The interface for specifying an ensemble of experiments differs slightly from the normal
mechanism of specifying input streams in DigiFlow in order to provide a more compact and
convenient specification process, although this is at the cost of some of the functionality of the
standard interface. The Input group provides the various controls needed to specify the
members of the ensemble. Add will fire up the standard Open Image dialog for specifying an
input stream. Once specified, the name of the input stream is added to the list on the left of the
group. An input stream may be sifted by selecting it from the list then clicking the Sift button
(see 84.3). While a given member of the ensemble is selected, its name and directory are
displayed at the bottom of the Input group, with a preview just above. The Master checkbox
indicates if the selected stream is the master (controls the timing, region, etc.). This checkbox
may be used to specify the currently selected stream as the master, but not to deselect it (to
deselect a stream you must select another stream as the master). Streams may be removed
from the ensemble by selecting from the list then clicking the Remove button. Alternatively,
all members of the ensemble may be removed using the Reset button.

The ensemble mean image is saved to the file specified in the Outputs group by clicking
the Save As button. If this process is acting as the source for another process, the Save As
button is suppressed (refer to 86 for further details). The colour scheme and compression
options to be used for the output stream is set by clicking the Options button (84.4).

The Controls group allows specification of the type of average to be computed, and
whether or not to include zero values in the average. Seven types of average are provided
through the Kind group. The meaning of each of these is identical to that given for the time
averaging in 85.6.1.1. If the Ignore zeros box is checked, then only those points which are not
identically zero are included in the averaging. DigiFlow’s synthetic schlieren and PIV
facilities both flag missing data with identical zeros, thus checking Ignore zeros provides a
convenient way of calculating a mean that is not contaminated by missing data.

—-03-—

DigiFlow Menus

5.6.3 Dye images

5.6.3.1 Dye attenuation

Toolbutton:

Shortcut:

Related commands: process Analyse DyeAttenuation(..)

Correct a back-illuminated image for variations in the intensity of the back-illumination.
Pre- and post-correction manipulations allow for easy implementation of camera calibration
and dye calibration procedures.

Principle of operation

Let us consider polychromatic light from a source with an intensity io(x,y,k) = lo(X,y) J(K),
where X,y are the location on the source and k the wavenumber of the light emitted. For
simplicity, we assume the source colour is independent of the position within the source.
Here, lo(x,y) represents the spatial variation in the intensity of the illumination, while J(k)
gives the spectral colour. Assuming the spectral response of a linear monochrome camera
(with no black offset) is described by S(k), then the intensity perceived by the camera viewing
this source directly is

R (X y)=1o(x, y)TJ (k)S (k) dk.

For a colour camera, there will (typically) be three such expressions, one each for the red,
green and blue components (with corresponding Sr(k), Sc(k) and Sg(k) leading to Por, Poc and
Pos). For simplicity, we shall concentrate on a camera yielding a single (monochrome)
component. Moreover, we shall assume that the only light received by the camera is that from
the source lo and that the source is ‘in focus’.

Suppose we conduct an experiment using coloured (non-fluorescing) dye of concentration
c(x,y,z,t) such that the attenuation of light from the source passing in the z direction through
the dye is governed by

i .
— =—qcl,
dz

where a = a(k) describes the colour of the dye. The intensity falling on the camera is therefore
ic (X, y,t.k) =i exp(—ajcdz) =1,J exp(—ajcdz) =1,J exp(—atl),

1 . . i :
where (_:(X, y,t) = ch dz is the mean concentration along the light ray connecting the source

and camera, and L(x,y,t) is the thickness of the region in which we are interested in associating
with the mean E(x, y,t). Here we have assumed that the light rays are parallel (or nearly

parallel) with the z axis.
The intensity perceived by the camera is therefore

P (%, y,1) = [ic (% 1K) (k) dk
’ B D)
=1, (X, y)!J (k)S(k)exp(-a(k)c(x,y)L)dk

We proceed by considering three classes of dyes, catagorised by «(k) in conjunction with the
J(K)S(k) combination.

— 94—

DigiFlow Menus

Ideal dyes
If the dye is neutral density («(k) = ao = const) then (1) reduces to

Q= P exp(—a,CL).
PO

Here we have defined Q as the normalised intensity P/Po. Similarly, if the light is
monochromatic of wavenumber ki at which a(ki) = a1, or the camera’s response is
monochromatic of wavenumber ki, then
Q= P exp(—a,CL).
I:)0

We shall call these two situations as the ‘ideal’ case. The first can be achieved using a black
dye such as nigrosin, while the second can be achieved either using a monochromatic light
source or by placing in front of the camera lens.

In this ‘ideal’ case, if L is known a priori, then we can readily determine the mean
concentration as

ol

1
=——1InQ,
o;L Q

where the combination ailL is typically determined by calibration. Similarly, if T is know a
priori (typically by setting c(x,y,z,t) =co = const), then we can use the same relation to
determine the thickness (depth) of the layer from
L= —i_ InQ.
o,C
If L is constant in time but varies in space, it is often more convenient to determine this
from an image of a constant concentration of dye, rather than attempting to measure it
everywhere. Suppose the camera perceives an image of intensity P when the experiment is
filled with a constant concentration of dye c.. From this we can calculate

L=- L Iniz— 1 InQ,,
ac. K a;C
where QL = P/Po, and substitute back to determine
c(x, y,t):cLIn—Q.
InQ,

Non-ideal dyes

If the dye is not ideal (i.e. it is neither neutral density nor illuminated by a monochromatic
light source) then additional calibration is required. Recall that the camera perceives

_[J Sexp(—atl) dk
P _0

Q= -

TJSdk
0

For a given illumination and camera response, we can write Q =g (cL)=g(¢) where g(¢)
(which is bounded above by one) characterises the response of the dye as

—05

DigiFlow Menus

TJ Sexp(—ap) dk
9(p)="

[Jsdk
0
If g(¢p) is invertible then we can determine the concentration as
_ 1
C=— .
797(Q)

As we saw above, for an ideal dye g~1(Q) is 1 InQ.
a:

In general, however, we may not have a detailed knowledge of the spectrum of the light
source J(k), the spectral response of the camera S(k) or of the dye absorption «(k), but must
instead determine by calibration g(¢) or, more usefully, the inverse g~(Q).

Suppose we determine, through a calibration procedure, that g-1(Q) ~ Dye(Q), then we can
proceed to compute T or L. In particular, if L is known a priori, then

_ 1
C =EDye(Q),
while if T is know a priori then
1
L :EDye(Q).

As before, if L is constant in time but varies in space we can compute T by introducing a
calibration image P of a uniform dye concentration c. to obtain
Dye
o DO
Dye(Q,)
where Q. = P./Po.

Band-pass dyes

Some dyes can be approximated as being transparent to some wavelengths of light while
strongly filtering other wavelengths. The spectral response of such a dye could be
approximated by a(k) = ao + a/H(k—ko), where H(-) is the Heaviside step function, ao (= 0)
and o1 are constant attenuation rates and ko is a constant wavenumber. If, further, we assume
the product J(k)S(K) is constant for ki <k < kz,and zero outside this range, then for such a dye
9(p) becomes

Ko K,
I JSexp(—ayp) dk + I JSexp(—(ap+a)p) dk
k, ko

9 (¢’) = K,
jJSdk
ky

—p %7 4 kz — ko g~u?
kz - k1
In the limits of a1 > a» and of a1 ~ —ao, then g(¢) is well approximated by a constant plus a
decaying exponential. The constant term is due to little attenuation of light over some
bandwidth, while the exponential is due to a rapid (nearly constant) attenuation of light over
the remainder of the spectrum. As seen by a number of previous authors, this model is a good
approximation to the behaviour of some food colourings when illuminated by white light.

—96—

DigiFlow Menus

DigiFlow interface

Analyse: Dye Attenuation @
Inputs 9\‘

Dye Image Background Image Thicknezs Image
Pixel region DISABLED:
Preview of the image
| . containing the thickness]
["E #pt02 o |"Brack02. dfi" |
Process... | File... | Process... | File... | | |
¥ Display Sift v Display v Display
Rty Contrals Output ‘%
Camera calibration |F'-D o ﬂ Concentration Image
' zingle ¢ ER
Dye calibration |-U.9"Iog[ﬂ] ﬂ
Thickness
[Use Thickness Image
Cancentration
|"ConcHi# di
Options. .. | Save Az,
[v Dizplay
ak | Cancel |

Figure 77: Analysis of variations in background illumination to determine the dye concentration.

This process takes either two or three source image selectors, depending on whether the
base optical thickness needs to be calculated.

The Dye Image group determines the image selector to be corrected. This image selector
may be selected from a file by clicking the File button, in which case the standard Open Image
dialog box (84.1) is produced. Precise details of the region and times to be used may be set
using the Sift button (84.3). Alternatively, clicking the Process button will allow a source
process to be used (refer to §7 on chaining processes for further details).

The Background Image group determines the image selector containing the background
illumination. Only the first image will be used if an image selector containing multiple images
is selected, although the particular image from a sequence may be specified using the Sift
button. As with the Dye Image group, clicking File activates the Open Image dialog box
(84.1), whereas clicking Process allows a source process (8§7) to be used.

The resulting image selector is saved to the file specified in the Concentration Image group
by clicking the Save As button. If this process is acting as the source for another process, the
Save As button is suppressed (refer to 87 for further details).

The Controls group allows user specification of the camera and dye calibration.

The Camera calibration is applied to both the Dye Image and Background Image prior to
their processing. The calibration is specified as a function of the intensity in the input image
selectors, represented in the expression as the variable P (upper case). Note that regardless of
the format of the input selectors, all processing is performed in floating point arithmetic and
normally the images will be scaled between an intensity of 0.0 for the darkest parts and 1.0 for
the brightest parts. Thus the default » - 16/255 would set an intensity of 16 in an eight-bit
greyscale image to zero. Refer to §8 for further details on the interpreter.

_97-—

DigiFlow Menus

The Dye calibration mapping is applied to the image(s) resulting from this procedure. The
mapping function should be specified in terms of the intensity of the corrected image. Here
this corrected image intensity is expressed through the variable o (upper case), which is again

in the range 0.0 to 1.0. The default for this calibration is dye deal (), which is simply -
1n(Q)

The normal processing undertaken by this feature may be described as
Camera(Dye)

Peone = Cameral Paoc i]

where Camera(..) represents the Camera calibration, Dye(..) represents the Dye
calibration, Ppye IS the Dye Image, Pgack IS the Background Image and Pconc iS the
Concentration Image. The result of Camera(Ppye)/Camera(Psack) is What is provided in the
variable ¢, thus Pconc = Dye(0).

However, strictly speaking, Pconc is proportional to the integral of the dye concentration
over the length of the light ray seeing dye as it passes through the flow. Thus, if the length of
this light ray varies (e.g. due to tank geometry or camera parallax), the Pconc image is
contaminated by this variation.

As noted above, by using an additional image, P., of the tank containing a uniform
concentration of dye Cy, it is possible to correct for this variation in the length of the light
rays. In such a case the required processing is

C P, _
Conc = CUnlform ye[me/Dye(mem-(laﬂ]m)] .

Camera(P,,,) Camera(P,,,)

This more advanced processing is enabled by checking Use Thickness Image. This then
enables the Thickness Image group to determine the image selector containing the
background illumination. Only the first image will be used if an image selector containing
multiple images is selected. As with the Dye Image group, clicking File activates the Open
Image dialog box, whereas clicking Process allows a source process to be used.

5.6.3.2 Light Induced Fluorescence (LIF)

LIF, often referred to as Laser Induced Fluorescence but more generally can stand for Light
Induced Fluorescence, describes the family of techniques where a sheet of light is used to
stimulate emission from a fluorescent dye. Typically this dye is dissolved in the fluid at very
low concentrations, rendering it a passive tracer, but which is used to tag some other species
(e.g. salt concentration) thereby providing a means of visualising and quantifying an otherwise
invisible component of the flow.

Fluorescent dyes are often used in fluids experiments to obtain an image of the
concentration field on a single plane of a flow. The name often given to such techniques is
LIF or Laser Induced Fluorescence. However, the use of a laser is not obligatory, and white
light may be used to produce comparable results, provided the colour temperature of the light
source is sufficiently high. Xenon arc lamps, for example, provide an excellent and safer
alternative to the high cost of lasers.

LIF principles

The fluorescent dyes used in LIF typically absorb energy from incident light over a range of
wave lengths and radiate it at a single or well defined range of wave lengths. Typically the
absorption in the range of wave lengths radiated is relatively small so that radiated light
passing through regions of fluid containing the fluorescent dye is not attenuated significantly
by that dye. Clearly the illuminating light must attenuate as it passes through the dye. For most
useful dyes the efficiency of this fluorescence is relatively high so that only very weak
solutions are required and the attenuation of the illuminating light is small.

—-908—

DigiFlow Menus

If the flow is illuminated by monochromatic light (such as a laser, or at least coloured light
with a narrow power spectrum) with a wave length significantly different from that of the
fluoresced light, then it is possible to eliminate the effect of any light scattered directly from
the experimental apparatus or contaminants in the water by introducing a filter in front of the
camera to cut the wave length(s) of the light source. However for reasons of cost, availability
and safety, a laser was not employed for these experiments. Thus our LIF images contain a
component of directly scattered light despite efforts to minimise this.

In all the LIF experiments reported here, sodium fluorescein was used as the fluorescent
dye. Its choice was based on its high efficiency, low cost and relative safety. The light
fluoresced typically appears green, with the dye responding better to the blue end of the
visible spectrum (this is one of the reasons the blue-white light of the arc lamp was better than
the yellow-white light of the halogen light source).

Correction for illumination

As mentioned above, as the illuminating light sheet passes through the dyed fluid, some of the
light is absorbed thus reducing the intensity of the light sheet. In addition, the light sheet will
typically diverge slightly, effectively reducing the intensity further. In order to obtain
quantitative information about the density field (as marked by dye concentration) it is
necessary to correct the LIF images for this attenuation and divergence. In this subsection we
briefly outline the technique used in this work for performing this correction.
Consider an image p =p(x) of a flow containing a fluorescent dye of concentration
C = C(x). We define a virtual light sheet P = P(x) such that
P=CP. (2)
Assume that the attenuation of the virtual light sheet as it passes through the dye can be
described by
& —oCP=—op ©)
ds
where s describes the path of the light rays and o= o(x) is the attenuation of the virtual light
sheet. Suppose we have a calibration image po of a constant concentration Co. Now we may
estimate the spatial structure of the attenuation from

G-t P @)
Cyp, ds
where p, is the least squares fit of
fJo _ aoeaISJrz:1zsz+a3$3 (5)

to the calibration image po (it is often necessary only to include the linear term in the
exponential). Using our estimate of the attenuation we can calculate an estimate P, (say) for
the virtual sheet from

dP, -
) _ _ 6
ds oP, (6)
and thus obtain our estimate of the concentration field
C- %CO , @)

where P is the estimate for the virtual light sheet evaluated from equation (3).

We may determine how accurate this process is by performing this process on the
calibration image, and then comparing the result with the known virtual sheet Po = po/Co to
obtain the defect ratio

—909—

DigiFlow Menus

B B
Rdefect = Fo = p_ZCO (8)
In some cases we may wish to adjust our calculation for other images using this defect ratio by

determining

c=Phc. 9)
P P,
This approximation guarantees perfect reconstruction of the calibration image, but does not
necessarily ensure an improved concentration field for other images.

Another technique that can be useful is to use Raefect t0 improve the estimate to the decay
law fit rather than as a direct modification to the concentration field. To achieve this, a least
squares fit of the same form as (5) is applied to Raefect (Which we would hope was a constant),
and the coefficients a1, a, etc., are used as a correction to those obtained from (5). Applying
this correction iteratively will ensure that in the mean Rgefect IS unity.

LIF processing in DigiFlow

The processing of LIF images in DigiFlow is somewhat more sophisticated than that
described above, extending the basic idea to include multiple point light sources, distributed
light sources, and additional models for the behaviour of light rays.

Analyse: Dye LIF {Light Induced Fluorescence)

Inputs

X
"

Dye Image Left-hand light zaurce Right-hand light zource

Pixel regic

|"e>-:|:|. moy'" |"er_1 lamp-left.dhi" |"er_1 lamp-right. dfi"

Process... | File... | Process... | File... | Process... | File... |

IV Display Sift.. v Display Sift.. IV Display Sift..

Controls . COutput =
Camera calibration |p.g o34 - R ay from 2R _ ‘&
- £ Top Concentration Image
Dive calibration {0 - C Left & Right .
Concentration |0.5 " Bottom
Ray source type =
™ Puint Fay |0 < Enable
™ Distributed Start =
45 =
{* Double :‘
. First =
Defocus [01 Z‘ irst ray 13 I‘ FankiEH .o
Light zheet Secondray |66 i‘ Optiohs. .. | Save:’-‘«s
¥ lterative
f* Model :
. - Fezet Rays | Show Fayz | i Display
" Fix defects
(" Direct fit |
(]9 Cancel

Figure 78: Dialog controlling correction of LIF images.

The example illustrated in figure 78 is for Rayleigh-Taylor instability. In this case, the
camera was rotated by 90 degrees so that the initially dense layer is to the left and the light
layer to the right. The flow was illuminated from below by a sheet of white light. Fluorescent

—100 -

DigiFlow Menus

dye (disodium fluorescein) was present in the upper layer. The two layers were initially
separated by a barrier at half the depth of the tank.

The Dye Image input image stream is the raw footage of the experiment. The attenuation
and divergence of the illuminating light sheet as it passes through the fluorescent dye is
clearly visible. In this case, the light sheet is generated by a pair of 300W arc lamps, each
effectively a point source. The Left-hand light source and Right-hand light source input
streams give images of the two separate light sources illuminating the tank when it contains a
uniform concentration of dye. These images are used for calibration purposes. Each of these
three input selectors is specified in the normal manner using the associated File and Sift
buttons.

The Controls group contains the various parameters that affect the modelling of the light
passing through the dye. For this correction procedure to operate effectively, it is important
that the experiment is carefully set up, that there are no stray reflections reaching the camera,
and that all the necessary details are recorded at the time of the experiment.

The Camera calibration should specify the relationship between the digitised values and
real intensities. With most modern scientific CCD and CMOS cameras the relationship is
close to being linear. However, ‘black’ seldom digitises to zero. Here, we assume a linear
relationship with black digitising to a value of 0.034. A number of methods for determining
this black level are described in §6.1.

Provided the concentration of the fluorescent dye is sufficiently low, then the assumption
that the fluoresced signal is linear in its concentration is reasonable. Deviations from this may
be entered in the Dye calibration control.

The Concentration value is the (arbitrary) concentration used in the calibration images Left-
hand light source and Right-hand light source. Note that these images are used not only to
calibrate the response of the light sheet as it passes through the dye, but also to calibrate the
intensity of the light sheet entering the dyed region. In this latter context it is important that
these images (and also the experimental images) extent to the tank boundaries where the light
first enters the dye.

The Ray from group indicates the direction from which the light rays enter the image. Here
it is the bottom of the tank which corresponds to the right-hand side of the image. The Ray
source type allows selection between single point light sources, distributed light sources, and
double point light sources. (The Right-hand light source input stream is enabled only for the
last of these.) The Defocus control recognises that the lights might not in fact be true point
sources and that they will become slightly defocused as they pass through the flow.

Alongside the origin of the light rays is their direction which will not normally be aligned
exactly with the pixel coordinates. Indeed, the light rays will typically be diverging. The Ray n
group provides a means of specifying the orientation of light rays. This process is typically
achieved by capturing an additional image of the uniform concentration in which a grid has
been imposed on the light sheet in order to show clearly the direction of the light rays. This
additional image (or two additional images when double light sources are used) is temporarily
loaded into the Left-hand light source stream. Clicking Show rays then superimposes the ray
definitions from the Ray n group on that image. Subsequent use of the controls within this
group allows interactive specification of the orientation of the rays. It is recommended that
three or four such light rays are specified as a minimum.

—101 -

DigiFlow Menus

Input;

Dye Image Left-hand light source

i ‘

exp mow' exp_1 Iamp -left. dfi"

Process... File.. Process... File...

I Display Sift.. I Display Sit...

Cartrol [
Camera calibration [p.0.p24 = Ray from G
. " Top
Dye calibration | - © Let & Right
Concentration |05 " Bottom
Ray souce type R
™ Point Fiap ID_ “ ¥ Enable
" Distributed Cart «
48 =
& Double :I
Defocus |01 il First ray {13 il | =
e Second 3y g5 | fP-0.176 (485) W BUZ, 452 {pocel) Frame: 0 (0.0005) 10
I lterative
" hodel ;
Reszet Rays Show Rays I Display
1B hd
" Fix defects
" Direct fit
0K Cancel

Figure 79: Light ray definition for LIF processing.

Up to ten sets of light rays may specified. Each set contains either one or two directions,
depending on the Ray source type. The rays in each set share a common Start, but can have
different rotations through the First ray and Second ray controls. The ray definitions may be
reset using the Reset Rays button.

Modelling of the light sheet can be handled in a number of different ways using the Light
sheet group. Both Model and Fix defects begin by fitting a model decay law (using least
squares) to the calibration image(s) to determine the relationship between fluorescence and
attenuation. If Iterative is checked, then this process is performed iteratively to improve the
model by taking into account the directions of the light rays. In many cases the linear model
1;s; (corresponding to an exponential decay of light through the calibration image) is most
appropriate. However, in some circumstances higher order terms can improve performance (a
combination of visual inspection and tests for mass conservation should be used to determine
the optimal model).

The difference between Model and Fix defects is that the latter compares the calculation
performed on the calibration image with the ‘known’ constant concentration it contains and
develops a multiplicative correction to force a uniform concentration in the output. This
correction may be appropriate in cases where optical imperfections alter the apparent lighting
in a static manner that does not coincide with the simple attenuation modelling.

Calculations using the Direct fit light sheet model are similar to the other two, but rather
than fitting an exponential decay law, the data in the calibration image is used directly, pixel
by pixel, to determine the relationship between fluorescence and absorption. This approach is
likely to lead to a higher noise level in most situations, but may have advantages in cases with
complex optical effects such as reflections.

For most good quality experiments, the combination of Fix defects with 1;s; and Iterative
selected will yield the best results.

—102 -

DigiFlow Menus

Finally, the output stream may be specified in the normal way using the Save As and
Options buttons.

5.6.4 Synthetic schlieren

Theory

Synthetic schlieren is a novel technique for producing qualitative visualisations of density
fluctuations and for obtaining quantitative whole-field density measurements in two-
dimensional density-stratified flows. This set of techniques is outlined in detail in Dalziel et
al. (2000) (and a subset in Sutherland et al. 1999). In this section, we discuss only the most
advanced of these techniques, ‘pattern matching refractometry’, and how this may be applied
to provide accurate quantitative measurements of a two-dimensional density field.

While synthetic schlieren has its origins in the classical optical schlieren and moiré fringe
techniques, synthetic schlieren is much simpler to set up than the classical schlieren and
interferometry methods, and provide useful information in situations where shadowgraph is of
little or no value. Moreover, they may be set-up to analyse much larger domains than is
feasible with the classical approaches, and do not require high quality optical windows in the
experimental apparatus. Ultimately the greatest strength of these techniques is the ability to
extract accurate, quantitative measurements of the density field.

The basic setup for synthetic schlieren is illustrated in figure 80. An illuminated mask
(normally simply a piece of paper printed with a pattern) with a strong pattern is placed to the
rear of the experiment. This mask is then viewed by the video camera looking through the
experiment.

— -

I op'ot
poz Video camera
op'at <0

I Mask

Diffuse light source

Figure 80: Basic setup for synthetic schlieren. An illuminated textured mask is placed on one side of
the experiment, and is viewed by the camera on the other side of the experiment.

The key idea behind synthetic schlieren is the bending of rays of light by fluctuations in the
refractive index field. A detailed description of this process is required in order to make
guantitative measurements. This description may start from a number of points. Sutherland et
al. (1999) analysed a ray of light by invoking Snell’s law. Here we shall start from Fermat’s
variational principle for the behaviour of light in an inhomogeneous medium

5J.n(x, y,2)ds=0, (10)

where s is oriented along the light ray and n(x,y,z) is the refractive index field (the ratio of the
speed of light through a vacuum to that through the medium). We select our coordinate system
(x,y,z) with x along the length of the tank, y across the width (the direction in which variations
in the flow are negligible) and z vertically upward.

Rather than solving the full variational problem, we restrict ourselves to rays of light which
always have a component in the y direction so that their paths may be described by x = &)
and z = £(y). This restriction is simply a requirement that light is able to cross the tank, a
fundamental requirement for synthetic schlieren. The variational principle then gives rise to a

—103 -

DigiFlow Menus

pair of coupled ordinary differential equations (Weyl 1954) relating the light path to the
gradients of n in the x—z plane:

g |y [de), [de) |Lan)
dy? dy dy) |nox’

a¢ |, (ee), (ec) [1en (11b)
dy? dy dy) |noz

For synthetic schlieren we are interested primarily in light rays which remain approximately
parallel to the y direction. Under this restriction the terms (d&dy)? and (d¢/dy)? may be
neglected, effectively decoupling (11a) and ((11b). For a two-dimensional flow where there
are only weak varitions in density (and hence weak variations in the refractive index) along
the ray path, we may integrate these expressions across the width W of the tank to obtain the
path of the light ray across the tank:

1can

E=grytang, +3y°——, (12a)
{=¢ +ytang, +3 y2%% (12b)

where &, ¢ describe the incident location and tange = d&dy(y=yo) and tang, = dZ/dy(y=yo)
describe the horizontal and vertical components (respectively) of the angle at which the light
ray enters the tank (measured relative to the y direction).

With synthetic schlieren, we are interested in how an image of a mask placed some
distance B behind the tank appears to change as the result of flow-induced refractive index
variations relative to the refractive index variations in the absence of the flow. Specifically we
wish to analyse the changes in the image formed by the camera as a shift in the origin of the
light ray reaching the camera. By back tracking the light rays received by the camera the
apparent shift (A&A() in the origin of the light ray is given by

AE=¢ +ytang, + y2 la_n (13a)
nox'

A =¢ +ytang, + = yzla—”. (13b)
n oz

Here we have decomposed the refractive index fleld n into No + Npase + N', Where no is the
nominal refractive index of the medium (e.g. no = 1.3332 for water), Npase represents spatial
variations associated with the “known” base state (e.g. the changes introduced by adding a
quiescent linear background stratification) and n' is the variation caused by the flow under
consideration (e.g. the internal wave field). In obtaining (13) we have assumed the variations
Nbase and Nn' in the refractive index field are small compared with the nominal value no. (As we
will see below, a correction is necessary to take into account the refractive index contrasts
between air, the material the tank is made of and the working fluid.)

In many cases, it is more convenient to consider the apparent displacement of the origin of
the light rays in terms of their projection on the experiment in the absence of any fluctuations
in the density field. This then allows us to use a common coordinate system for both the
coordinates within the experiment and for the texture mask located behind the experiment.
Taking the distance between the texture mask and the camera as L, and assuming that the
experiment is ‘thin’ (i.e. W/L < 1), then we may use simple projective geometry to show that
the apparent displacements in experiment coordinates are

~104 -

DigiFlow Menus

1 B+1wW 1 on’'
A =——|1- 2 W(W+2B)——, 14a
o =512 Jw (- 28) 2 5 (142
1 B+iW 1 on
A 1- 2 W (W +2B 14b
o =312 w +2) 2 0 (14

Here we have defined the experiment coordinate system to be at the mid-plane of the
experiment. If W/B < 1 or (B+2W)/L < 1, then the precise location of the coordinate system
within the experiment is unimportant. Note also that the optical gain provided by increasing B
is greatest for large L.

The above expression, however, ignores the effect of the refractive index change between
the tank and the (presumably) air between the tank and the mask. Taking the refractive index
of air as nair, then this amplifies the slope on exit from the tank by no/nair. An additional
correction can also be made for the refractive index of the tank wall, nwan. This does not
change the slope within the air, but does provide an additional offset. If the tank wall has
thickness T and we measure B from the outside of the tank wall, then (14) becomes

Aé=—twlw 2t Lon (15a)
2 nair nWall n0 6X

A =-Lwlw 2 1ow (15b)
2 nalr nwaII nO 82

in the coordinate system of the textured mask. Similarly, if the experiment is not thin, then the
magnification term projecting this onto the central plane must take into account the refractive
index variations for rays entering and leaving the tank. The net result of this is that

. L—B—(l—zzfjw 2[1—2n JT s
Ay =—3 0 wll W{W+2—°B 12 o T]——” (16a)
L—(l JW 2(1—]T :
L r]0 r-\wall
. L—B—(l—zz' }W 2(1—2n]T o
Aé/exp: : wall W[W +2& + no j— n
air wall 0

_E n. n
L—[l]W 2[1—]T
r-]O r’|wall

air nwaII nO

As stated above, there is normally a constitutive relationship between the density of the
fluid and the refractive index. To a good approximation the relationship between refractive
index and density for salt water is linear (Weast 1981) allowing us to write

vn=v,-plog,,)
do Po
where
n, dp

and pp is the nominal reference density (1000kg m=3). Substitution into (13) then gives the
relationship between density fluctuations p' and apparent movement of the source of a light
ray

—105—

DigiFlow Menus

. L—B—[l szjw 2[1—2an .
A&y =~ 0 vl W(W +2iB+2&Tjﬁ P (19a)

2 |
L—[l]w 2[1—}T " N)P0 O
n rlwall

air wall

. L—B—[l—zzr]W 2[1—2an ,
JV—— 0 wa w[erziBJrziT]ﬁai.(lgb)

2 n.. n 0
L—(l JW 2(1—)T Po O
B n0 r-]wall

air wall
Simply measuring the apparent displacements and inverting (19) then allows us to determine
the perturbation density gradient. This may, in turn, be integrated once to return the density
perturbation itself.

The main difficulty is determining the apparent displacements A&xp and Adexp With
sufficient accuracy for the whole process to be meaningful. Often the apparent displacements
are only a small fraction of a pixel. DigiFlow employs a range of techniques to achieve this.
The most accurate, but computationally expensive, use powerful pattern matching techniques
to determine the apparent displacement as accurately as possible: the design of this part of the
system has concentrated more on accuracy than speed. DigiFlow also offers faster (but less
accurate) techniques to provide a reasonable approximation relatively quickly.

5.6.4.1 Qualitative Preview

Toolbutton:

Shortcut:

Related commands: process Analyse SyntheticSchlierenQualitative(..)

This option provides a qualitative or semi-quantitative preview of an image sequence using
relative simple processing to determine the gradient of the perturbation density field. The
processing used here is similar to that provided during Video Capture (see 85.1.5).

Starting the option provides access to a simple dialog box (see figure 81) for selecting the
input image stream (Experiment selector) and, optionally, a Background Image. If the latter is
not specified, then the first frame of the Experiment file is utilised. Both these selectors have
the standard Sift button (see §4.3).

Qualitative Synthetic Schlieren Selectors g|

|pts s

E speriment Background Image

Optional;

Select input image
sequence

["JPRD45 MOV |

Process... | Process... | File... |
¥ Dizplay Sift [v Dizplay
0] | Cancel |

Figure 81: Dialog for determining which sequence is to be previewed with synthetic schlieren.

—106 -

DigiFlow Menus

Once the sequence has been identified, an image window is opened to show the preview.
The preview itself is controlled by a second dialog. Some of the controls on this dialog are
reminiscent of those seen in 85.5.1.14 for controlling the animation of sequences. Controls
specific to synthetic schlieren are found in the Processing and Gain groups. The first of these
determines the type of processing to be performed.

Qualitative Synthetic Schlieren Preview g|

Controlg

|
%S Frame lgii‘ Time lnni .

0.o B0.31

L
En

Action

Ol < m| n| »| gy
| @ Qe e
Speed Gain

o] | T

Processing

" Direct

+ Difference

" Harizortal gradiznt
™ Wertical gradient

2| 3|\| @ oo B e |

Force the display update to be synchronous

Figure 82: Control dialog for qualitative synthetic schlieren preview.

There are four processing options: Direct simply shows the input stream without any
processing, while Difference is the simplest (and computationally fastest) technique that
provides a qualitative output proportional to the magnitude of the gradient in the density
perturbation. The Horizontal gradient and Vertical gradient options perform more a more
sophisticated analysis that returns a semi-quantitative output of the specified component of the
gradient in the density perturbation. Note that these two options distinguish between positive
and negative gradients.

The Gain control determines the relationship between the gradient and the intensity of the
display. The display colour scheme may be changed using Colours, and a different set of input
streams may be used by clicking Selectors.

—107 -

DigiFlow Menus

Qlislitative Synthotic Schiieson Opaitative Synthetic Schilieran

I‘ 0495 (1290 A1 454, 3% 3 0AH, 0,756 new Frowes 12 19 56051 [32%] I‘ OIS0 ALSIO T N 0471, 0125w Frowes 12 19 56051 [32%]

(a) (b)

Ouiaiitative Synthatic Schiiesan Opaltative Synihotic Schliesan

Frawe: 12 1195605 [30%]

[; QA7) Ale0s, 23 3 0459, 055 iy Frawes 12 (19 5605] [32%] [i A NX NS A, 5 wna

(©) (d)
Figure 83: Examples of output from Qualitative Synthetic Schlieren. (a) Direct, (b) Difference, (c)
Horizontal gradient and (d) Vertical gradient.

The Synchronise display check box forces synchronisation such that each and every frame
in the sequence is displayed, even if this slows the update rate below the desired frame rate. If
Synchronise display is cleared and the computer cannot keep up with the desired frame rate,
then frames are skipped to maintain that frame rate.

5.6.4.2 Interpolative

Toolbutton:

Shortcut:

Related commands: process Analyse SyntheticSchlierenInterpolative(..)

The method of calculating the synthetic schlieren image used in this option is a
compromise between speed and accuracy. While it is based on a similar technology to that
used in the Qualitative Preview version of synthetic schlieren discussed in 85.6.4.1, the
algorithm is tuned to give a wider dynamic range, greater accuracy, and more complete
coverage of data. However, the resulting measurements remain less accurate than those
obtained using Pattern Matching version of synthetic schlieren (see §5.6.4.3).

—108 —

DigiFlow Menus

The processing here was conceived for masks located behind the experiment containing
lines, however experience has shown that it also provides reasonable semi-quantitative
measurements for other mask geometries (e.g. random dots).

Suppose the changes in the refractive index gradient give an apparent vertical displacement
of the mask by some amount A¢ at time t. We shall assume the curvature in o' is small so that
A¢ varies only over length scales large compared to the features contained in the mask.

As we have seen, the intensity of a pixel is related to the mean of the (unknown) intensity
falling on the CCD sensor by

X+Ax/2| 2j+Az/2
P, (t) ! J' [J.p(x,z;t)dz}dx. (20)

AxAz X —AX/2| z2;-Az/2

The combination of optical imperfections, noise and imperfections in the mask will ensure
that p(x,z;t) is a continuous function, even when the mask contains discrete steps. We may
approximate p(x,z;t) using a piece-wise quadratic interpolation in a manner similar to that
employed for numerical solution of the advection equation in control volume techniques. The
idea here is that the approximation Pjj(t) = p(xi,zj;t) (approximating the integral in (20)) by the
so-called mid-point rule for numerical integration) has an error O(Az®) which is of the same
order as the error in a quadratic interpolation of the intensity (xi,z;). More specifically, if p
0,i(z—z;) is the quadratic interpolation of the unperturbed image around (x;,z;), we look to solve

for the value z—zj = Agjj such that ﬁo,ij(Agj) = Pjj(t). Thus the apparent displacement (in the z
direction) of the mask Adj is given by the roots of

Poo — P + %(Po1 — Po.-1)AL + ¥%(Po1 — 2Poo + Po-1)A% = 0. (21)
Here we have used the shorthand P = Pjj(t), Poo = Po,j, Po-1=Po,j1 and Po1=Po,j+1. TO
avoid ambiguity as to which root of (21) should be taken, we solve (21) only if Pog is
intermediate between Po.1 and Pos1, and the intensity contrast across the three lines is
sufficiently large (i.e. |Po1-Po-1| > APmin). Further, we select the root of (21) with smallest
|A¢], effectively limiting AZto be less than the spacing of the lines on the mask.

As an alternative to solving the quadratic expression for AZ given by (21), we may utilise a
binomial expansion to show that this process has the same O(Az2) accuracy as assuming A is
quadratic in Pgj. This latter approach was used by Sutherland et al. (1999) and gives

o] (P=Ro)(P=R.) (P=R)(P=Py)
¢ = - AZ. (22)
(PO,l - Po,o)(Po,l - PO,—l) (Po,—l - I:)o,o)(Po,—l - PO,l)
As with (21), Adis calculated from (22) only if Poy is intermediate between Po-1 and Po1, and
there is sufficient intensity contrast across the three lines.

Once A¢ has been determined from either (21) or (22), it is mapped from pixel space into
physical space and (19) is applied to determine dp'/0z. Points for which Az could not be
calculated (typically points where 0P/oz is too small, as may occur if a line is centred on a
pixel and would lead to an ambiguity in the sign of the displacement) are replaced by
interpolated values using a Gaussian weighting function. The final result is scaled and used to
construct an image representing dp'/oz.

In the present implementation, if the value of AZ determined from (22) exceeds one pixel
then the reference image intensities are themselves displaced so as to avoid extrapolation.
This effectively increases the accuracy and dynamic range of the technique.

—109 -

DigiFlow Menus

Inputs tab

Synthetic Schlieren - Interpolative

Inputs l Dutputs] Advanced Contmll

Inputs 9‘\‘

E speriment Background Image

Optional:

Select input image
zEOUENCE

[*JPRD 45 MOV" |

Process... | File... | Process... |

¥ Dizplay Sift [Display

‘ - — Cantrals
) Gradient direction
= ™ Harizomtal
" Vertical
" Bath M edium
Lengths (displacements] A

Air

Cameratotesture [30° Unit
Experiment bo texture lnlji Water Heat ¥
E xperiment thickness ||327 Tank wall
wall thickness IT Glass

U riiky

|

Coordinate System
Flov geometry [default)

20 " Aigpmmetric el
(v 30 " Symmetric

[

Ok | Cancel |

Figure 84: The inputs dialog tab for interpolative synthetic schlieren.

The Experiment stream, specified using File and optionally sifted with Sift, should contain
an image of a strong texture located behind the experiment. DigiFlow then compares this
input stream with a reference image to determine the apparent displacements. The reference
image may be specified using the optional Background image input stream. If no stream is
specified, then the first frame of the Experiment input stream is used instead.

As noted above, this method was conceived for masks containing lines, in which case
Gradient direction should be set normal to the lines. The most accurate results will be
obtained in this configuration. However, if the mask contains two-dimensional features (such
as random dots), then it is possible to generate Both in-plane components of the gradient.

The Flow geometry group enables internal processing options that attempt to ensure the
result is consistent with the underlying geometry of the flow.

Details of the experimental setup are required in the Lengths group to allow interpretation
of the apparent movements of the dots. The units for these should be consistent with the units
for the density gradient that will be determined. Ultimately, the output will be (1/m0)Vp,
which has dimensions of 1/length. Specifying the distances here in metres will give units of
m~! for the final result.

Note that a distance of zero is acceptable for Experiment to texture, the distance from the
back of the experiment to the texture mask, but not for Experiment thickness. The Experiment

-110 -

DigiFlow Menus

thickness should be the internal measurement of the tank, while Experiment to texture should
be measured from the outside of the tank. The Wall thickness should be specified for the wall
closer to the texture, and its corresponding Tank wall material selected.

Camera to texture is the distance between the effective focal plane of the camera and the
texture mask. It is generally sufficient to measure the distance from the base of the lens to the
texture. Experiment to texture is the distance from the back of the experiment to the texture
mask. This distance can be zero for some set ups. Experiment thickness is the width of the
flow through which the light rays experience density fluctuations. This cannot be zero.

The Medium list box allows selection of different media for the experiment. The key detail,
picked up from a DigiFlow data base, is the relationship between refractive index and density
changes. In addition to the normal media, two pseudo media are also included: Unity returns
refractive index gradients rather than density gradients, while (displacements) returns the
calculated apparent displacements (with units of the selected coordinate system) rather than
density gradients.

The coordinate system required to interpret the experiment is specified in the Coordinate
system list box.

Outputs tab

Synthetic Schlieren - Interpolative

Inputs Outputs | Advanced Control]
Clutput |
w>
% Gradient y Gradient
b andatory: tdandataory;
Set optiong such az colour Set options zuch az colour
scheme and format details scheme and format details
far the » gradient images far the v gradient images
Ophicnz... | ; Optioms... |
v Dizplay [v Dizplay
Dizplacenment Diensity
Optional: Optional:
Set options such as colour Set options such az colour
scheme and format details zcheme and format details
for the dizplacement images for the density images
Options... | File... | Options. .. | File...
v Dizplay v Dizplay
W Gaturation values
&S [Automatic Gradient [1 g
Displacement |5 Density (1.0
Ok, | Cancel

Figure 85: The outputs tab for interpolative synthetic schlieren.

-111-

DigiFlow Menus

The most important controls on the Outputs tab are for selecting the main output streams x
Gradient and/or y Gradient. Whether one or both of these is required depends on the selected
option in the Gradient direction group on the Inputs tab. The visual scaling of the images
produced is determined by the Gradient entry in the Saturation values group. This value sets
the gradient that will produce a saturated image. For most image formats, getting this wrong
will require reprocessing of the image due to quantisation errors introduced. For this reason
the use of the .dfi file format is recommended as this does not sacrifice dynamic range and the
scaling may be subsequently changed at a later date.

Advanced control tab

Synthetic Schlieren - Interpolative

Inputs] Outputs Advanced Control

Caontrals

Mit denominator |7 oos
Mizzing walue filter

(% Gaussian Width |7 IC=T|
™ Inverse square =l

" Triangular Height |7 ﬂ

" Top hat
™ Mane
Y alidation
¥ Automatic Dutliers
¥ Remove
Lirit {005
Fieplace by
* Gaussian
7 lrvwerse square
" Triangular
" Top hat
" None
Wwidh 11 =
=1
Height [11- =]
I=T|

Means
v Aukomatic [~ Remaove=mean | Remavey mean

[Remove global mean

Ok, | Cancel |

Figure 86: The advanced control tab for interpolative synthetic schlieren.

In most cases the controls on the Advanced control tab should be left on Automatic. The
Interrogation window group controls the limits on the quadratic interpolation that must be
satisfied before the results can be used, and also controls how to fill in any missing values.
The Validation group determines how to check for consistency with neighbouring points.

-112 -

DigiFlow Menus

5.6.4.3 Pattern Matching

Toolbutton:

Shortcut:

REkHEdCOHHnandSZprocess Analyse SyntheticSchlierenPatternMatch(..)

The most sophisticated (and slowest) of the synthetic schlieren algorithms is based on an
advanced pattern matching algorithm that has its origins in PIV (Particle Image Velocimetry;
see 85.6.5.2).

The mask behind the flow giving the texture to the image is typically constructed from
random features of high contrast. The simplest way of generating this is by printing a pattern
onto overhead projector transparencies and then tiling these up into a sheet of the required
side with clear adhesive tape. The following PostScript file may be used to generate a suitable
pattern. The pattern is a basic square grid of dots, with each of the dots perturbed by a random
amount. The randomness helps prevent aliasing errors and ensures that the pattern is robust

against any defects produced when you overlap slightly multiple tiles of transparency.
%!PostScript

% Generate dot pattern for synthetic schlieren
/mm {25.4 div 72 mul} def

% Set the basic size of the pattern (mean spacing in mm)
/Size 2 def

% Set the size of the sheet
/Sheet 300 Size mul def

% Relative size of dots to their mean spacing
/DotFraction 0.25 def

% Scale for randomnesss
/Randomness 0.6 def

% Draw black background
0 0 moveto

Sheet mm 0 rlineto

0 Sheet mm rlineto
Sheet mm neg 0 rlineto
closepath

0 setgray

fill

% Draw grid of white dots with random perturbations
1 setgray
0 Size Sheet
{/y exch mm def
0 Size Sheet
{/x exch mm def
gsave
x rand 0.25e9 div Size mul Randomness mul add
y rand 0.25e9 div Size mul Randomness mul add

Xy
translate
0 0 Size DotFraction mul mm 0 360 arc
closepath
i1l
grestore}
for}
for

o)

% Set number of copies of sheet to be made
/#copies 2 def
showpage

- 113 -

DigiFlow Menus

This PostScript file can be simply copied to any PostScript printer. If a PostScript printer is
not available, an interpreter such as GhostScript/GhostView could be used. The pattern should
be scaled (using the /size definition) so that the dots are close to the limit of what the camera
can resolve. Some trial and error may be required to determine the optimal size for a given
experimental setup.

Synthetic Schlieren E‘ E|

Inputs]Dutputs] Interrogalion] Validalion]

Inputs pza e]
¥ Mask zeros h

E spenment Background Image .

|"JF'F|D45.MDV" |"JPFID45.MDV"

Frocess... | File... | Process.. | File... |
v Display it [Display St

Controls

Displacements Rezalution [yer low A

Y] b
E 3 — Medum
Maxp [3 = Acourscy VBIE ow o~
Lengths b edium v

Fluid mediurm
Camera bo besture
30 Air 2
Experiment to texture [5 Unit
~
Experiment thickness [g 2 T ank wall
wfall thickmess [0 o Glass

ity
Coordinate System
Flows geometry

default
o 7 Arizymmetric [iHB| :
& an " Symmetric

[| Cancel |

£

Figure 87: The Inputs tab of the synthetic schlieren dialog.

The synthetic schlieren interface is divided into six tabbed dialogs. The first two, Inputs
and Outputs are mandatory and control what is to be processed, and where the results are to be
stored, respectively. The other four tabs, Interrogation, Validation, Quality and User
Interpolation may be used by experienced users to tweak the process to yield better
performance in some situations. The more advanced controls on these tabs are not available
under the Free DigiFlow Licence.

Inputs page

The standard synthetic schlieren process takes two input streams. The first, specified by the
Experiment group, is the video sequence of the experiment itself. As normal, an image
selector is used to specify the stream.. This selector may be specified from a file by clicking
the File button, in which case the standard Open Image dialog box (see 84.1) is produced.

~114 -

DigiFlow Menus

Alternatively, clicking the Process button will allow a source process to be used (refer to 87
on chaining processes for further details).

The Background input takes a single image (specified in the normal manner). This image
should be of the background texture mask before the experiment introduces any density
perturbations. Typically, this image is taken just prior to the experiment, and contains all the
ambient refractive index variations due to, for example, a background density stratification.

The Mask zeros check box causes DigiFlow to ignore all pixels with an identically zero
intensity. This feature is designed to allow simple masking of images. Such masking may be
used to remove parts of the field of view that do not contain the flow. For example, it could be
a static boundary to the flow, a free surface, or possibly an object moving through the flow. In
each case external processing of the image sequence should be made to apply the mask prior
to starting the synthetic schlieren processing.

There are eight groups of controls on the Inputs tab. The first controls maximum apparent
displacement that will be searched for. The values Max x and Max vy are specified in pixels and
are assumed symmetric about zero. These values should be set to represent slightly more than
the maximum expected apparent displacement of the mask. In most circumstances this will be
limited to two or three pixels, and will generally be isotropic (hence specify the same values
for Max x and Max y). Note that the computation required to determine the displacement
increases approximately as the product of these two values, hence specifying excessively large
values is counterproductive.

The Flow Geometry group is used to indicate the basic geometry of the flow under
consideration, and control the invocation of processes optimised for the specific geometry.
The entries 2D and 3D have the obvious meaning. Similarly, Axisymmetric is for flows where
the symmetry axis lies in the mid-plane (normal to the viewing axis) of the experiment, and
Symmetric is for flows where the mid-plane is a plane of symmetry, but the flow is not
axisymmetric.

The Lengths group specifies the geometric setup of the experiment. The distances should
be specified in the same units as the selected coordinate system (see below), or it will be
difficult to interpret the results of the calculation. Note that a distance of zero is acceptable for
Experiment to texture, the distance from the back of the experiment to the texture mask, but
not for Experiment thickness. The Experiment thickness should be the internal measurement
of the tank, while Experiment to texture should be measured from the outside of the tank. The
Wall thickness should be specified for the wall closer to the texture, and its corresponding
Tank wall material selected.

Both input streams may be sifted (84.3) to extract the desired subregion and times. This
feature is activated using the Sift button associated with each of the input streams.

To provide a simplified interface to the internal workings of the synthetic schlieren
algorithm, DigiFlow provides a range of predefined settings that have the effect of producing
different resolutions and accuracies. The Resolution and Accuracy list boxes both have six
possible settings: Very low, Low, Medium, High, Very high and Best. The choice will depend
on a combination of the intended purpose of the results, and the time available to undertake
the processing. The fastest processing is achieved at the \Very low end of both scales, while the
most detailed and accurate measurements are obtained with both Resolution and Accuracy set
to Best. In the latter case, even with relatively basic analogue video equipment, the accuracy
with which the apparent movement of the texture mask may be detected can be better than
1/100 of a pixel, and the spatial resolution of the measurements is a few pixels. By default, the
Resolution and Accuracy controls will be enabled. However, if the Automatic check box for
the Interrogation window group on the Advanced Control tab is cleared, then the Resolution
and Accuracy controls will be disabled.

-115-

DigiFlow Menus

To determine the relationship between refractive index and density, DigiFlow requires that
a fluid medium is specified with the Medium list box. This box contains a range of standard
fluids (e.g. Water and Air), plus the special fluid Unity in which all the physical constants are
set to unit values. In the context of synthetic schlieren, DigiFlow extracts the value of
£ = (oo/no)(dn/dp) (see (17) and (18)) for the selected medium. Additionally, (displacements)
will cause the pattern matching process to return the apparent displacements of the mask
rather than the density gradient.

The final input on this tab is Coordinate System. This specifies the coordinate system that
will be used to relate pixel to world coordinates. The coordinate system is assumed to have
been defined in the mid-plane of the experiment (not the plane of the dots). See §5.2.6 for
further details on setting up a coordinate system.

Outputs page

Inputs Outputs] Interrogationl Validationl Qualit_l,l] User Interpolation]

Output o
[

% Gradient v Gradient
[default] * [default]
[wGaHa di |G EHE,
Options... | Options... | File...
¥ Dizplay [v Dizplay
Diensity
Vector_ clazzification during Dptional,
matching process
Mathing =» Good vector Select options that affect
Red cross =» No data the cutput.

These include the file

Blue box =» Min texture format, colour zcheme, ete.

Magenta box = Min curvature
Yellow box =» Reject diff
Light red box =+ Max disp

Drark. green box = Outlier

Green box => Interpalated Dipttas | =S |
Light magenta =+ Mo match v Display
W — Gaturation walues
%5 [Automatic Gradiert [1 o
I CompactOutput Density (1.0
Ok, | Cancel |

Figure 88: The Outputs tab of the synthetic schlieren dialog.

The Outputs tab controls the destination and scale of the output from the synthetic
schlieren calculation. This dialog page consists of three image selectors, each with its own
Options and File buttons and Display check boxes. The destination for the output stream is
selected by clicking the File button (thus starting the standard Open Image dialog box; see
84.2), while the colour scheme and other related details are selected with the Options button
(see §4.4).

—116 -

DigiFlow Menus

The x Gradient, y Gradient and Density images are centred with a zero value corresponding
to half the intensity range (i.e. 128 for an 8 bit image format). Saturation corresponds to the
values given in the Scales group for Gradient and Density. The gradient images have the units
of ‘per unit length’ (what the unit length is depends on the coordinate system selected), and
represent Vp7m, unless (displacements) was specified for .the Fluid Medium on the Inputs
tab.

The optional Density output (not available with free licences) is calculated by a least
squares integration of the density gradient field. In general, integration of a vector field to find
a scalar potential is not unique, as the vector field will contain both irrotational and rotational
parts. With synthetic schlieren, the density gradient field should be irrotational, which would
make the integration unique, but inevitable measurement noise renders some rotational
component. The integration procedure used in DigiFlow aims to find the scalar potential (here
o1m) that minimise the root mean square of this rotational part (effectively minimising the
enstrophy), hence is a least squares solution. The solution process is achieved iteratively using
a multigrid approach that is aware of any missing data or masked regions in the synthetic
schlieren results. (Inevitably, there is some data loss in the neighbourhood of any masked
regions.) The integration procedure leaves one unknown arbitrary constant of integration
which DigiFlow sets by forcing the spatial mean density perturbation to vanish. Of course,
this may not always be appropriate.

The DigiFlow Data format (.dfd) or DigiFlow Pixel format (.dfp) may be specified for any
of these output images so that the data is readable in other applications. However, it is
recommended that the .dfi floating point format is used if you wish to make quantitative use of
the data.

Selecting the Compact check box causes DigiFlow to save an approximation to the
calculated density gradient field by only saving the gradient at the nominal location of the
interrogation windows used to calculate the gradient. DigiFlow will automatically expand out
this approximate gradient field, when it is reloaded, to produce one that is very close to that
saved without the Compact option. The files produced, however, are much smaller.

Figure 89 shows an example of the density gradient fields and the density perturbation.
Note that in all cases they are normalised by the reference density oo. The density gradient
fields therefore have dimensions of per length; it is important that you use the same units for
the Lengths group on the Inputs tab as you use in the chosen coordinate system, or else it will
be difficult to interpret the output!

You may choose not to calculate the density perturbation while doing the synthetic
schlieren computation, but instead calculate it later from the density gradient field. Tools:
Recipies contains a suitable recipe to do this in the Differential group.

. “ s A

(a) (b) (c)
Figure 89: Example of synthetic schlieren output. (a) (1/m) dp70x, (b) (1/m) dp10x and (¢) p7m for a
thermal plume erupting from a boundary layer.

-117 -

DigiFlow Menus

Interrogation page

Syhthetic Schlieren @
Iriputs] Outputz Interagation | % alidation | Quality | User Interpolation |
‘ Controls

& ® |nterrogation window
Difference measure
[v Mormalise

Size
width [1 il Gouars
Height ,w—il " Power |05

" Conelation

&+ Absolute

W At adist

. Peak fitting transform
Spacing £ None

k|18 il " Linear
v ,.Is—il * Square

" Log [Faussian)

Big differences Subpivel passes

v Dizcard " Mone
A=A * Linear .
Lirrit .4 Pazzes |2
C Cubic =

Mean differences W Alzo distorted |3 i‘
£ Awtomatic [Alsoreverse [q i‘

* Mone

" Global Interpolate figlds

" Local " Linear

Algarithnn ' Cubic

T " B-zpline [cubic)

2003a " B-spline [quintic

20124 T .]
v Predict uzing last result [Farce consistency
Enztrophy weighting [0 5 [Differential mode

Cloze IT' Cancel |

Figure 90: The Interrogation tab of the synthetic schlieren dialog.

The Interrogation page enables direct control over many of the underlying values of the
synthetic schlieren calculation. For most users, checking the Automatic box yields optimal
performance, with the Resolution and Accuracy controls on the Inputs tab providing all the
performance tuning necessary. Advanced users, however, may wish to fine tune the processing
manually; clearing the Automatic check box enables the remaining controls and disables the
Resolution and Accuracy controls on the Inputs tab.

The Size subgroup controls the Width and Height of the interrogation window. Increasing
the size of the window increases the accuracy, but decreases the spatial resolution and slows
the computation. If the window is too small, relative to the pattern size, then very poor results
are achieved. The Adjust check box specifies whether DigiFlow can adjust the size of the
window if it thinks this is necessary to produce more reliable data.

The Spacing subgroup has the most direct control on the spatial resolution of the synthetic
schlieren computation. This specifies the x and y spacing between points where the pattern
matching process is undertaken. Clearly reducing this value, specified in pixels, increases the
amount of computation, but may not always increase the spatial resolution due to the interplay
with the Size of the interrogation window.

The Difference measure subgroup specifies the type of difference calculation. This is the
function that DigiFlow minimises as it searches for the correct apparent shift. In practice,

-118 -

DigiFlow Menus

there is little to choose between the three functions. The Absolute option is computationally a
little cheaper, while Correlation is that frequently used in PIV techniques. Table 1 summarises
the various difference measures f that may be used in DigiFlow. Note that in all cases the
summation is over N valid pixels in the interrogation region. The Power option is simply a
generalisation of Absolute and Square. The Normalise check box rescales each of the
measures, based on the strength of the texture in the interrogation region.

f Standard Normalised

Absolute > |A-B| > |A-B|

AN IB)

Sduare .(A-BY >(A-B)
(XA)(28)

Power Z|A_B|p |A B|

J(ZA)(Zlep

swe-EA | g (ZE)

)
Correlation ZAB—(ZAL(ZB) ZAB (z)(Z B)

Table 1: The difference measures used in DigiFlow pattern matching.

The Peak fitting transform group determines the method of processing interpolating in the
neighbourhood of the smallest value of the difference measure f (or largest value, for the case
of the correlation measure) in order to provide an improved estimate. In all cases a bi-
quadratic least squares procedure using nine points is employed. However, DigiFlow provides
the option of transforming the difference measure prior to undertaking the fitting. The possible
transformations are shown in table 2. Note that the logarithmic option effectively assumes a
Gaussian form for the difference measure in the neighbourhood of the optimal shift.

None Linear Square Log
Absolute f f f2 log(f)
Square f i F log(f)
Power f fLp f2p log(f)
Correlation f f f2 log(f)

Table 2: Transformation of the difference measure f prior to computing bi-quadratic least squares fit.

The Subpixel passes subgroup has a pronounced effect on the accuracy, resolution and
speed of the calculation. The radio buttons determine the basic type of treatment to obtain
improved subpixel accuracy: None is the fastest but least accurate. Linear offers a good
compromise between speed and accuracy, while Cubic provides the best results, but is
substantially slower. The Passes edit box controls the number of levels of subpixel treatment.
For Linear a value of 1 to 3 is recommended, while Cubic normally only requires 1.

The Interpolate fields radio group controls how the data, initially obtained only at the
centres of the interrogation zones, is expanded to fill the complete image. The simplest option
of Linear, which uses a bilinear interpolation, tends to end up with an artificial appearance.
The next level of sophistication, Cubic, produces a good balance between speed and accuracy.

-119 -

DigiFlow Menus

While the resulting fields are continuous, they are not continuously differentiable. This
problem is overcome by the computationally more expensive cubic b-spline and the quintic b-
spline. For most circumstances either the cubic or cubic spline provides the best compromise
between computational efficiency and accuracy.

If the interrogation window Spacing is small to improve the spatial resolution, then it is
recommended that Also distorted is checked. This enables DigiFlow’s unique image distortion
technology to substantially increase the spatial resolution. A further improvement in both
resolution and accuracy may obtained in some circumstances by also checking Also
reverse.However, for high quality images, undertaking the reverse pass may lead to a
deterioration in the quality of the results.

Checking Discard in Big differences will dynamically discard pixels that DigiFlow
determines may not belong to the pattern it is trying to match. While discarding valid pixels
can detrimentally affect the signal to noise ratio, retaining invalid ones can have an even more
serious effect. The Limit controls the level at which pixels are discarded.

For images that have a poor signal to noise ratio, a fluctuating level of illumination, and
strong spatial gradient in intensity, a spurious signal can be obtained from the interaction
between the spatial gradient and the temporal fluctuations. The Mean differences group
controls whether DigiFlow will attempt to correct for this by rescaling the image intensities to
remove this signal. Selecting None will turn off the image rescaling to deal with mean
differences between images, while Global will force the mean intensity of the two images
(excluding any pixels of zero intensity) to be the same. The processing invoked by Local is
similar to that of Global except that it does it locally for individual interrogation windows.
While Local may superficially seem the most attractive, the results are much more sensitive to
noise and should only be used when there is no other solution. The Automatic setting will
attempt to assess which of the other three settings is most appropriate.

The Algorithm control provides access to different internal versions of the pattern matching
algorithm, thus ensuring backward compatibility.

The Enstrophy weighting controls the weighting applied to the condition that the apparent
displacements must be expressed as the gradient of a scalar when determining the optimal
apparent shift of the dots. The way in which this weighting is used depends on the Flow
geometry setting in the Inputs tab.

Setting Predict using last result will suppress the initial pixel pass for points where a result
has been calculated previously. This reduces the time required to converge on a solution.

—120 -

DigiFlow Menus

Validation page

Syhthetic Schlieren @
'Inputsl Dutputs] Interrogation *alidation |Quality | Llzer Interpolation |
‘ Controlg
Y alidation
r [Interpolate an fail
Outliers
Min range lnz— " None
* Median Lirit

it testure [2 M
£an
Win curvature (g 2 Replace by

3 " Discard
Accept difference ,m— & Lingar
Reject difference ,Dg— ™ Cubic
Projection
* Mone
" Onta iratational space [¥ Interpalation step anly

Wectar classification
[0] Mothing => Good wector

[1]1Red crozz => Nao data [-1] G_rey biow =» Set by
[2] Blue box =3 Min texture wser filer
[3) Magenta box =» Min curvature (2] Grey cross =»

[4] Yellow box =» Reject difference Exoluded by uss fiter

(5] Light red bax => Max |[3t] Ligrtt.g'eﬁ' box >
e : ' nterpolation requeste
[E) Dark green box =» Outlier by usper filter i

[7] Green box => Interpolated result

[8] Light magerta =» Mo good match

Yellow circle =» Mare than 5% of pivel: dizcarded
Red circle = More than 20% of pixels discarded
Meanz

¥ Automatic I r
I~

Select default vector validation options

Cloze IT' Cancel |

Figure 92: The Validation tab of the synthetic schlieren dialog.

Clearing the Automatic check box in the Validation group allows direct user control over
the parameters that control validation of the individual apparent displacement vectors. Min
texture prohibits computation when the standard deviation of intensity within the interrogation
window is less than the specified value. Similarly, Min range sets the minimum range
(maximum minus minimum values) the intensity within the interrogation window must have
before computation is permitted. Min curvature imposes a lower limit on how sharp the
difference measure around optimal apparent displacement must be, while Reject difference
imposes an upper bound on the difference measure. If the difference measure exceeds Accept
difference multiplied by the range of intensities within the interrogation window (but is less
than Reject difference, again multiplied by the range within the interrogation window) then it
IS subject to additional checks and processing to try to improve and ensure the quality of the
resulting data.

The Outliers subgroup handles the identification and resolution of apparently erroneous
data. For a well set up experiment, there should not be any erroneous data to be corrected.
This feature is enabled by the Remove check box, with Limit applying to the difference
between the value at the point and the mean of the neighbouring four vectors. This limit is
expressed in terms of the apparent pixel displacements. If the Limit is exceeded, then the value
Is either Discarded, or relaxed towards a Linear or Cubic interpolation.

—121 -

DigiFlow Menus

The apparent displacement field visualised by the synthetic schlieren is due to the gradient
of the refractive index field. As such, the apparent displacement field should be irrotational
since curl(grad(-)) = 0. The Projection group attempts to make use of this as part of the
validation process by projecting the measured displacement field onto an irrotational space
when Onto irrotational space is selected. This projection will be made for every iterated value
of the measured displacement field unless the Interpolation step only box is checked. When
checked, the projection will only be applied to displacement fields used to the steps used to
distort the images.

The final group, Means, is enabled by clearing its Automatic check box. The three check
boxes within this allow for the removal of apparent mean gradients in the measurements. The
Remove x mean control scans the data for each y and removes any mean apparent
displacement for that y. The Remove y mean performs a similar calculation for each x, while
Remove global mean simply calculates the mean apparent displacement for all the data, and
subtracts this from the data. In most circumstances it is unnecessary to remove the means, but
there are times when extraneous optical effects, or experimental setups such as having the
camera and texture mask mounted on a traverse, will make this facility desirable.

Quality

DigiFlow determines a range of additional information about the apparent displacement
field that represents the density gradient during the processing of the experimental images.
While for most users this additional information is of little value, the Quality tab makes it
possible to output some of this for advanced users.

This output requires a .dfi file if all the information is to be retained as there are multiple
planes of data available. In particular, these planes contain the following information:

Plane Description
0 Difference measure. This is the value of the difference measure (see Table 1)
for the final match.
1 X curvature. The curvature in the difference measure in the neighbourhood of
the final match.
2 y curvature. The curvature in the difference measure in the neighbourhood of
the final match.
3 State. Indicates the state of the pattern matching. State values are integer
(although stored as floating point) as follows:
0 Good vector
1 No data
2 Insufficient texture
3 Insufficient curvature in difference measure
4 Difference too great — rejected
5 Displacement too great
6 Outlier
7 Interpolated value
8 No match found
-1 Value set by user dfc code
-2 Value set by user interpolation code
-3 Value excluded by user dfc code.
4 Fraction discarded. The fraction of the pixels in the interrogation window that
were discarded due to them being too different between the two images.
5 X vector position. Stores the location (in world units) at which the vector was

—122 -

DigiFlow Menus

determined.
6 y vector position. Stores the location (in world units) at which the vector was
determined.
7 x displacement. Stores the actual displacement (in pixels) determined.
8 y displacement. Stores the actual displacement (in pixels) determined.
Synthetic Schlieren @
. Inputs] Dutputs] |nterrogation | Walidation Guality | Usger Interpolation |
Output: |
Guality ‘&
[default
["Qualityses, dii”
Options... | File...
v Dizplay
Data plane
0 Difference measure
1 ® Curyatune
2 ¥ curvature
3 State
4 Fraction discarded
5 vector position
E ¥ vector pogition
7 « displacement
8 y dizplacement
%S5
Cloze QK | Cancel

Figure 93: The Quality tab for synthetic schlieren.

User Interpolation

As part of the pattern matching procedure, DigiFlow interpolates the apparent displacement
field determined at discrete points to the entire image plane in order to distort the images. The
performance of the pattern matching depends on the quality of this interpolation, but the
default techniques may not always be optimal. Hence, the User Interpolation tab provides the
user with a way of bypassing the default mechanism and supplying their own customised
scheme.

—123 -

DigiFlow Menus

Inputs] Dutputs] Interrogalion] Validalion] Quality User Interpolation]

Controlg

%2

User filker

-

Ouiput erray of size Oopx-1, Orpy-1,0:-1

A mell iF DigiFlow defeult interpolaticosm b
H cr imteger to specify fype of imterpolaet

& (1 lipear, 2 cubis, 3 splims, 4 BSpli
wort = cwrliuwl:,: 0], avl:,:,11);

pr=i := solwe poisson(-vort 1,1l tolerance:=
wvl:,:,0]1 -= -d dyipsi};

avl:,:,11 —-= d_dx(psi);

interpolate image{uv, nx,ny,x0,¥0,dx, dy, ste

welL] Apparent dizplacement vectar:
My, ny Fequired output resolution
dr.dy Spacing between vectors
«0.p0 Location of first vectar
callType Why the interpolation is required
Quiality:.:.:] Quality measures for vector

0] Difference measure

1] W CUrvature

2] y curvature

3] State

4] Fraction discarded

IT' Cancel |

Figure 94: The User Interpolation tab for synthetic schlieren.

The tab is activated only if Automatic interrogation is turned off on the Interrogation tab,
and the Use user interpolation check box is checked on the User Interpolation tab. The default
sample code uses a weighted least squares approach to completing the interpolation. This is
more computationally costly than the default method, but provides a more robust method of
handling missing data.

Parameters passed to this code include the interrogation-window apparent displacement
vector uv, the required output resolution nx, ny, the nominal interrogation window size wx, wy
(in pixels), the spacing between the vectors dax, dy (in pixels), the location of the first vector
%0, =1, and the quality measure ouality. The string calltype indicates the point in the
algorithm when the call to the filter is made. This may take one of the values "pixe1,
"SubPixel", "Reverse", "Distorted" OfF "Final". The experimental image ra and
background image rv are also available.

Processing

When OK is pressed, the dialog box will check that all mandatory values have been
entered. If they have not, then the focus will return to the page and control of the first missing
value.

The progress of the processing may be viewed by selecting the Progress window that
appears once synthetic schlieren has started. The contents of this window are updated

~124 -

DigiFlow Menus

periodically during the processing of each of the images from the Experiment stream. Most of
the time, this window provides information on the apparent vertical shift of the texture mask.
The title bar on this window and the ‘thread message’ panel on the main status bar provide
details of the individual calculations as they are performed.

The basic processing algorithm may be summarised by the following steps:

1 Determine optimal pixel shift.

¢ Determine optimal pixel shift by moving interrogation window around on Experiment
image, measuring the difference between this and the comparable unshifted window on
the Background image.

¢ For each optimal pixel shift, use a bi-quadratic least squares to obtain subpixel
resolution.

¢ Repeat for each grid point on this level.
¢ Refine grid to next level by bi-linear interpolation, in a multi-grid-like process.
2 Determine optimal subpixel shift.

¢ Determine optimal shift in a manner analogous to the pixel shift, but using an
interpolated version of the Experiment image to allow smaller shifts to be probed.

¢ For each optimal subpixel shift, use a bi-quadratic least squares to obtain an improved
estimate of the optimal shift.

3 Determine optimal distorted shift.

¢ Use the current estimates of the apparent displacement to distort the Experiment image
back to the Background image (i.e. try to undo the apparent movements).

¢ Repeat the optimal subpixel shift process, using this distorted image.

¢ The optimal shift from this process should be small (it represents the error in the
previous optimal shift) is used to correct the optimal subpixel shift

4 Repeat steps 3 the required number of times, each with a smaller subpixel shift of the
Experiment image.

W

Repeat steps 2 and 3, but shifting the Backround image rather than the Experiment image.

¢ The optimal shift that is produced by this reverse shift is inverted and itself distorted to
shift it back to the Background frame of reference.

6 The forwards and distorted reverse shifts are combined to produce the ultimate optimal
subpixel shift.

The shift is transformed to world coordinates.

3

8 The world coordinate shift is transformed into gradients in the density perturbation.

O

The density perturbation is computed by integrating the gradient field.

¢ The direct integration method used does not require boundary conditions, and the
arbitrary constant of integration is defined so that the mean perturbation vanishes.

During the processing, DigiFlow will display a Progress window that provides feedback on
the performance of the pattern matching algorithm. One of the key components of this is the

—125 -

DigiFlow Menus

classification of displacement vectors by drawing boxes at their roots if there is some potential
problem. The table below lists these classifications and gives a description of the various
categories and an indication of the control that can affect this.

Symbol Description Advanced Control page
Red cross No valid displacement vector
Blue box The image does not contain | Advanced: Min range

an adequate texture for the
matching to be reliable.

Advanced: Min texture

Magenta box

The difference function being

Advanced: Min curvature

minimised does not have a
well-defined peak.

The value of the difference Advanced: Reject difference

function is too large.

Yellow box

Light red The best match is found
beyond the limit of the
permissible shifts.

Inputs: Displacements

Dark green box The optimal match produced | Advanced: Outliers
an outlier. This has been
replaced by an interpolated

value.

Vector is the result of
interpolation from
surrounding vectors.

Green box

A best match could not be Inputs: Displacements: Max x
found. and Max y

Light magenta

5.6.5 Particles

Processing of particles is split between this submenu, which includes particle streaks
(85.6.5.1) and Particle Image Velocimetry (85.6.5.2), and the Particle Tracking submenu
(85.6.6).

5.6.5.1 Show as Streaks

Toolbutton:

Shortcut:

Related commands: process Analyse ShowAsStreaks(..)

The Show as Streaks option provides a convenient method of reviewing and presenting
image sequences containing particles. Such sequences will often be subsequently analysed in
more detail using either Particle Tracking Velocimetry (PTV) or Particle Image Velocimetry
(PIV). However, it is normally worth reviewing the sequence first as streaks as this will often
give significant insight into the structure of the flow, regions where things are steady, and
where the flow is unsteady, and where the contrast is adequate to proceed with quantitative
measurements.

Two dialog boxes are produced as standard during the Show as Streaks process. The first
(see figure 95) allows selection of the input data stream in the standard manner. Under most
circumstances there will be no need to use Sift to change the timings, as this can be done
subsequently. However, the exception to this is when dealing with image sequences that are
interleaved so that images at different levels in a flow (for example) are stored adjacently and

—126 -

DigiFlow Menus

only every nth image is at the same level. In this case it may be desirable to set the time step

using Sift.
Inputs 9\:

Experiment

["ke_###.cil*

Process... I

Figure 95: Dialog box used to specify the input stream for the Show as Streaks facility.

The main control dialog (see figure 96) consists of standard video controls, track bar and
speed control. This dialog sits alongside a floating window containing the processed streaks
image. Note that you may swap between these with the mouse to pan the image around, if

desired. Note that both windows are floating (i.e. they are not required to remain within the
main DigiFlow window).

Show as Streaks §|
. Controlg
%5 Frame rﬁ Time W .
0o 35.0
IR, :
L]
0 [v Spnchronize Display &
Action
O« 4 = nf[r no
| w| Qe
Speed Decay
1 1 M (BN
| Grem & oo =
Procezsing Threshold
" Direct |—
" Threshold I I
M awimum intenzity =
" Minimum intenziy =

" Awerage

Reset
= 88| G oo o B o |

Check box

Figure 96: Dialog controlling the Show as Streaks facility.

The Processing group determines how the displayed image is to be constructed from the
raw image stream. Direct simply shows the raw image, Threshold segments the raw image
into a binary image prior to combining with a stored image (the Threshold group determining

—127 -

DigiFlow Menus

the intensity level for this split), Maximum intensity will take the greater of the intensity in the
current image and the corresponding pixel in the stored image, Minimum intensity will take the
smaller of the intensity in the current image and the corresponding pixel in the stored image,
and Average will generate the streaks using a simple arithmetic averaging process. In all cases
(except for Direct) the intensity of the stored image is reduced by the amount specified by the
Decay group each time a new image is added, thus providing a fading memory of the flow.
The Reset button clears the stored image, thus resetting the streaks.

Which processing option produces the best results depends in part on the quality of the
original images. For clean images with uniform illumination and good contrast, Threshold is
likely to produce the best results. However, if the images have strong variations in
illumination, such as shown in figure 97, the Maximum intensity option produces more
satisfactory results.

Show As Streaks

IP: 0.169(43) ,j: 746, 249 World: 1100% [Frame: 35 (35.000s) RL /
Figure 97: Example image from streaks facility. Here the field of view was 2.5x2.5m and particles

illuminated by a 5W argon laser. The streaks show barotropic vortices interacting with the baroclinic
hydraulic exchange through a strait containing an island.

The Synchronise display check box forces synchronisation such that each and every frame
in the sequence is displayed, even if this slows the update rate below the desired frame rate. If
Synchronise display is cleared and the computer cannot keep up with the desired frame rate,
then frames are skipped to maintain that frame rate. In most cases streak images work best if
frames are not skipped (i.e. you should normally have Synchronise display checked).

—128 -

DigiFlow Menus

5.6.5.2 Particle Image Velocimetry

Toolbutton:

Shortcut:

Related commands: process Analyse PIV(..)

Theory

The Particle Image Velocimetry (PIV) component of DigiFlow has a great deal in common
with the pattern matching synthetic schlieren component (85.6.4.3), and indeed many of the
unique features in the PIV system owe their development to synthetic schlieren.

The PIV interface is divided into a number tabbed dialogs. The first two, Inputs and
Outputs are mandatory and control what is to be processed, and where the results are to be
stored, respectively. The remaining tabs may be used by experienced users to tweak the
process to yield better performance in some situations. Only the first two tabs are available
under Free DigiFlow licences.

PIY RX
Llzer Filker] Uzer Interpalation] Cluality]
Iputs] Outputs] Interrogation] Validatior]
Inputs ez AN]
E speriment Later Image . h
Iv Mask zeras v One stream

DISABLED:

Freview the experniment at
the later tirmz]

|"F'I\-’Test2. o' |

Process. .. | ’Tl | |
Iv Dizplay L o 4

Caontrals
Interrogation interval

Frames Seconds
T2 |
Dizplacements

b aw shift Bias

A
S

Coordinate System

[default)
iixel

Figure 98: The Inputs tab of the PIV dialog.

Image quality & Zjen

[Cancel

Intputs page
The standard PIV process takes two input streams. The first, specified by the Experiment

group, is the video sequence of the experiment itself. As normal, an image selector is used to
specify the stream. This selector may be specified from a file by clicking the File button, in

—129 -

DigiFlow Menus

which case the standard Open Image dialog box is produced. Alternatively, clicking the
Process button will allow a source process to be used (refer to 86 on chaining processes for
further details).

The second stream, the Earlier Image input, may be tied to the Experiment stream by the
One stream check box, or taken from an independent data source. In either case the interval
between these two streams should be specified in the Interrogation interval group. If One
stream is used, then Interrogation interval is specified in frames. If separate image streams are
used, then the Interrogation interval is specified as the time interval between the two streams.

The Mask zeros check box causes DigiFlow to ignore all pixels with an identically zero
intensity. This feature is designed to allow simple masking of images. Such masking may be
used to remove parts of the field of view that do not contain the flow. For example, it could be
a static boundary to the flow, a free surface, or possibly an object moving through the flow. In
each case external processing of the image sequence should be made to apply the mask prior
to starting the PIV processing.

There are four groups of controls on the Inputs tab. The first controls maximum
displacement that will be searched for. The values x Max shift and y Max shift are specified in
pixels and are assumed symmetric about zero. These values relate to the maximum expected
particle displacement but need to be as large as that shift (they parameterise the initial search
space for the particle displacement, but DigiFlow will search a larger space if necessary). In
most circumstances the default 3 pixels is adequate. Note that the computation required to
determine the displacement (and hence velocities) increases approximately as the product of
these two values, hence specifying excessively large values is counterproductive.

If the velocity field has a significant bias in one direction (e.g. there is a mean flow), then
specifying a nonzero x Bias and/or y Bias will allow greater computational efficiency by
permitting smaller values for x Max shift and y Max shift. The units of x Bias and y Bias are
pixel displacements and have an effect similar to shifting the second image by negative the
specified amount. For example, if there is a mean velocity down and to the right, then you
would specify x Bias as positive and y Bias as negative.

To provide a simplified interface to the internal workings of the PIV algorithm, DigiFlow
provides a range of predefined settings that have the effect of producing different resolutions
and accuracies. The Image quality, Resolution and Accuracy list boxes both have six possible
settings: Very low, Low, Medium, High, Very high and Best. The choice will depend on a
combination of the intended purpose of the results, and the time available to undertake the
processing, and the quality of the original images. The fastest processing is achieved at the
Very low end of both scales, while the most detailed and accurate measurements are obtained
with both Resolution and Accuracy set to Best. In the latter case, even with relatively basic
analogue video equipment, the accuracy with which the particle displacement may be detected
can be better than 1/100 of a pixel in ideal circumstances (e.g. no particles disappearing), and
the spatial resolution of the measurements is a few pixels. By default, the Image quality,
Resolution and Accuracy controls will be enabled. However, if the Automatic check box for
the Validation group on the Advanced tab is cleared, then Image quality is disabled. Similarly,
the Interrogation window group on the Advanced tab is cleared, then the Resolution and
Accuracy controls will be disabled.

The final input on this tab is Coordinate System. This specifies the coordinate system that
will be used to relate pixel to world coordinates. The coordinate system is assumed to have
been defined in the mid-plane of the experiment. See 85.2.6 for further details on setting up a
coordinate system. Note that if you select a pixel coordinate system, then the To World
Coordinates tool (85.7.6) may be used to retrospectively convert the pixel PIV results to a

—130 -

DigiFlow Menus

world coordinate system. (It is generally better, however, to compute the PIV using the
appropriate world coordinate system in the first instance.)

Outputs page

The Outputs tab controls the destination and scale of the output from the PIV calculation.
This dialog page consists of two image selectors, each with its own Colour and File buttons.
The destination for the output stream is selected by clicking the File button (thus starting the
standard Open Image dialog box), while the colour scheme to be used with the stream is
(optionally) selected with the Colour button. At least one of the four output streams must be
given a file name before OK will close the dialog box and start the process.

PIV [|mesel
Uzer Filter | User Interpalation | Guality |
|rpits Outputs | Interrogation] Validation |
Clutput e
w>

Welocity Workicity

Optional:

Select options for the
worticity field [e.g. colowr, bit

depth, etc.]
[el ofi" |
Optiors... | Optiohs. .. | File...
¥ Dizplay [v Display

Welocity Scale (100 [v Compact output
Yorticity Scale [0 [Save xy positions

Wector background [Clagsify vectars [did anly]

E=periment Wectar classification
Streaks o
Yorticity [0 Nathing =» Good vector

[11Red crozs => Mo data

(1) Grey box => Set by user [2] Blug box => Min texture

filter [3) tagerta bax => Min curv.
[-2] Light arey box =» (4] vellow box =» Reject dif
Interpolation requested by (5] Light red box => Max disp

e iz (6] Dark green box =» Outlier
[-3) Grey cross = Excluded

By uzer filter [¥] Green box =3 Interpolate
Yellaw circle =» More than (8] Light magenta => No match

5% of pinels discarded
Fed circle => Moare than 20% of pisels dizcarded

L

Cloze (] | Cancel |

Figure 100: The Outputs tab of the PIV dialog.

The mandatory Velocity output selector will contain an image of the velocity field
calculated. It is recommended that you specify either a DigiFlow Drawing file (.dfd) or a
DigiFlow Image file (.dfi) rather than an industry standard raster image format for this output.
In general, a .dfi file is to be preferred. In a .dfd the velocity data as ASCII data in conjunction
with a series of drawing commands. This format is very convenient if you are using other
software to process the results as reading these files is straight forward. They are, however,
not very compact. Using a .dfi file stores the velocity data as velocity data, but allows this to
be processed by DigiFlow as though it were an image. For example, the time average facility
(see 85.6.1.1) and most of the other manipulation tools can be used to process the velocity

—131-

DigiFlow Menus

data. In general, saving the data in .dfi format will be preferable until you have finished all
processing.

The scale length of the velocity arrows is determined by the Velocity scale setting. A unit
value draws the arrows of a length equal to the distance the particles have moved in the time
interval between the two images used in the PIV calculation. Increasing Velocity scale causes
the length of the velocity to increase, etc. This approach allows Velocity scale to be largely
independent of the coordinate system used. For many flows, a value of 2 to 10 is appropriate.
Note that if \Velocity scale is negative, then the arrows are drawn in the reverse direction.

The background to the velocity field may be selected through the Vector background
control. Selecting (none) gives a plane white background for the velocity field map, and the
output stream stores only the velocity field itself. When Vorticity is selected for the Vector
background, then the vorticity field is calculated and stored in the output stream; the vorticity
field is also displayed as a colour map behind the velocity field. The Experiment and Streaks
options place an image of the experiment behind the velocity field (also storing it in the output
stream). The Experiment option is self-explanatory, while the Streaks option synthesises a
streak image (see 85.6.5.1 for an example of a streak image) to be displayed.

Selecting the Compact check box causes DigiFlow to save an approximation to the
calculated velocity field by only saving the gradient at the nominal location of the
interrogation windows used to calculate the gradient. DigiFlow will automatically expand out
this approximate velocity field, when it is reloaded, to produce one that is very close to that
saved without the Compact option. The files produced, however, are much smaller. This
option works well with either no background, or using the vorticity field as a background.
However, as the background is compressed in the same way as the velocity field, this option
does not work so well when selecting either the experiment or particle streaks as the
background.

The Save x,y positions is not normally necessary. This will add two data planes to each .dfi
output by the PIV process, with one plane containing the x coordinate of every pixel, and the
other the corresponding y coordinate. Note that the Quality output (see the discussion below
on the Quality tab) also provides access to the location of each of the interrogation vectors.

If Classify vectors is checked, then the velocity vectors produced include an indication of
the quality of the vector. This is indicated by a box or cross drawn at the base of any suspect
vector, as per the table below. Note that the Progress window (which is always produced to
show the progress of the PIV calculation) will also show this information, even if Classify
vectors is turned off. At present, classification will only be indicated on output to .dfd files.

Symbol Description Advanced Control page
Red cross No valid velocity vector
Blue box The image does not contain Interrogation: Min range
an adequate texture for the Interrogation: Min texture
matching to be reliable.
Magenta box The difference function being | Interrogation: Min curvature

minimised does not have a
well-defined peak.

Yellow box The value of the difference Validation: Reject difference
function is too large.
Light red The best match is found Inputs: Displacements

beyond the limit of the
permissible shifts.

Dark green box The optimal match produced | Validation: Outliers

-132 -

DigiFlow Menus

an outlier. This has been
replaced by an interpolated
value.

Green box Vector is the result of
interpolation from
surrounding vectors.

Light magenta box A best match could not be
found.

Yellow circle At least 5% of pixels Interrogation: Big differences
discarded

Red circle At least 20% of pixels Interrogation: Big differences
discarded

The vector field may be superimposed on a range of backgrounds. These are selected by the
Vector background list box. If (none) is specified, then a plain, white background is used,
whereas Experiment leads to the vectors being superimposed on the corresponding
experimental image. Similarly VVorticity draws the arrows on an image of the vorticity field.

The Vorticity output selector is optional, and should normally specify a raster image format
file. The Scale setting controls the rendering of the vorticity as a colour map. The value
specified here will be taken as the saturation limit of the false colour map produced. Thus
decreasing Scale amplifies the vorticity map. Note that this scale is used to determine the
scaling of the vorticity map behind the velocity vectors if Vorticity is specified for Vector
background, regardless of whether a separate vorticity output file is being created. Since
vorticity has dimensions of inverse time (and so does not have a length scale), the scaling of
vorticity is largely independent of the coordinate system selected.

Note that outputting the velocity field to a .dfi file works best when the coordinate system is
essentially aligned with the image. In all cases the velocities are determined on a regular grid
in pixel space. When output to a .dfd file, the velocity vectors will be displayed in world
coordinates with a standard Cartesian grid in physical space; this may mean that the original
pixel coordinates are no longer Cartesian. When output to a .dfi file, the original pixel
coordinates remain Cartesian, and the world system may remain distorted.

Interrogation page

The Interrogation tab is identical to that for synthetic schlieren described in 85.6.4.3. Most
users will not need to disable the automatic settings on any of the controls.

—133 -

DigiFlow Menus

o, >
Usger Filter | Usger Interpolation |) Ruality |
Inputs] Dutputs Interragation | Yalidation |
Intemogation .
Difference measure ety
; [v MNormalise
3 &+ Absolute
Width [15 =
) Z‘ " Square
Height {15 i‘ " Power 0a
¥ Auto adjust " Canelation
Spacing Peak: fitting transform
4l i‘ " Mone
= " Linear
g
I‘ * Sguare
Big differences 7 Log [Gaussian)
v Dizcard .
o Subpivel paszes
Lirrit |4 ™ None
" Linear =
Mean differences & Cubic Passes|3 Zl
(% Automatic
 Mone W Alzodistotted |5 -
™ Global [Alzoreverse 1
™ Local
Algarithm Ir;_therplolate fields
20035 I ety
™ Cubic
" B-zpline [cubic)
advanced dic {* B-spline (guintic)
W [v Predict uzging last rezult
[~ Force consistency
Edit

Close a4 | Cancel |

Figure 103: The Interrogation tab of the PIV dialog.

A unique feature of DigiFlow, available only on fully licensed copies, is the ability to use
dfc macro code to fine tune various aspects of the pattern matching process. The Advanced
dfc group controls the specification of this code. To provide code, select the required category
from the drop-down list then click Edit. This will start up a dfcConsole (see 8§5.2.10 for
details) to edit the code.

The precise requirements for the dfc code vary depending on the task required of it. In all
cases, information is passed to the code through specific variables. The code can then change
the contents of the variables, but must not redefine their type or location. Consequently,
assignment to one of the arrays passed to the code should be through specified elements (e.g.
A[1,2] := ..;)orranges (e.g. a(:,:] := ..;)and not directly to the name (i.e. not o :=
..). Some example codes for specific purposes are given below.

The easiest way to determine what variables are available in a given code segment is to
include a call to view variables(..) While developing the code. Note, however, that the
memory space and variables names are shared by all code segments. Thus, a variable defined
by the user in one section of code will be available to other sections of code.

To suppress a given piece of code, either ensure that it is blank or have
Do not use

~134 -

DigiFlow Menus

as the first line. This will suppress execution of the code. Having quit as the first statement
(without the ‘Do not use’ comment) start the code executing, but stop it again immediately.
While this approach works, there is an added computational overhead to it.

The following variables are passed to the code for the different calls:

For any code

callFor String Identifies the purpose of the call. See below for
specific calls.

invokedBy String Specifies the condition under which the call is
made.

dlg Compound The dialog structure used to define the PIV process

A nxxny array The image (undistorted) of the flow at the earlier
time

B nxxny array The nxxny image (undistorted) of the flow at the
later time

ha Handle Handle for the window showing the flow at the
earlier time

hB Handle Handle for the window showing the flow at the later
time

Time Compound Contains time information relating to the earlier
time

nx Integer The width of the image stream being processed

ny Integer The height of the image stream being processed

X nxxny array World x coordinate for each pixel

N nxxny array ~ World y coordinate for each pixel

xMin Real The minimum world coordinate in the x direction
(real)

xMax Real The maximum world coordinate in the x direction
(real)

yMin Real The minimum world coordinate in the y direction
(real)

yMax Real The maximum world coordinate in the y direction
(real)

v nxxny array Current estimate of the displacement in x direction

v nxxny array Current estimate of the displacement in y direction

nxz Integer The number of interrogation regions horizontally the
image

nyz Integer The number of interrogation regions vertically in the
image

xyCentre NxZXnyZ The centres, in world coordinates, of each

array interrogation region
ijCentre nxZXny7 The centres, in pixel coordinates, of each
array interrogation region
iteration Integer Counter for iterative processes; -1 if not an iterative

process

callFor = “Getlmages” — all algorithms
callFor = “PredictDisplacement” — 2014a and later algorithms
callFor = "InterpolateDisplacement™ — all algorithms

invokedBy

String

OﬂEOf"Forward",”Reverse","Distortedﬂ

—135-

DigiFlow Menus
"FinalOutliers", "FinalField"
ulnterrog nxZXnyz Stores the x component of the current displacement
array on the coarse grid.
vInterrog nxZXnyZ Stores the y component of the current displacement
array on the coarse grid.
ukield nxxny array Stores the interpolated x component of the current
displacement at the full image resolution..
viield nxxny array Stores the interpolated y component of the current
displacement at the full image resolution..
rect

Compound

The rectangle within u, v to which u, v must be
interpolated.

callFor = “DistortionField” — 2017a and later algorithms

xDisp

yDisp

xDist

yDist

x7Size

yZSize

nMicrosteps

weightUnfilt
eredDisplace
ment

scaleDisort

relaxation

nxzXnyz
array
nxzXnyz
array
nxzXnyz
array

nxzZXnyz
array

Integer
Integer

Integer

Real

Real

Real

The x-component of the current estimate of the
displacement field.

The y-component of the current estimate of the
displacement field.

The x-component of the displacement field used to
distort the images during a distortion pass. On entry,
this will be the same as xpisp. Typically, this hook
is used to filter this distortion field.

The y-component of the displacement field used to
distort the images during a distortion pass. On entry,
this will be the same as ypisp. Typically, this hook
is used to filter this distortionfield.

The horizontal size of the interrogation window
used for pattern matchine the distorted image.

The horizontal size of the interrogation window
used for pattern matchine the distorted image.

The distortion process is achieved by an advection
equation. This specifies the number of intermediate
steps used.

The weighting applied to the current estimate of the
displacement (xpisp) compared with the
displacement field used to distort the image (xpist).
The weighting to be applied to disorting the image.
A value of 1.0 will try to distort the images using
the current estimate of the displacement so that they
match.

The correction determined with the distortion pass is
applied with a relaxation factor.

callFor = "DifferenceFilter" — 2014a and later algorithms

angle

ellipt

nxXny array

nxXny array

The angle for the major axis to be applied to the
difference filter
The ellipticity to be applied to the difference filter

callFor = “Distortedlmages” — 2012a and later algorithms

p
Q

nxXny array
nxXny afray

The distorted image at the earlier time
The distorted image at the later time

—136 -

DigiFlow Menus

GetImages - all algorithms

This code segment is called immediately after the pair of images is read in. One possible use
of this code is to pre-process the images to apply a mask, either a static one or one created
dynamically based on the contents of the images. Typically, it will be more efficient to
develop the processing algorithm outside the pattern matching process as debugging it in
context is less straight forwards. (A mask is generally implemented by setting to zero the
pixels that are not to be included in the pattern matching process.)

As an example, the following code was developed to remove the (relatively faint) images
of fixed bubbles behind the illuminated PIV plane.

if (Time.iNow = 0) {
This setup is only executed once

#

Recover the region selected for processing

10 := dlg.Experiment Region.xMin;

il := dlg.Experiment Region.xMax;

j0 := dlg.Experiment Region.yMin;

jJj1 := dlg.Experiment Region.yMax;

Read in the 'background' image, created by determining the
minimum

intensity over time for each pixel in the image

back := read image("MinIntensity.dfi");

back := back[10:11,70:31];
Create a mask highlighting the bubbles

thresh := 0.015;

noBubbles := filter median(back,11,11);
mask := back - noBubbles > thresh;

mask := filter median(mask,3,3);

};

Fix the two input images by removing the bubbles

A -= back;

B -= back;

A[]l := where(mask and A < 2*thresh,0,A) + 1/255;
B[] := where(mask and B < 2*thresh,0,B) + 1/255;

lin this case, the file MinIntensity.dfi was calculated in advance using Analyse: TimeAverage
with Method set to Min.

PredictDisplacement - 2014a and later algorithms

At the start of the processing of each new pair of frames, DigiFlow requires an initial guess
for the displacement field. By default, this is determined by a pixel-resolution pass for the first
velocity field, whereas for subsequent fields it is determined either by the displacement from
the previous calculation, or by another subpixel pass. The code specified to
PredictDispalcement is called after any pixel resolution pass has been complete.

The current displacement field estimate is provided in u(:,:] and v[:, : 1. Note that any
assignment statements should be made to u(:, :1 and v[:, :] rather than simply to v and v to
ensure the same memory is used.

An example of where this facility is useful is given in the following example. Here, the file
MeanVelocity.dfi contains the mean velocity that is to be used in place of a ‘zero’ prediction for
the velocity field for the first iteration. In most cases, it is unlikely that the mean velocity is a
less good prediction than the previous velocity, unless the successive velocity fields departure
from this mean are poorly or negatively correlated.

Use pre-existing velocity field to make prediction

if (Time.iNow = 0) {
predFile := "MeanVelocity.dfi'";

—137 -

DigiFlow Menus

predUV := read image (predFile) ;

predDet := read image details(predFile);

view_variables() ;

Convert world velocities to pixel displacements

ul[] := predUV[:,:,0] * predDet.tStep/predDet.dx;

v[] := predUV[:,:,1] * predDet.tStep/predDet.dy;
}s

Note that the displacement is specified over the entirety of the image plane, not just at the
centres of the interrogation windows.

InterpolateDisplacement - all algorithms

This code segment is called immediately after DigiFlow has interpolated a displacement field
from the resolution of the interrogation grid (uInterrog, vIinterrog) Up to the resolution of
the image being processed (urield, vField). The default interpolation scheme is set by the
Interpolate Fields group on the Interrogation tab and acts to interpolate the two displacement
components separately.

Displacement fields are interpolated at multiple different points in the pattern matching
algorithm. These are distinguished by the invokedBy string. Both "Forward", "rReverse" are
used when doing reverse passes, "Distorted" indicates a distorted pass (with iteration
giving the distorted pass number), "rFinaloutliers" is during the removal of any remaining
outliers, "rinalrield" indicates generation of the final displacement field.

DistortionField - 2017a and later algorithms

During the ‘distorted passes’, DigiFlow uses the current estimate of the velocity field to
distort both the images being used for PIV to its best estimate of the state at the mid-point in
time between the two. The DistortionField code segment is called before DigiFlow produces
the distorted pair of images, but after it has determined the displacement field that will be used
to drive the distortion. The code segment can be used to modify this distortion field. Typical
examples might include filtering the distortion field to try to ensure the image distortion is
smooth.

The following code segment is motivated by a desire to use a fine spacing of the
interrogation windows in cases where the particle seeding density and image quality may not
be as high as desired. Here, a low pass filtering of the distortion field will help suppress high-
wavenumber noise being introduced.

Variables on entry

xDist,yDist The default distortion field
iteration The iteration counter

Time The current time information
xDist[]
yDist][]

filter low_pass (xDist,3,3);
filter low_pass(yDist,3,3);

DifferenceFilter - 2014a and later algorithms

With algorithms dated 2014a and later, a spatially tapered elliptical filter is applied when
calculating the difference measure between the distorted images. The idea of this is to provide
a greater emphasis for one set of directions compared with others.

By default, the major axis of the elliptical filter is aligned with the current estimate of the
velocity, while the degree of ellipticity is controlled by (6u/dy)? + (ov/iox)?. The sample code
below simply displays the orientation and ellipticity fields.

if (Time.iNow = 0 and iteration = 0) {

—138 -

DigiFlow Menus

Create view handles for diagnostics on first call

hAngle := view(angle,-pi,pi):;

view_colour (hAngle, "circular") ;

view_title(hAngle, "Difference Filter: Angle");

hEllipticity := view(ellipt,0,5);

view_title(hEllipticity, "Difference Filter: Ellipticity");
};

view (hAngle, angle, -pi,pi) ;
view(hEllipticity,ellipt,0,5)

DistortedImages - 2012a and later algorithms

During the ‘distorted passes’, DigiFlow uses the current estimate of the velocity field to
distort both the images being used for PIV to its best estimate of the state at the mid-point in
time between the two. The Distortedimages code segment is called immediately after
DigiFlow produces the distorted pair of images and before it starts the pattern matching
process on the distorted pair. The Distortedimages code can therefore be used to modify the
distorted pair, or to provide diagnostic information about them.

The following code segment is motivated by the observation that for very small particles in
sharp focus can change substantially in overall intensity from one frame to the next. This
change can be due to the fill factor for the image sensor being less than 100%, or due to
particles near the fringe of the light sheet moving in or out of the region of strong
illumination. In either case, it can be desirable to decrease the impact of these extreme
changes without completely eliminating the information provided by the particle. This process
is one of fine-tuning, and should not be used until the velocity field is very close to being
correct and so the distorted images are nearly perfectly matched. The modification made here
to the images is to maintain the structure, but decrease the intensity difference in regions
where this difference is very strong.

Variables on entry
P,0 The distorted images
1teration The iteration counter
Time The current time information
dPQ := P - Q; # Difference between distorted images
if (Time.iNow = 0 and iteration = 0) {
Create view handles for diagnostics on first call
hScat := 0;
hDist := 0;

hDist := view(hDist,dPQ,-0.2,0.2); # Display unedited difference
view_zoom(hDist,0.25);

view_fit to_zoom(hDist) ;

view_title(hDist, "Difference between distorted images");

};

view (hDist,dPQ,-0.2,0.2); # Display unedited difference

A scatter plot (optional) can provide good diagnostic information

scatter := scatter_ to_array(make_ array(0,256,256),255*P,255*%0,1,1);
scatter := log(scatter max le-2) + 2;

scatter /= max_value(scatter);

hScat := view(hScat,scatter);

view_title (hScat, "Scatter plot of intensities in distorted images'");

if (iteration >=2) {
Only make adjustments to distorted images if sufficient
distorted passes have already been completed

OK := P <> 0 and Q <> 0; # Mask out any zeros

thresh := mean (abs(dPQ)) ;

sPQ := P + Q;

delta := sign(dPQ) * (thresh + (abs(dPQ)-thresh)/4);

P[] := where(abs(dPQ) > thresh and OK, (sPQ+delta)/2,P);

—139 -

DigiFlow Menus

QO[] := where(abs (dPQ) > thresh and OK, (sPQ-delta)/2,Q);

Update difference image as diagnostic
Could also update scatter plot
dPQ := P - Q;
view (hDist,dPQ,-0.2,0.2);
}i

Note that the code assigns new values to the distorted images »(:,:] and o[:, : 1, rather than
simply to p and ¢. This ensures that the same memory is used for the updated arrays as was
used to pass them to the code. There are both computational reasons for wanting to do this and
it ensures the returned arrays have the same dimensions as the input ones.

Validation page

The Interrogation tab is nearly identical to that for synthetic schlieren described in §5.6.4.3.
Most users will not need to disable the automatic settings on any of the controls. One
difference is that the Projection group contains an additional option, allowing projection of the
velocity field onto either irrotational or incompressible (solenoidal) spaces. The latter is most
likely to be of use when considering two-dimensional flows, as it only attempts to make the
divergence in-plane measured velocity field vanish. In most other circumstances the
projection should be turned off.

Lo -8]
Uszer Filter | Jzer Interpalation | (uality |
|nputs] DOutputs] Interrogation Y alidation
Cantrals]

1S

i,

Min range ,uz— gUtliE'S
Min texture [2 = Limit
= 12

Mim curvature [1 Frerlace b
eplace by
accept difference |4 {

. ' {v
Feject difference ,gg— ~
Projection
&
o~
~ v
Yector classification (41 ellow box =» Reject diff
(0] Mothing =» Good vector (3] Light red box =» Max disp
(11 Fed crozs => Mo data (] Drark. green bowx =» Dutlier

[2] Blue bow => Min texture [7) Green box =» Interpolate
(3] Magenta box => Min curv. [8) Light magenta =» Mo match
[-1] Grey box => Set by user filter

[-2] Grey crosz =» Excluded by user filker

[-3] Light grey box => Interpolation requested by user filter
Yellow circle = More than 5% of pisels dizcarded

Fed circle => Mare than 20% of pixels dizcarded

Means

v Automatic r r
E

Cloze QK | Cancel

Figure 106: The Validation tab of the PIV dialog.

~140 -

DigiFlow Menus

User filter

The User Filter tab provides the user with the ability to supplement or override DigiFlow’s
normal validation filters. When enabled DigiFlow provides the user’s dfc code with the two
images as the variables ra and pp, along with the pixel displacements as the two-dimensional
arrays u and v. The locations of these vectors are supplied in x and v, while the current state of
the vector is indicated by state. Finally, the string cai1type indicates the point in the
algorithm when the call to the filter is made. This may take one of the values "pixe1,
"SubPixel", "Reverse", "Distorted” Of "Final". The values taken by the state array
reflect DigiFlow’s default assessment of the individual displacement vectors. A list of the
categories is given in the lower half of the User filter tab.

PIV @§|
|nputs] Outputs] Interrogation] Validation]
User Filter l Usger Interpolation] Quality]
. Caontrals
User filter
M s

Pa, Pk pass the imdges
ox.Fou,v (2ll -,)] pass the position and
statel:, ;)] passes the wvector state

ealllype indicatas |User code specifying a displacement vec
Returm reb. u, rek vemT TET.oTE =TTET

A Fopr ret state, -1 seds a new value for v
k= -2 regusasts Digiflow to p
k=3 =3 excludes 2 point from
A mull relurn value (i.e. ret o= oulls)

ret _state:=state;
ret _u:=u;
ret_wis=w:

ret;

Vector classification [state] 4 => Reject diff [vellow box)
0 =» Good vectar 5 => Maw disp [light red box)
1 =» Mo data [red cross) & => Dutlier [dark green box)

2 =» Min testure [blue box] 8 =» Interpolate [green box)

3 =3 Min cury. [magenta box] 9 =: Mo match [light magenta
Retumn flags [ret.state) C

-1 =x Welocity zet by uzer filker [grey box)

-2 =» |nterpolation requested by user filter [light grey boz)

-3 =» Excluded by user filter (light grey crass)

-4 = Accept as a good vector [no marking)

Call the uger code specifying a walidation filter

Ok, | Cancel |

Figure 110: The User Filter tab.

The user code should return a compound variable containing the components .state, .u
and .v, each of which are arrays of the same size as the corresponding arrays provided to the
dfc code. The return values in . state request DigiFlow to treat the displacement vector in the
manner specified in the lower half of the User filter tab. If .state for a given vector is set to
—1 then the vector supplied .u and .+ will be used in place of that calculated by DigiFlow.

~141-

DigiFlow

User interpolation

Menus

The User interpolation tab provides a way of customising one of the key steps in the pattern
matching algorithm, namely interpolating the velocity field from the location of the

interrogation vectors to the entire image plane.

PIV [|mesel
IripLits] Outputs | Intenogation | W alidation |
User Filker User Interpolation | Quality |
Caontrols ‘
w5

& CQutput erray of size Orny-1, 00ny-1.001

A mwell iF DigiFlow defeult interpolation &
& or integer to specify type of interpolat
k= ¢l limesr, 2 cubic, F splime. ¢ BSpli
interpolate image{wr,nx.ny,x0,y0,.dx, dy,ste

w2 0:1]
T,
dx.dy
1A,
#0.y0
callType
GQualityf:..:]
0
1]
2]
3
4]

"

Velocity wectors

Fequired autput resaolution
Spacing bebween vectors
Mominal size of interogation windows
Lozation of first wectar

‘Why the interpolation iz required
Guality rmeasures for vector
Difference measure

¥ curvature

Yourvature

State

Fraction discarded

Allow the yzer interpolation dfc code to be applied

-

Cloze

= |

Cancel |

Figure 111: The User interpolation tab provides a way of customising the interpolation step whereby
the velocities at the interrogation points are interpolated to the entire image plane.

The controls available on this tab are identical to those for the pattern matching in synthetic
schlieren (see 85.6.4.3). The example given in figure 111 uses a biquadratic fitted using a
least-squares routine for all parts of the PIV process where interpolation is required. Note that
this process only gives approximate interpolation as the least squares solution will not
generally pass through the corresponding mesh points. Substituting the following code will
keep the default behaviour for all except the generation of the intermediate velocity field used

to distort the images:

if (callType = "Distorted") {

sx := xX_size(uv);
sy := y_size(uv);

fit_image b spline(uv,nx,ny,x0,y0,dx,dy, nxParts:=sx/2,
nyParts:=sy/2,x0Order:=3,yOrder:=3) ;

} else {
null;
};

~142 -

DigiFlow Menus

Here, we detect when the interpolated field is required for image distortion using the
callType Variable. If not, then returning a nu1l indicates to DigiFlow to use the default
interpolation. Here, when cal1Type IS "Distorted", We Use a least squares fit of the velocity
field using cubic b-splines to reconstruct a smoothed high-resolution version of the velocity
field with which to distort the images prior to the next stage in the pattern matching algorithm.

Quality output
The Quality tab provides the option of outputting information that DigiFlow generates to
assess the quality of the individual velocity vectors.

PV =5
. Inputs] Outputs] Interrogation | Validation |
User Filker | Jzer Interpolation Cuality

Clutput t
Guality ‘&

[default

[l di

Options... |

Iv Dizplay

Data plane
0 Difference measure
® curvature
¥ curvature
State
Fraction discarded
 vector position
W wector pozition
« displacement
v dizplacement

[= S L I L

Cloze (] | Cancel |

Figure 112: Optional output of information relating to the quality of the velocity vectors.

The optional output stream created by this feature must be saved as a .dfi file. The pseudo
image created contains multiple planes of image data, as indicated in the dialog box. Note that
unlike with a .dfi file containing velocity information, DigiFlow does not format the image in
any particular way for display. Opening a quality .dfi file will simply display the first image
plane. The contents of the quality image is identical to that for Synthetic Schliere, thus the
reader is referred to 85.6.4.3 for further details.

Post processing

Selection of the most appropriate output file format (between .dfd and .dfi) depends on the
type of post processing to be undertaken.

~143 -

DigiFlow Menus

If the .dfi format is selected, then the PIV velocity files may be fed back into DigiFlow as
multi-plane images containing the velocity field. These can be processed using most of the
standard DigiFlow tools, preserving the nature of their contents. For example, the Analyse:
Time Average facility can act upon a sequence of PIV velocity files to produce the time
average velocity field. Similarly, the various other time series tools described in §5.6.1 can
operate on these images, as can the general manipulation tools Recipe, Transform Intensity
and Combine Images (see 885.7.1, 5.7.2 and 5.7.3). There are standard recipes in the Recipe
facility to aid with basic manipulations of this data. For example, the recipe
Velocity.Background.Divergence recipe lets you change the background of the velocity field
from the one saved during the PIV processing to display the in-plane divergence field.
Similarly, there are recipes for vorticity, stream function, velocity potential, shear, etc. Note
that for PIV data, velocity gradients are obtained by a finite difference operation of the
velocity field.

Saving the output in .dfd format is appropriate if post processing is to be undertaken using a
third party or user-written program as the .dfd file contains an ASCII representation of the
velocity field. Note that you can always convert a .dfi file into a .dfd file using Edit Stream
(85.1.6) or one of the other related image manipulation tools by simply specifying a .dfd file
for the output.

Stereo PIV

A single PIV calculation will provide two velocity components parallel to the image plane.
However, if there are a pair of simultaneous recordings of the image plan from somewhat
different angles, then these can be used as a stereo pair to recover three velocity components
in the image plane. The documentation here is not intended to provide a full description of
how to achieve this, but rather to act as a pointer to the separate document,
DigiFlow_StereoPIV.pdf (and DigiFlow_StereoPIV.htm) that provides further information on this
specialist procedure.

There are a number of key steps in obtaining the three-component two-dimensional (3C2D)
velocity field:

1. Capture of a synchronous stereo pair of images of the flow

2. Processing, in pixel coordinates, of the two apparently two-dimensional velocity fields
(one from each of the stereo pair).

3. Determination of the two-dimensional (in-plane) coordinate system for each of the
images in the pair.

4. Determination of the stereo-pair to three-dimensional coordinate system and its
derivative (used for transforming the velocities)

5. Utilisation of the coordinate systems to transform the stereo pair of velocity fields into
the 3C2D velocity field in world coordinates in the image plane.
At present, steps 3, 4 and 5 are handled through macros utilising a tailor-made set of built-in
dfc functions for improved efficiency.

~144 -

DigiFlow Menus

5.6.6 Particle Tracking Velocimetry

5.6.6.1 Tracking particles
Toolbutton:
Shortcut:
Related commands: process Analyse PTVTrack(..)

Background

Particle Tracking Velocimetry (PTV) differs from Particle Image Velocimetry (PIV) in a
fundamental way. Whereas PIV (described in 85.6.5.2) relies on pattern matching in an
essentially Eulerian way, PTV seeks to identify individual particles (or other equivalent
features) and follow them in a Lagrangian sense. As PIV is the more widely used of these
techniques, it is worth discussing the relative merits of the two approaches.

The strengths of PIV are that is fairly robust to noise and has excellent velocity resolution
(the accuracy with which displacements may be obtained is a function of the cell size and the
distribution of features within it rather than the pixel resolution). The spatial resolution is
inversely proportional to the cell size: the overall data quality is thus a compromise between
velocity and spatial resolution. The main disadvantages are the considerable time required to
compute the optimal correlation and the inability to cope with any structure across the
illuminated plane (i.e. velocity gradients parallel to the viewing direction). In general the
method does not allow individual particles to be tracked, and hence has no immediate access
to Lagrangian descriptions. However, it is a relatively simple matter to add some degree of
particle tracing once the velocity field is known, and hence access the Lagrangian nature of
the flow.

Particle tracking offers a more fundamental approach to PIV. There are two main
approaches which are exactly equivalent to the manual methods of analysing streak (or
multiple exposure) photographs and multiple (time series) photographs. In the streak
photograph method, the effective camera shutter is opened for a long time during which the
particles move many particle diameters. This long exposure may be produced directly with a
suitably slow shutter speed, or synthesised by combining multiple exposures (e.g. ORing a
sequence of video frames using a digital frame grabber with a shutter speed equal to the field
rate - the DigiFlow facility described in 85.6.5.1 has this as an option). Once the streaks have
been produced, image processing techniques may be applied to locate them and analyse their
shape, orientation etc.

The alternative of utilising a time series of images offers a greater volume of information
on the particle positions as a function of time, especially in the context of digital image
processing where quantisation yields a relatively low spatial and intensity resolution. Knowing
the approximate location of a particle at a relatively large number of times enables a much
more accurate estimation of the position of a particle at a given time, and of its velocity,
provided the sampling frequency is much higher than the highest frequency in the particle
motion. To make use of this information some method must be developed for tracking
particles from one image to the next. In the limit of particles moving only a small fraction of
their diameter between each sample, the process of matching particles in one image with their
position in the next image is straight forward - the particle images closest together in two
adjacent samples will correspond to the same physical particle. However, if the particles may
move many diameters between samples, more sophisticated algorithms must be employed.

The algorithm used in the matching process may utilise spatial and temporal information in
addition to particle characteristics and prior knowledge of the flow. Generally, only some of
these features will be needed to determine which particle image is which particle. For
example, if spatial correlation is not utilised, then two-dimensional projections of three-

~ 145 -

DigiFlow Menus

dimensional flows with significant velocity gradients parallel to the direction of viewing, may
be analysed (recall that PIV techniques are unable to cope with such images). Moreover, the
basic approach is not limited to a two-dimensional projection of a three-dimensional flow but
is capable of full three-dimensional analysis. By applying the matching process repeatedly,
time-series for individual particles may be obtained to describe some of the Lagrangian nature
of the flow.

The accuracy with which the velocities may be measured is limited by the accuracy with
which the individual particle images may be located and the time period over which the
velocity may reasonably be evaluated (this must be shorter than the period corresponding to
the maximum frequency in which you are interested). The accuracy of location depends in
turn on the particle size, the bit depth and quality of the images, and the method used to
determine their positions. In general, the velocity resolution will be less than that for the
cross-correlation approach, but is nevertheless excellent in many situations. The spatial
resolution is limited primarily by the number of particles in the flow: the more particles, the
higher the resolution. In practice the resolution of video technology and the frame grabber
imposes the most stringent limitation on the number of particles able to be tracked. Eulerian
as well as Lagrangian descriptions may be obtained, utilising a suitable interpolation method,
if the particle seeding density is sufficiently high.

The techniques and algorithms used by DigiFlow are based on those originally developed
in 1988 and described by Dalziel (1992). These same techniques and algorithms were
incorporated in the Diglmage processing system. These algorithms have been refined and
enhanced in DigiFlow to improve computational efficiency and, more crucially, to improve
the overall performance of the particle tracking process. The interface with these algorithms
has been greatly simplified when compared with Diglmage, making the tracking process more
generally accessible.

This section outlines and describes the two-dimensional particle tracking technique utilised
by DigiFlow. This method represents an efficient, reliable approach to tracking particles from
a two-dimensional projection of a flow. The computation required to analyse each frame pair
increases only slightly faster than linearly with the number of particles, allowing very high
processing rates.

Particle location

The basic strategy behind the particle location is to scan through the image for blobs that
have an intensity satisfying some threshold requirement. If a blob is found, then its
characteristics are determined and compared against a set of requirements for the blob to be
considered a particle. If the blob satisfies these requirements, it is recorded as a particle, if it
does not, it is discarded.

By scanning through the image with a range of different thresholds, it is possible to pick up
particles with a broad range of intensities, allowing optimal performance. A blob that was
rejected at one threshold may well be picked up as a particle at another threshold.

The particle location procedure ultimately records not only the location of the particle (as
determined by its volume centroid, relative to the threshold, but also a broad range of other
particle characteristics, some of which are used in the subsequent matching process.

Matching algorithm

Once all the particles in an image have been found (at t = tn+1, Say), they need to be related
back to the previous image (t = tn, say) to determine which particle image is which physical
particle. In DigiFlow we use a modification of what is known in operations research as the
Transportation Algorithm. This approach was that developed by Dalziel (1992). While the

~ 146 -

DigiFlow Menus

problem solved by the transportation algorithm may be represented as a 0-1 totally unimodular
integer linear program, it is more efficient and illuminating to take a graph theory approach.

The idea is to choose a set of associations between two sets of entities, such that the set of
associations is optimal in the sense that it minimises some linear function of the associations it
includes. For the particle tracking, one of the sets is the set of particles P at t = t, and the other
the set of particles Q at t = th+1. We shall start by assigning a label to all the particles images
in the two images. At t = t, the particle images are labelled pi for i=1 to i=M, while at t = th+1
they are labelled g; for j=1 to j=N. Each pi or g; contains not only the location of the particle,
but other characteristics such as size, shape, intensity, and any other desired piece of
information. We now define a set of association variables aj. If ¢ is equal to one, then we
will say that pj at t = tn is produced by the same particle as g;j at t = th+1. If o is zero, then p;
and g;j represent different physical particles.

For the time being we shall assume that there is one and only one physical particle for each
of the particle images. We shall consider groups of particles later in this discussion. For the
present it is obvious that, for given pi, at most only one value of j can give «j equal to one,
otherwise the physical particle must be two places at once! Identical arguments apply for each
p;. If M is equal to N, it may be possible for there to be exactly M = N values of «;j equal to
one. However, this will seldom happen in real experiments, where there will normally be
fewer than M = N values of g equal to one. Moreover, the number of particles images at the
two times will not always be equal.

There are many reasons why the number of particles in the image may be different at t = t,
and t = ty+1. The simplest is that the particle may have moved outside the region of the flow
being tracked, either by moving outside the bounds of the tracking region, or by moving out of
the illuminated region (e.g. moving out of a sheet of light). To overcome this problem we
define aoj and aio as dummy particles at times t =t, and t = ta+1. Unlike ordinary particles,
more than one value of j or i may give a nonzero value of aoj or aio (respectively). In this case
a nonzero value of aio indicates that particle p; at t =t, has been lost from the image by
t = th+1, either by moving out of the image or for some other reason. Similarly, aoj=1
represents a particle gj present at t = th+1 which was not there at t = tn.

In order to determine the optimal set of nonzero aj, we must first define the functional to
be optimised. The only restriction this method puts on the functional is that it is linear in the
associations, aij, and so may be represented by Z, the sum over i and j of aijcij. Elements of ¢;;
represent the cost of associating particle pi at t =ty with particle g; at t = ty+1. The optimal
solution will be chosen to minimise the objective function Z.

Typically the costs cij will be specified using some function of the particle positions,
particle characteristics, temporal history and the physics of the flow. Conceptually the
simplest model is to set cjj equal to the separation between particle pi and particle g; (coj and
Cio may be set to the distance to the boundaries of the observed region, or the maximum
allowable distance a particle may be allowed to travel between t, and tn+1). The optimal
solution will then try to minimise the particle displacements, allowing only associations which
do not exceed the cost limits placed by coj and cio. The costs cij could equally as easily be the
squares of the displacements, yielding a type of least squares optimal solution.

If we are trying to measure the fluid velocity (rather than Brownian motion, say), then a
more appropriate set of cost functions would include some fluid dynamics. This may be
achieved at the most basic level by predicting the positions the particles at t = t, will have at
t =tn+1 using their velocity (and possibly acceleration) at t =t,. The costs cij may then be
some function of the separation between the predicted position of p; and the position of g;. If a
particle at t =t has only just entered the image, then we are unlikely to have more than a

~ 147 -

DigiFlow Menus

rough estimate for its velocity and so are unable to predict accurately where it might be at
t =th+1. TO enable matchings to still occur to such particles, we must reduce the costs of
associations with them and allow matchings over larger distances than for particles for which
we have a velocity history (we may also, however, add some fixed cost for this new member).
While the cost reduction — and associated increase in the allowable separations—when there is
no velocity history may produce some mismatching, the requirement for a much more exact
match would not then be satisfied at t = tn+2, and so the mismatch would not continue. During
subsequent analysis, if we accept only paths which passed through three or more samples
during the tracking phase, then we will eliminate any mismatches due to the less stringent
matching requirement for a particle with no velocity history.

Additional factors such as the particle size, intensity, shape or even colour may easily be
brought into the costing function. Every added component in a well-chosen functional will
increase the probability of a correct matching, but at the expense of increased computation.
Fortunately, provided the particle seeding density is not too dense, the extra criteria are
unlikely to add significantly to the quality of the results. Experience has shown that the
tracking results are relatively insensitive to the exact function used for the costs cij. Any
mismatches which arise due to a short coming in the costing procedure will be short lived
(they will fail to match on the next step) and may be trapped during the subsequent analysis
phase through acceleration checks.

The basic cost in DigiFlow is given by

Cij:q)(pi)+zf:max(o’wf(pi)gf(pi’qj)_rf)’ (23)

where ®(pi) is a fee determined by previous history of pi. The summation is over a list of
properties f determined by the location process. These properties include location, threshold
(intensity) and size, but in some cases a broader range can be used.

For each particle property there is a unit cost ax(pi), a threshold z and a cost function
&i(pi,gj)- The cost function ¢i(pi,g;) depends on the instantaneous properties of the particles pi
and g;j, whereas the unit cost ax(pi) may depend on whether or not the history of p;i is known. A
typical example of i(pi,q;) is that for the particle’s location,

2
é/x(pi’pj):‘xi"'ui&_xj‘ | (24)
where x; and u; are the particle location and velocity at t = t,, while x; is the particle location at
t = th+1. The corresponding unit cost is

if no previous matches
o, (p;)= if one previous match : (25)

if more than one previous match

Jol P e S e

where L1, L2 and L3 are the maximum matching distances for the first, second and subsequent
matches the particle pi may make. The cost of a change in threshold is similar,
2
C:T(pi’pj):‘-ri _Tj‘) (26)
where Ti and T; is the threshold identifying the particle at t, and t.+1, respectively. Here the

corresponding unit cost ar(pi) is divided into only two costs depending on whether or not a
particle has a history.

~148 -

DigiFlow Menus

The fee ®(pi) is typically taken as zero if the particle has a valid velocity history, and
positive if it does not (the ‘joining fee’). The purpose of this fee is to promote the preferential
matching of particles with a valid velocity history. In contrast, w(pi) is reduced when there is
no velocity history to allow matches further a field.

This strategy to assigning costs has proven simple yet flexible and provides a framework
that is relatively easy to understand. This model is more sophisticated than that used in
Diglmage in that particle properties such as intensity and size play a more prominent role in
DigiFlow. Tests have shown that this provides a substantially improved matching
performance when there are very high particle number densities.

Particle tracking streams
The DigiFlow PTV facility takes an input stream, showing the experiment, and produces an

output stream that contains the particle locations, particle properties, and the inter-frame

particle associations.

PTV 7 |meal

Input/Dutput | Location plicy | Background ilumination | Cost policy | Prediction policy |

Input Cutput
E speriment Farticle data

I andatony:

Optinrs for particle output
stream

: Image spacing
[*PIYTest3 mov" |D.D22989 seconds |

Process.. | [Fie, | Optors. | Fie.
W' Display Sift.. ' Display
Progress window =
Wector scale =
v Show unmatched old [Show grid velocity e 100 1
ackdrop
™ Show unmatched new ¥ Show first match -
0ld time -
[Show predictions for matched W Show second match Paints
v Show sleeping matches ¥ Show later matches 7

Close 0k, | Cancel |

Figure 113: The PTV tab controlling the input and output streams.

The Input stream may be in any valid image format. This is specified in the normal way
through clicking File to specify the source if the stream is to be taken from a movie or
sequence of images. In such cases the stream may be trimmed for length, a subregion selected,
etc., using the Sift button (see 84.3). If the image source is from an upstream process, then this
should be specified using the Process button.

The Output stream should be specified as a .dft file. This special file format contains all the
particle data and its associations. These .dft files may be viewed using the normal DigiFlow
tools; in such cases, the particle data is rendered back as an image. However, these files are
really intended for use with the other PTV tools within DigiFlow which can access their
contents directly.

The output stream is specified in the standard way through the File button. While Options
may be set, there is not generally any benefit to be gained from doing so.

~ 149 -

DigiFlow Menus

The Progress window group controls what is displayed as the particle tracking proceeds.
The information selected here can help assess the performance of the particle tracking, and
provide a guide to any adjustments to the Cost policy that may be required. In all cases the
velocity of matched particles will be displayed, using white for particles that have been
matched over three or more intervals in time, yellow for particles matched over two intervals,
and cyan for particles matched only once. An example of the Progress window is shown in
figure 114.

v/ /

Figure 114: Enlarged example of the Progress window for particle tracking with all the optional
output switched on and Streaks selected as the backdrop. Here VVector scale is set to 4.0, so the
arrows are four times the length of the actual displacements. The white arrows are particles that have
been matched more than two times, the yellow arrows particles that have been matched twice and
cyan arrows particles that have been matched only once. Dark green squares are old particles that
have not been matched, with dark green circles showing their predicted position. Dark green
diamonds are new particles that have not been matched. Dark magenta circles are the predicted
positions of particles that were matched, and light green arrows are the gridded velocity field.

If Show unmatched old is checked then particles at the earlier time step that are not
matched to the later time step will be highlighted by a square box drawn in dark green around
them, and by a circle (also in dark green) at their predicted location. Similarly, if Show
unmatched new is checked, then any particles in the later time step that were not matched will
be highlighted by a diamond drawn in dark green around them. (If the dark green diamond
coincides with a dark green circle then the corresponding particle was not matched due to its
change in intensity, area or one of the other image attributes.)

Checking Show predictions for matched will cause dark magenta circles to be drawn
around the predicted position for particles that were matched. Any difference between these
circles and where the particle is actually located may help diagnose why mismatches occur.

DigiFlow allows particles to go to ‘sleep’ for one frame but for them to still be matched
across this period of sleep. The Show sleeping matches check box causes such matches to be
shown in the Progress window..

At each time step DigiFlow calculates an approximate gridded version of the velocity field.
The primary use of this is as an estimate for the velocity of particles with no prior history. By
checking Show grid velocity this grid will be displayed in the progress window in light green.

—150 -

DigiFlow Menus

The initial size of the arrows for plotting the velocity is set by Velocity scale. A unit value
causes the arrows to be drawn at the same length as the displacements they represent.

The vector and particle information shown in the Progress window is displayed on top of
an image of the experiment. The Backdrop list selects exactly how this image is constructed.
Selecting Streaks will use a decaying series of images superimposed to give an impression of
the particle motion, while Old time and New time will show one or the other of the two images
being processed.

The Image spacing is shown here for information only. If the particle tracking is to be
undertaken on a sequence of images that do not contain time information, then the default
spacing will be 1.0 seconds. This spacing may be changed, however, in the Sift dialog (see
83.6).

Particle location policy

The location of particles is of central importance to the performance of PTV. In DigiFlow,
this process is controlled by the Location policy tab.
PTV R ==

Input/Output Location policy |Background illurnination | Cost palicy | Prediction policy |

Yiew 2o E Frame [ﬂ Fieset

Threshold Mumber of particles
b awirurn (.4 =] 1627
=1
Minimum {0.05 = Freprocess
=1

MHumber faint levels
Mumber |1 g jl |2 ;l

[background]
[rione]
Tin-max
min-max then filker

v Greater W Quadratic

Blob +alidation

Mimirmurm area |3 =] M awirmum area (100 =]
=1 =

Mirimumn = size | Maximum = size 10 |
: =] =1

Mirirmurn p size |3 =] Mawimurm v zize 10 =]
=1 =1

¥ Allows smaller if faint

Minimum excess {005 =]
Finirumn size if faint |2 ﬂ =1

Mawirurm mismatch 1.0 =]

+ OF [white) =1
[Big [magenta) Maximumn conelation [f g5 -1
0 Shape [yeliow) —=1
< Centre mismatch [owan) b awirum edoe (300 =]
to area ratio =]

Cloze kK | Cancel |

Figure 115: Parameters controlling the PTV particle location policy.

Best results can be achieved from high quality images that have bright, clear particles
approximately two or three pixels in linear dimensions, on a uniformly black background.
Such experiments, however, can be difficult to achieve in practice. The particle location
strategy used in DigiFlow builds on the experience with Diglmage to provide a robust,
accurate and efficient method of getting the best possible results from the available images.

DigiFlow provides a preview of the located particles to aid the process of setting the
various parameters. This preview is activated by clicking the View button. Placing the cursor
over the preview will provide the normal feedback of the intensity at the location of the
cursor, while the I, B and B buttons provide the ability to zoom in, zoom out and resize the
preview window. The preview window contains white plus (+) marks indicating the particle
locations superimposed on top of an image of the image (see figure 116). Additionally, a

- 151 -

DigiFlow Menus

subset of the rejected ‘blobs’ are indicated by magenta boxes (blobs too big), yellow circles
(inappropriate particle shape, controlled by Maximum correlation and Maximum edge to area
ratio) and cyan diamonds (mismatch between area and volume centroids, controlled by
Maximum mismatch). The preview window is terminated by a second click of the View
button. The location of the preview image within the time series is determined by the Frame
control.

Even if the preview is not generated the Number of particles box will show the current
estimate for the number of particles within the frame. This count is updated automatically
whenever one of the location control parameters is changed. Note however, that if a control is
changed while DigiFlow is still processing the last lot of changes, then the count (and
preview) may not reflect the latest changes.

The best results can generally be obtained by directly probing a high quality raw image
stream. However, for inexperienced users or less than ideal image streams, optimising the
settings for this can be difficult. For this reason, DigiFlow provides the possibility of
preprocessing the images to provide a more uniform and consistent structure to the images.
This preprocessing necessarily destroys some of the information contained within the original
images, but the algorithms are designed to keep this to a minimum.

The preprocessing is controlled through the Preprocess list box. As noted above, the
greatest accuracy can be achieved by selecting (none) to suppress preprocessing, although for
a given image stream this may not be appropriate. For inexperienced users the min-max filter
option is recommended. This nonlinear filter attempts to remove background variations on
scales larger than the particles, thus effectively resulting in the particles appearing on a
uniform black background for subsequent location. A different form of preprocessing is
available by selecting (background). This activates the controls on the Background
lllumination tab (see below) which allows an image of the experimental setup without particles
to be removed from the experimental images.

The starting point when changing the locations parameters is normally setting the range of
intensities through which the threshold will be scanned. This is achieved using the Threshold
group. The location process begins by looking for particles satisfying the threshold Maximum,
gradually decreasing this in Number discrete steps down to Minimum. The Greater check box
will cause DigiFlow to search for bright particles on a dark background, while clearing the
check box sill invert the incoming image stream, thus allowing it to be treated in the same
way. The Quadratic check box controls the distribution of thresholds between the two limits.
For many experiments, having Quadratic checked works best.

—152 -

DigiFlow Menus

|
Seiect 'Option’ i Cursor: Works Frame: 0 (0.000¢) 100% Paused: PTV frews

Figure 116: Preview window showing the particles that have been located.

The Blob validation group provides the information necessary to decide whether or not a
given blob that has been located should be treated as a particle. The left-hand column is pretty
much self-explanatory. Blobs smaller than Minimum area will be ignored at a given threshold,
but they may well be picked up as particles at a later (lower) threshold. Blobs exceeding
Maximum area will be discarded. The reason for having limits on both linear dimensions and
particle area is to help ensure the particles are roughly circular and ensure that they may be
located with subpixel accuracy. The upper limits are provided to prevent spurious features
within the image from being picked up accidentally. The Maximum x size and Maximum vy
size not only set the upper size limits, but also provides the length scale for the filter that is
used when the min-max filter is selected for Preprocessing.

The mean intensity of a blob relative to the threshold at which it is identified must exceed
Minimum excess, which ensures the image is sufficiently well defined. The location assigned
by DigiFlow to a particle satisfying all other criteria is the volume centroid, where the third
dimension is the intensity relative to the threshold. However, DigiFlow also calculates the
area centroid; the maximum difference between the locations of these two centroids is
determined by Maximum mismatch.

Other aspects of the geometry are tested using Maximum correlation, which is the
correlation coefficient of the pixels within the blob. In general a value close to 1 or -1
indicates that the blob is linear rather than circular in nature. Similarly, Maximum edge to
area ratio compares the square of the number of pixels marking the boundary of the blob with
the number within the blob. A large value for this ratio indicates either linear blobs or blobs
with very convoluted boundaries. As an indication, a large, circular blob would have this ratio
equal to (22r)%/(ar?) = 4, a square would have a ratio of 16, while a line of length L and a
single pixel wide would have the ratio equal to 4L. The default value is somewhat higher than
this to allow a broader range of particles to be tracked.

The Reset button will restore all of these parameters to their default values.

In addition to providing a preview of the particles found, the View button also provides a
plot of the size distribution of the particles identified.

—153 -

DigiFlow

ParticleHistogram

1.0+

B
084 o Eey
v [mage
0 Humberof particles
:.:? . + Homhberof small frint particles
g o o hrea of particles
& 061
=y 0
o o
< .
u o
s
: g
i;‘ 044 _
L]
o o
lu}
0.2 o
i
8 7
g
¥
0.0 — — + T T)
0a 0.2 0.4 0a 08 10
Threshold
Kl

R:FF:5:00;B:FF ij: 7O, 487 (pizel)

Frarme: 0¢0.000s)

Menus

Figure 117: Histogram showing particle number and area for given categories of particles identified
by the Locaion policy.

Background illumination

The controls on the Background illumination tab are enabled by selecting (background) in
the Preprocess list on the Location policy tab. The Background illumination tab provides a
convenient method of correcting your experimental images for a non-uniform, non-zero
background illumination in the experimental images.

Typically all that is required is a single image. This can be an image of the experimental
setup with no particles present, or may be constructed from the experimental setup itself. If
the particles are brighter than the background then a typical strategy for the latter is to work
out the minum intensity for each pixel using the min feature in Analyse: Time Average (see
85.6.1.1). The rationale behind this is that a given pixel will be at its darkest when no particle

is present. (If the particles are darker than the background, then use max instead of min.)

~154 -

DigiFlow Menus

PTV -8 |mesal
Input/Output | Location policy Background illumination | Cost policy | Prediction policy |

B ackground llumination

~
~ Nane nSamples
Calculate =]
100
* Image =
|lumination image
[Sequence

|"F'IVTesH¢_Backgr0und. dri*'

Process... |

W Display Sift...

Cloze ok | Cancel |

Figure 118: The Background intensity tab controls the removal of background variations in the
intensity.

When Image is selected, the background image is specified as either a single image or as a
sequence of images; which is determined by the Sequence check box. In most situations a
sequence is unnecessary, but if there are moving parts, or significant predictable changes in
illumination, then a sequence may be desirable.

If Calculate is specified, then a background illumination image is constructed from the
experimental input in the manner described above. Rather than using every image in the input,
it is frequently only necessary to use a subset of the images. The nSamples control specifies
the maximum number of samples that should be used. These will be evenly distributed over
the duration of the experimental image sequence. Note, this control shoul not be used when
the experimental image sequence is obtained from a process rather than a file. The
background image generated in this manner is not saved; moreover, it is not available until the
particle tracking process starts, and so it can be more difficult to set the particle location
parameters. For these reasons it will normally be more convenient to manually construct the
background image using Analyse: Time Average (see 85.6.1.1), should you need one.

— 155 -

DigiFlow Menus

Costing policy

PTV L2 el
Input/Output | Location palicy | Eackground ilumination Cost policy | Prediction policy]
taximurm matching distance Other costs
First match =] Juoining fee |
E = J IR =l
Second match (4.0 =] Small faint particles
=l [Allow first match
Later matches |2 ﬂ ¥ Allow second match

Fremium |05 ﬂ

Attribute costs

nit cost

First match Later matches Threzhald
Threshold change |4.D ill ||3_-| ﬂ ||3_-| ill
fueachange 02 :II 005 :II 20 :II

Sleeping particles

Premiumn [0 5 ﬂ M aw frames asleep |2

-l

Reset
Cloze kK | Cancel |

Figure 119: Parameters controlling the costing policy for particle tracking.

As noted earlier, the matching process is governed by the cost assigned to each of the
possible associations between the sets of particles identified at different times. The Costing
policy tab defines the various factors that go into determining the cost. Each of the parameters
is described in turn below, followed by a brief guide on strategies for adjusting them, should
this prove necessary.

The most important parameters in most cases are those in the Maximum matching distance
group. The three distances given here determine the maximum distance (in pixel separation)
between the predicted position of a particle and where one is actually found. As any prediction
of a particle without a history the First match value should normally be larger than the other
two. For flows with low accelerations the Second match and Later matches should be similar
or even the same. These maximum separations will be realised only if the particles do not
incur other costs in the Attribute costs group (see below). (For users familiar with Digimage,
the Later matches is similar t0 [; USPM Maximum matching distance] and First match is
similar to [;USM Max new paths error] When expressed in pixels.)

The Other costs group contains other costs that are used to modify the matching process.
The Joining fee (range 0 to 1) is applied only to particles that do not have a history. Increasing
the Joining fee does not affect the Maximum matching distance for the First match, but does
decrease the probability that an association with the particle will be permitted.

The Attribute costs group is used to increase the cost of an association if the attributes of
the particle images concerned differ. Two sets of values are specified: one for the First match,
and a second for Later matches. In each case, no cost is incurred if the attributes differ by less
than Threshold.

The Threshold change cost and Threshold, and the Area change cost and Threshold work
in a similar way to the distance cost, although the measure of the area change is

—156 -

DigiFlow Menus

2|Ai — Aj|/(Ei + E;), where A; and Aj are the areas and E; and E; the number of edge points for
the old and new particles, respectively.

In most circumstances the default values (which can be restored using the Reset button)
will work well. However, in some flows it might be necessary to adjust things either to reduce
the number of spurious matches, or to allow DigiFlow to lock on to particles that are moving
very rapidly.

Prediction policy
The prediction policy (see figure 120) determines how velocity information is incorporated
into the distance function (24). Velocity weighting determines how much of the velocity from
the last match for a particle is used to predict its new position, and the Acceleration weighting
does a similar thing with the particle Lagrangian acceleration (when there is sufficient history
to evaluate this). This particle-based velocity is not the only potential source of velocity
information. DigiFlow also calculates a grid velocity which is based on the average particle
velocities within grid cells covering the domain. The Grid weighting determines how much of
this is incorporated into the prediction. In particular, if V is the velocity weighting and G is the
grid weighting, then for a particle with a velocity history the velocity the velocity used in (24)
is
ui = Vui" + (1-V)Guy, 27)
where u;" is the particle velocity from the previous time step and ug is the grid velocity. When
there is no velocity history then
Ui = Gug. (28)
PTV 7l

Input/Dutput | Location policy | B ackground illumination | Cost policy Prediction policy |

Prediction policy

Exizting pathz Predict with velocity file
wheighting Memam [Use velocity fle
Farticle velocity [FE =1 1~
L =1
Acceleration|q 5 =1 o
: = wWeightin [
N | gniing |1.0 =
Girid welacity |1 I ill |D.?5 ill DISALLED.

Select input image
sequence]

Rezet paths
[~ Pernadic reset

Interval [o j

Predict with formula |

[Use farrmula when mo history F

wWelocity fn .

p¥elocity |q .

Reset
Cloze kK | Cancel |

Figure 120: The controls for the prediction policy.

The above strategy for determining the velocity may not be appropriate if the mean velocity
is significantly different from zero. In this case we may enable use formula and specify (in
pixel units) a background velocity field using u Formula and v Formula. The resultant
prediction is then given by

- 157 -

DigiFlow Menus

ui = Vui" + (1-V)(Gug + (1-G)us), (29)
when there is a history, and
ui = Gug + (1-G)us (30)
when there is not. The u Formula and v Formula are specified in terms of its location x, y (in
pixels) and the time t. A typical example of the use of this function would be for flow in a
flume, where the two formulae would simply represent the mean flow.

When there is insufficient particle information to evaluate the grid velocity at a given point,
DigiFlow will a memory of the last calculated grid at that point. This memory fades in a
manner determined by Grid memory. If Use formula when no history is not set, then the grid
velocity will decay towards zero by taking the product of Grid memory and the current grid at
each time step.

In some cases it may be desirable to feed in the predicted velocity from a sequence of .dfi
files. These may, for example, be the result of a previous attempt at PIV or PTV (using the
PTV Grid velocity feature of 85.6.6.5). Such a two-stage process can help DigiFlow latch on
to particles in problematic regions of high gradients or in high-speed flows. Note that once
DigiFlow has latched on to the particles they will be treated in much the same way as normal.
This feature is enabled via the Use velocity file checkbox. The supplied velocity information
may be a single .dfi describing a steady mean flow (in which case clear the Sequence check
box), or it may be a time-varying sequence. Note that in both cases it is essential that the
velocity information is provided for the same region as the tracking and that the same time
spacing is used. It is also normally best if the velocity information is provided in pixel
coordinates. The Weighting control within the Predict with velocity file determines the relative
importance of the supplied velocity file and the normal gridded velocity, described above.

Image sequences of high-speed flows sometimes consist of repeated short bursts of images
where the image spacing within the burst is shorter than that between bursts. PIV often uses
this technique with two closely spaced images in each burst. The Reset paths group is
implemented to aid the tracking of sequences containing bursts of images with a different time
interval between the bursts than between the images within the burst. For most cases, Periodic
reset should be unchecked, meaning that the spacing between all images are the same and that
matches should be made over each image pair in turn. Checking Periodic reset will force all
paths to be broken (i.e. no matches allowed) at intervals specified by Interval (in frames). Not
only will the paths be discarded, but also the gridded velocity field will be discarded. Thus,
effectively, the particle tracking will start again from scratch. Note that utilising a Periodic
reset on a flow that has a continuous record will degrade the results from the particle tracking.
Moreover, the smaller the Interval, the poorer any velocity calculations will be. (It will also be
necessary to ensure that the time used to calculate the velocity does not exceed the period of
data between each reset.) For the case of PIV sequences with two images in each burst, then
set Interval to two.

The default values may be restored using the Reset button.

Tracking

During the tracking process, DigiFlow will display three windows. The Experiment will
display the raw experimental image being processed, while the Particles image will display
each of the identified particles as a dot. The colour of each dot is related to the threshold at
which the blob in the experimental image was considered to be a particle.

Perhaps the most useful window is the Progress window. This window displays a variety
of information about both the velocity field and the performance of the tracking process.
Details of the different arrows and symbols used was given earlier in this section, with an

—158 -

DigiFlow Menus

example shown in figure 114. Statistics of the number of particles matched are also given in
the title bar of the window.

Occasionally an obviously incorrect vector will be produced. If such a vector is yellow,
then it is of little concern: the matching criteria for particles without a velocity history are
necessarily less stringent, a feature that is likely to lead to the occasional mismatch. Such
vectors are unlikely to persist, however, as the implied velocity history is much less likely to
lead to a match on the next step.

There will be times, however, when spurious vectors persist. The table below lists potential
problems and remedies.

Description Remedy

Very few particles have vectors Check that location policy is reliably picking
up particles on successive frames.

If the intensity of the particles is fluctuating a
lot, try reducing the Cost of a Threshold
change, or increasing the Threshold before a
cost is incurred. This problem is most likely
to occur when the particles are extremely
small.

If the particles are moving relatively far and
fast between frames, try increasing the
Maximum matching distance group.

Spurious white vectors persist. DigiFlow may be identifying too many
particles, some of which are really just noise.
Check the Location policy.

Check that matches are not being made too
readily. Try reducing Maximum matching
distance group.

Try increasing the Cost or reducing the
Threshold for Threshold changes.

Calculating particle velocity

Once the tracking has been completed, it is often desirable to calculate the particle
velocities. The velocities may be calculated from a particle path in a number of ways. At the
simplest level, the location of particle i on two consecutive frames, xi{"™2 and xi™V, can be used
to estimate the velocity as

ui(™-") =(Xi(”) _ Xi(”‘l))/At,
where At is the spacing between two frames. Although this approach provides the highest
possible frequency response, it is also the most subject to noise. If the error in the positions of
the particle is o, then the error in the velocity is ou = 2ox/At. The simplest way of decreasing
the error is to perform the calculation over a larger interval. If
Ui(n_S/Z) :(Xi(n) _ Xi(n_s))/(SAt),

then the error is reduced to ou = 20x/sAt, provided the velocity is constant within the interval.

For most purposes it is better to decrease the interval between frames (decrease At) and
then use a least squares fit to a sequence of s particle positions. The simplest alternative is to
fit a line. Since the frame interval is constant, the estimate of the velocity is therefore

—159 -

DigiFlow Menus
_ s s) s) |
(X (s + D)3 (1
u :i =0 J)j=0 j=0 (31)
LAt s (&Y
(s+1 0% - D
j=0 j=0

This velocity is then assigned to the least squares estimate of the particle’s position in the
middle of the time interval. Key to the use of the least squares approach is its effect on the
error in the velocity estimate. As shown by Dalziel (1992), the error estimate is reduced to

o 12 1/2 &
"l (s+2)s+1)s | At
Increasing s leads to a reduction in the error estimate for the velocity, but only provided the
velocity remains approximately constant over the interval sAt. Increasing s and decreasing At
can achieve this, although there will normally be limits imposed by the camera frame rate that
limits s. However, the interval sAt may be increased further if the model for the particle path
remains reasonable; fitting a quadratic rather than linear function can achieve this.

Post processing

In addition to the post-processing features described in the following sections, DigiFlow
provides a dfc macro interface to access the .dft particle tracking data. The following segment
of code illustrates some of the core functions. This code is intended for a scenario when there
are only a small number of particles. It produces a scatter plot of the vertical velocity against
the vertical position of the particles.

Determine the tracking file

file := "PTV####.dft";

file := ask_string("Name of .dft files (including hashes)?",file);
Get basic details of the file

det := read image_details(file);

Rather than utilising a coordinate system, use a known one-to-one
relationship between the pixel size and the size of the imaged region
Here a 1:1 magnification is being used

pMax := 5.0; # Maximum expected velocity in pixels/s
pixSize:= 7.4; # micrometres
wMax := pMax*pixSize;

zMax := pixSize* (det.ny-1);

Create the drawing for the scatter plot

hD := draw_start();

draw_set_axes (hD, 0,wMax, 0, zMax) ;

draw_x axis(hD, "$w (\mu$m$s"{-1})s");

draw_y axis (hD, "$z (\mus$m)");
draw_colour_scheme (hD, "single cycle - half brightness");
draw mark size(hD,1);

draw_font (hD,0.5); # Make font smaller for the size labels

Open the ptv data to reconstruct the paths
hP := ptv_open(file,coordSystem:="(pixel)"); # Returns handle of window
showing PTV input
for fNow:=det.fFirst to det.flast {
Calculate the velocities using least squares over five frames
ptv := ptv_velocity (fNow,5) ;
Also read the information for the particles at this time
part := ptv_read particles(file, fNow) ;

ptv and part will be null if there is no data
if (is_array(ptv)) {
Scan through the list of particles
for k:=0 to y_size(ptv)-1 {
id := int(ptv[4,k]); # The unique track number for this particle

—160 —

DigiFlow Menus

Select colour and mark style based on track number
iCol := 0.9% (int(id/9) mod 16);
iStyle := id mod 9;
draw_line colour (hD,iCol) ;
draw_text colour (hD,iCol) ;
draw_mark type (hD,2+iStyle);
x = ptv[3,k]*pixSize;
y := ptv[l,k]*pixSize;
draw_mark (hD, x,vy) ;
Find info for this particle
this := ptv_particle details(part,id);
if (fNow = this.startFrame+3) {

Write details on third occurrence

area := this.area*pixSize”"2;
dia := 2*sqgrt(area/pi);
draw_text (hD,x,y, "5 d ="+nice_number string(dia)+"\musm");

}i
}i
}i
}i
Tidy up the access to the PTV data
ptv_close();
close_view (hP); # Remove window showing PTV input

Show the plot
hv := view(hD); # Returns window handle
view_title (hV, "Vertical velocity scatter plot");

oFile := ask_string("Name to save plot to (blank to
suppress) ?", "wScatter.dfd") ;
if (is_null(oFile)) {
} elseif (length(oFile) > 0) {
write_image (oFile,hD) ;

};

Tidy up
draw_destroy (hD) ; # Free drawing memory

A key feature of this code is the use of the unique particle id assigned to each particle track
to relate the velocity information provided by ptv_velocity(..) (the first index of the
returned array set to 4) to extract further details from the .dft tracking file. In particular,
ptv_read particles(..) is used to determine all the particle information at a given time,
and then ptv_particle details(..) IS used to extract the details for a specific track. Here
we calculate the effective particle diameter from the area returned for the particle.

Further details of the individual functions can be found by accessing the dfc help system.
See §85.2.10 and 85.9.2 for details.

5.6.6.2 PTV Basic statistics

Toolbutton:

Shortcut:

Related commands: process PTVBasicStatistics(..), ptv open(..),

ptv _close(..),ptv_tracks(..),ptv _velocity(..)

Basic velocity statistics for the particles are available through this feature. The statistics are
weighted by the number of particles, rather than the region of space in which particles were
found.

The controlling dialog takes the normal form with the .dft tracking data being specified in
the PTV data input stream. The Basic Statistics output takes the form of a single .dfd (or .emf
or .wmf) output plot.

The particle tracking process is undertaken in pixel space. However the results will
generally be required in world coordinates. In DigiFlow the transformation between the two is
made during the analysis stage by selecting the appropriate Coordinate system.

—161 -

DigiFlow Menus

The method of calculating the velocity, and the number of time intervals across which the
calculation is made, is determined by the Velocity group. Typically a value of 4 or more
should be used for the Length entry in conjunction with the Linear or Quadratic methods. It is
recommended that the Extremes option only be used for testing purposes as this provides the
least accurate approach.

PTV¥ BasicStatselation g‘

Inputs Outputs
PT% data Basic Statistics

Optional:

Set aptionhs far the autput file

[*protti. it [
Frocess... | File... | Options... | File...
v Display Sift IV Display
Welocity Coordinate spztem
" Extremes default
&+ Linear
" Quadratic:
Length Ir=T|
- =

Ok | Cloze | Eancel|

Figure 121: Dialog controlling the calculation of basic PTV statistics.

5.6.6.3 PTV autocorrelation

Toolbutton:

Shortcut:

Related commands: process PTVAutocorrelation(..),ptv _open(..),

ptv _close(..),ptv_tracks(..),ptv _velocity(..)

Since particle tracking is an inherently Lagrangian process, it makes sense to analyse the
particle tracks in a Lagrangian framework. The Lagrangian autocorrelation functions are one
such way. Particle velocities are calculated for each point along a path using the methods
outlined in 85.6.6.5 and then related to the velocity at another time along the same particle
path to generate the autocorrelation coefficient

R () NS, (0, t+ &)~ Yu,)3 u, ¢+ &) |
T NS 0r - Cu O NS a)F - (S, a)f

where the summation is over the N particles paths at least &t long occurring at any time t in a
specified interval. Here the indices i and j refer to the velocity components u or v.

—162 -

DigiFlow Menus

PTY Autocorrelation @

Inputs Outputs
PTY data Autocorelation
[input]
g.
i
_— EY B
[TesthHAH dit" |"Autocordd”
Process. | Options... | File...
I Display St d e’y
Coordinate system Yelocity
[defaul] " Extremes
=))
& Linear
™ Quadratic
Max path length [120 Ir=T|
=1 Length |5 =1
Plot I=T]
(* Corelations
(™ Standard deviations oK
Cancel

Figure 122: Control of the autocorrelation facility.

The PTV data input selector takes a series of .dft particle tracking files and extracts the data
from them. The start and end points, and the spacing of output, can be set by the Sift button
(see §4.3).

Output of the Autocorrelation is in the form of a .dfd drawing file, an .emf file, or a .wmf
file. If you want access to the actual track data, then the .dfd option is preferred.

The particle tracking process is undertaken in pixel space. However the results will
generally be required in world coordinates. In DigiFlow the transformation between the two is
made during the analysis stage by selecting the appropriate Coordinate system.

The method of calculating the velocity, and the number of time intervals across which the
calculation is made, is determined by the Velocity group. Typically a value of 4 or more
should be used for the Length entry in conjunction with the Linear or Quadratic methods. It is
recommended that the Extremes option only be used for testing purposes as this provides the
least accurate approach.

The autocorrelation function will be calculated for all separations & up to the maximum
specified by Max path length, although the calculation will proceed only as far as particle
paths of that length are still found.

Normally the results of this calculation will be the autocorrelation functions, selected by
Correlations in the Plot group. However, it can be valuable to determine the standard
deviations (velocity fluctuations) of the data as the conditional sampling associated with the
very long particle paths can lead to a bias in the statistics. Select Standard deviations to see
this data.

—163 -

DigiFlow Menus

5.6.6.4 PTV vectors

Toolbutton:

Shortcut:

Related commands: process Analyse PTVVectors(..),ptv open(..),

ptv _close(..),ptv_tracks(..),ptv _velocity(..)

Particle tracking data begins as Lagrangian particle paths. Typically these are randomly
distributed in space and variable length in time. The .dft file potentially contains particles that
exist for only a single frame, and others that are part of paths spanning many frames. The PTV
vectors facility provides the ability to review the contents of the .dft file, filtering out the paths

that are too short.

Inputs Outputs
PTY data Yelocity wectors

[default]

o ARRR e ["velttti did”
Process... | File... | Dptions... |
[Display Sift... | Display
Coordinate System Dizplay az
[default) " Track =
pixel
calib Feb2007 512 (¢ Yectar Scale (100 ﬂ
Fath length |2 =1
=Tl
[Draw aves oK. | Cera] |

Figure 123: Dialog controlling the production of particle tracking vectors.

The PTV data input selector takes a series of .dft particle tracking files and extracts the data
from them. The start and end points, and the spacing of output, can be set by the Sift button
(see §4.3).

Output of the Velocity vectors or particle tracks is in the form of a .dfd drawing file, or a
.wmf or .emf file. If you want access to the actual track data, then the .dfd option is preferred as
this will contain all the paths individually listed. The Draw axes check box determines
whether the drawing includes axes or only the vectors/tracks. Note that specification of an
output stream is optional. If not specified, the output will be displayed on the screen while it is
computed, but will be discarded at the end of the processing.

The particle tracking process is undertaken in pixel space. However the results will
generally be required in world coordinates. In DigiFlow the transformation between the two is
made during the analysis stage by selecting the appropriate Coordinate system.

The output can contain either velocity vectors (select VVector) or the particle tracks (select
Track) at each time, where the vectors/tracks are determined only for particles that extend for
at least Path length intervals in time (half before and half after the current time). When Track
is selected, the Arrow head check box determines whether or not an arrow head is draw; arrow
heads are always drawn when Vector is selected.

~164 -

DigiFlow Menus

5.6.6.5 PTV grid velocity
Toolbutton:
Shortcut:
Related commands: process PTVGridVelocity(..),ptv open(..), ptv close(..),
ptv_tracks(..),ptv_velocity(..)

Mapping particle velocities to grid
For some purposes, it is desirable to transfer the randomly distributed particle paths, and

their associated Lagrangian velocities, onto a regular grid. The basic approach for doing this is
using a weighting kernel to distribute the particle velocities onto the grid. Suppose ui,
i=0,1,...n=1 are the particle velocities known at locations x;, then we may estimate the
velocity U at some location X by

" ('* ‘X'J

Za

(32)

where o(|xi — X|) is the weighting functlon. We select «(r) to provide finite support over some
length scale L. This approach was pioneered in Diglmage.

By ensuring «(r) and its derivatives are continuous, then we may use the same form to
provide velocity gradients by analytically differentiating the kernel. For example, oU/ox is
given by

"Z’i oo U o

a_Uz izonfX i_U i= 0 6X

OX Za Za
i=0
an approach that has had much use in the family of numerlcal techniques known as Smoothed
Particle Hydrodynamics (SPH, e.g. Monaghan 1992) and offers substantially better

performance than finite difference on the gridded velocities. Following the work with SPH,
we use the axisymmetric cubic spline

2 3
1-3(r) L3(r L
2\L) "alL) L

a({jz %(2—33 1<£s2. (34)

(33)

This is plotted in figure 124.

—165—

DigiFlow Menus

Figure 124: The axisymmetric cubic spline used to distributed particle data to the grid.

Grid velocity dialog

PTV Grid velocity X

Inputs Welocity Outputs
PTY data W Erlieics Welacity vectors
* Linear
" Quadratic
Length =
gth [4 =
Welacity [19 =
scale I==T] L
[“prstrt it Grid tpe [l i
Process... | £ Mean Options... | File...
{* |nstantaneous)
v Display St N v Display
Average [-
aver I=T]
Coordinate system [Draw asesx Wechor background
[default) Grid resolution [none]
i Streaks
nx [32 =
IF=T|
ny [32 =
T
Filter 10,0 = Scale |1 %
length =1 ="
(]8 | Cancel |

Figure 125: Dialog controlling the process of gridding the particle tracking data.

The PTV data input selector takes a series of .dft particle tracking files and extracts the data
from them. The start and end points, and the spacing of output, can be set by the Sift button
(see §4.3).

Output of the Velocity vectors, and optional background image, is in the form of a .dfd
drawing file, an .emf file, a .wmf file, or a .dfi image file. If you want access to the actual track
data, then the .dfd option is preferred as this will contain all the paths individually listed. The
Draw axes check box determines whether the drawing includes axes. Using a .dfi file will
allow the resulting velocity fields to be manipulated by the various image processing tools
available within DigiFlow. Note that specification of an output stream is optional. If not
specified, the output will be displayed on the screen while it is computed, but will be
discarded at the end of the processing.

—166 —

DigiFlow Menus

The particle tracking process is undertaken in pixel space. However the results will
generally be required in world coordinates. In DigiFlow the transformation between the two is
made during the analysis stage by selecting the appropriate Coordinate system.

The method of calculating the velocity, and the number of time intervals across which the
calculation is made, is determined by the Velocity group. Typically a value of 4 or more
should be used for the Length entry in conjunction with the Linear or Quadratic methods. It is
recommended that the Extremes option only be used for testing purposes as this provides the
least accurate approach. The length scale of arrows used for the velocity is determined by
Velocity Scale. A unit value will cause the arrows to represent the actual distance moved
between two consecutive frames.

The grid velocity can represent either the instantaneous velocity field, or a temporal mean
of the selected interval. The choice of which is determined by the Grid type group. With an
Instantaneous grid, it is possible to employ a moving average, either to filter out the higher
frequency components, or (for a flow that is steady in the Eulerian frame) to increase the
available data for the gridding process.

The resolution of the grid and length scale of the kernel function are fixed by the Grid
resolution group. Decreasing the Filter length can lead to improved spatial resolution,
provided it remains sufficiently large to include an adequate number of particles for each of
the nx by ny grid points.

The velocity field may be rendered by itself, or superimposed upon a background image.
This is controlled by the Vector background list box in conjunction with a Scale factor.

Post processing

Selection of the most appropriate output file format (between .dfd and .dfi) depends on the
type of post processing to be undertaken.

If the .dfi format is selected, then the PTV gridded velocity files may be fed back into
DigiFlow as multi-plane images containing the velocity field. These can be processed using
most of the standard DigiFlow tools, preserving the nature of their contents. For example, the
Analyse: Time Average facility can act upon a sequence of PTV gridded velocity files to
produce the time average velocity field. Similarly, the various other time series tools described
in 85.6.1 can operate on these images, as can the general manipulation tools Recipe,
Transform Intensity and Combine Images (see 885.7.1, 5.7.2 and 5.7.3). There are standard
recipes in the Recipe facility to aid with basic manipulations of this data. For example, the
recipe Velocity.Background.Divergence recipe lets you change the background of the velocity
field from the one saved during the PTV gridding process to display the in-plane divergence
field. Similarly, there are recipes for vorticity, stream function, velocity potential, shear, etc.,
and for adding scales and other similar graphical manipulations. Note that for PTV data,
velocity gradients are as part of the gridding process by analytical differentiation of the
weighting kernel rather than by a finite difference operation of the velocity field. This retains
more of the velocity information available from the randomly distributed particles.

Saving the output in .dfd format is appropriate if post processing is to be undertaken using a
third party or user-written program as the .dfd file contains an ASCII representation of the
velocity field. Note that you can always convert a .dfi file into a .dfd file using Edit Stream
(85.1.6) or one of the other related image manipulation tools by simply specifying a .dfd file
for the output.

5.6.7 Optical flow
The idea behind Optical Flow is that illumination is a conserved quantity that is advected
by some velocity field.

—167 -

DigiFlow Menus

5.6.7.1 Follow
Toolbutton:
Shortcut:

Related commands: process Analyse FollowOpticalFlow;
follow optical flow(..).

This menu item provides a basic algorithm for extracting the velocity field from an optical
flow. The key idea is that if illumination is conserved then we can write an advection equation
for it of the form

@+u@+v@:0. (35)
ot ox oy
If we then assume that the velocity field (u,v) is constant over some region S containing
intensities Po, P1, ... Pn, then we may write this as the over determined system

% K oF,
ox oy ot
®oR|L | R
ox oy (Vj=— ot |. (36)
oP, 0P, Py
L ox oy | at

We can then estimate (u,v) as the least squares solution to (36). In reality, finite difference
approximations to the spatial and temporal gradients of the illumination are used, and the
noise in the signal, plus the need for the least squares problem to be well conditioned, places a
practical lower limit on the size of the region S, while an upper limit is imposed by the
velocity field not really being constant.

This process, which is sometimes referred to as ‘feature tracking’, can be used in a variety
of contexts. With relatively slow flows containing particles, it provides a computationally
cheap method of obtaining an estimate of the velocity field, although the resulting velocity
field is less accurate than that obtained by other methods. The process can be particularly
valuable for looking at the flow and distortion of dye fields, although the user must be aware
that it is not necessarily the fluid velocities that will be returned.

Note, the Tools: Recipes: Slave Process (85.7.5) facility provides a cut-down version of
this facility for providing an estimated velocity in real time. This cut-down version is provided
through the dfc function follow optical_ flow(..).

—168 —

DigiFlow Menus

Inputs

Optical Flow

Inputs l Dutputs]

Inputs]
E xperiment Later Image o h

[¥ One stream

DISABLED:

Freview the experiment at
the later time]

|"F'I\-’Test2. o' |

Process... |
v Dizplay L I 4

Controlg

Interrogation interval
Frames Seconds

[Al ffzet
L = | e
[¥ Central differencing

V¥ Conserve light 52gdh

window size

Min base size [g i‘ Min frac grown (g2 i‘
Max base size |32 i‘ M ax frac grown |03 i‘
Ma local size gy i‘ Eigen threshold [g 2 i‘

Coordinate System

default Yectar spacing |15 i‘
Reset

Ok, | Cancel |

Figure 126: The inputs tab for Follow Optical Flow.

The Inputs tab bears some similarity to that for PIV (see §5.6.5.2) with either one or two
input streams. If One stream is chosen, then the Interrogation interval group allows the
number of frames between the first and second frame of each pair being processed. When the
input is as two streams, the interval between each stream must be specified in seconds.

The Conserve light checkbox forces the mean intensity of each of the interrogation
windows (the region given by S above) to be constant, Allow offset enables the temporal
derivatives to be made in a semi-Lagrangian manner, and Central differencing makes the
spatial derivatives a central second order approximation.

The Window size group controls the size of the interrogation window, which DigiFlow
adjusts dynamically to give the best compromise between noise level, robust data, and the
resolution of velocity gradients. This automatic adjustment is guided by minimum and
maximum sizes for the base windows which DigiFlow applies to all interrogation points.
DigiFlow will cause a window to increase above this base size, up to Max local size if the
magnitude of the smallest (normalised) eigenvalue of the least squares problem falls below
Eigen threshold (this indicates the least squares solution may be ilconditioned). If a bigger
fraction of the windows are grown due to this criterion than Max frac grown, then DigiFlow
will cause the base window size to increase (up to Max base size). If fewer windows are
grown than the fraction Min frac grown, then DigiFlow will cause the base window size to
decrease (down to Min base size).

—169 -

DigiFlow Menus

The Coordinate System controls the conversion between pixel coordinates and any world
coordinate system, while Vector spacing determines the spacing (in pixels) between the
centres of the interrogation windows.

Outputs

PX

Optical Flow

Inputz Outputs]

Output o
[P

*elocity Quality
Optional:

Select options that affect
the output.

These include the file
format, colour zcheme, ete.

[et df |

Options... | Options... | File...
v Dizplay v Dizplay

YWelocity Seale (100 [~ Compact output

Yector background

[none]
E #periment

WVorticity
Divergence

Field Scale |4

Figure 127: The outputs tab for Follow Optical Flow.

The principal output of Follow optical flow is the velocity field. This is specified by the
Velocity selector. As with the PIV system, a scale for the arrows used to display this is
specified by Velocity scale, and a background image may be placed behind the arrows with
Vector background (the scale of which is controlled by Field scale, when appropriate). The
Compact output check box forces the resolution of the output to be reduced so that data is
saved only at the locations of the interrogation windows.

The Quality selector optionally stores information about the performance of the process. In
particular, the first image plane gives the size of the minimum eigenvalue of the least squares
process, while the second image plane gives the size of the window actually used.

~170-

DigiFlow Menus

5.7 Tools

5.7.1 Recipe

Toolbutton:

Shortcut:

Related commands: process Tools TransformRecipe(..)

This process provides a simplified entry point to many commonly used image processing
procedures. Internally, this facility uses the same mechanism as Transform intensity and
Combine images described in 885.7.2 and 5.7.3, but the interface here presents the user with a
broad list of pre-written processes rather than requiring the user to enter their own code.

Tools: Recipe E|
|nput Streanms Sy sl Output t
Input Digabled 8 h Tranzsformed Image da
Confon_'ning rggio DISABLED: I andatory:
Freview "ith' image] Select options for output stream
[e.g. colour, bit depth, etc.]
[Prs dfi | [
Frocess... | File... | | | Options... Save As... |
v Dizplay St v v Dizplay
Control ‘
Categary Group Recipe Parameters =
— S aturation % al
Tt = aturation Yalue [
Oriegitation Particles duds
Process dudy
Rescale i
Spechal dwdy
Structure ImageSequence
w I_mages ingle w
Image Scaling
take background Divergence .
[Same az input
If 5 aturationalue zet to zero, then inhert .
zcale from input. white 1.0 . .
Preview. .. | Fiead recipes |
Black |20
Ok | Cancel |

Figure 128 Transform an intensity using a recipe of transformations.

Depending on which recipe is selected, either one or two input image selectors are
required. The Input selector is required for all functions. This selector determines the timing
and other key features. The second stream, With, is required only for a subset of the functions.
For some functions this will represent a single image, while for others it will be a sequence.
The title of the group is changed to reflect these differences. The controls associated with the
With selector are disabled when it is not required.

Both input selectors have the normal mechanism for their specification and the range of
controls. This may be taken from a file using the File button, or from another Process. The
input stream may be sifted (84.3) to extract the desired subregion and times. This feature is
activated using the Sift button (see 84.3) associated with the input streams.

The Output group specifies the destination of the transformed image using the Save As
button. If this process is acting as the source for another process, the Save As button is
suppressed (refer to 87 for further details). The colour scheme and other output options to be
used for the output stream are set by clicking the Options button. Although the output image

-171-

DigiFlow Menus

will typically have a bit-map format, this is not always the case. Indeed, this tool can be used
to transform a bitmap into a drawing, as will be illustrated below.

The Controls for this process centre on identifying the transformation. The predefined
transformations are sorted by Category and Group. Each individual Recipe has a description
that will be displayed beneath the selection lists. Some recipes will require one or more user-
specified parameters. The required type for these parameters depends on the function selected.
Some recipes produce images, and others produce drawings. The simplest way to determine
which is by clicking the Preview button.

User-defined recipes

Users can add their own custom recipes to the list by creating a file named User_Recipes.dfc
either in the current directory, or in the directory in which DigiFlow is installed. (A copy in
the current directory will have precedence over one in the DigiFlow directory.) A typical entry
for a single-stream recipe in this file would look like

Recipe.User.Stretch.Linear.Descr := "Stretch the intensity by a
factor";

Recipe.User.Stretch.Linear.Code := {P*p0};

Recipe.User.Stretch.Linear.PromptO0 := "Factor";

Recipe.User.Stretch.Linear.Param0 := 2;

Recipe.User.Stretch.Linear.Check := {if (p0 = 1) {"No point

multiplying by one"} else {null};
This would appear under Categgory User, Group Stretch, Recipe Linear. Here the recipe
requires one parameter, producing the prompt Factor in the interface. The default value of this
parameter is set by the .param0 variable, and the parameter is provided to the code as the
variable po. In this case, since a .cneck variable is specified, the value of the parameter is
checked. If the . check code returns a string, then this is displayed as a warning message.

If two input streams are required, then the variable xxx.with should be defined, containing
either "sequence” Or "single", depending on whether a sequence or only a single image is
to be recovered from the With stream. The image recovered from the With stream is provided
to the .code in the variable o (or, for image planes in oo — refer to 85.7.2 for further details).

The facilities available within the code segment .code are exactly the same as those
available in the Transform intensity and Combine images tools described in 885.7.2 and 5.7.3.
Up to 6 prompts may be requested, their types (integer, floating point or string) being
determined by the type of the default value in the . raramn variable. Note that the description
and code may be specified interchangeably as strings, code segments or memos.

The database of built-in recipes may be found in DigiFlow_Recipes.dfc in the DigiFlow
installation directory.

5.7.2 Transform intensity

Related commands: process Tools TransformIntensity(..)

This process allows the transformation of the intensities of an image stream using a
sequence of user-specified operations. This produces a very versatile tool, but one which
requires some experience to master. A simplified interface to the same underlying mechanism
is provided in Transform recipe described in 85.7.1.

-172 -

DigiFlow Menus

Tools: Transform Intensity g|

|mput - D COutput ty
Raw Image o h Tranzfarmed Image ‘&

[default]

Clutput imaage does not exist

or i invalid
[Thiz iz OK]

|"JPFID45.MEI\-’" |"Diffsm¢ﬂﬂ.dfi”
Process... | File... | Ophions. ..

¥ Display Sift I¥ Display

Contrals
T Transformation
Specify ocutput imaoe 25 @ Ffumicticowm of F
wl := filter min(P E,E);:
MI := filter max(D E,E):
MP - wP;
Image Scaling Variables
wihite [1 P 5
I Same az input) Pme-;ﬂﬂm
0.0 ime. fHove
Black Tirne. [Step
Time.fTa v
ﬁ? | E| Freview... | Wariables... | Ok, Cancel
filker_rnaw(arran) ~

filker_maw|amay.rxSize]
filker_rmax(array mxSize nySize)

Figure 129: Transform an intensity using a mathematical expression.

A single image selector provides the input stream in the Input group. This may be taken
from a file using the File button, or from another Process. The input stream may be sifted
(84.3) to extract the desired subregion and times. This feature is activated using the Sift button
(see 84.3) associated with the input streams.

The Output group specifies the destination of the transformed image using the Save As
button. If this process is acting as the source for another process, the Save As button is
suppressed (refer to 8§87 for further details). The colour scheme and other output options to be
used for the output stream are set by clicking the Options button. Although the output image
will typically have a bit-map format, this is not always the case. Indeed, this tool can be used
to transform a bitmap into a drawing, as will be illustrated below.

The Controls for this process centre on the transformation itself.

The Transformation edit box is used to specify the intensity mapping function using dfi
code.

The basic image from the input stream is supplied in the array variable p. For simple
images this will be a two-dimensional array. However, for more complex image formats (such
as velocity fields stored in .dfi files), » will contain more than two dimensions. In such cases
DigiFlow will also provide the same data split into its individual component two-dimensional
arrays in the compound variable o. For example, if the input stream contains a velocity field
generated by the PIV facility (see 85.6.5.2) then o.u and .+ will contain the two components
of the velocity field, and (depending on the options selected during the processing) o.scalar

- 173 -

DigiFlow Menus

may contain the vorticity field. Full colour images are supplied as their red, green and blue
components with a three-dimensional » array: »(:,:,0] contains the red component,
P[:,:,1] contains the green component, and »[:,:,2] contains the blue component. For
convenience, these are also supplied as 0.red, 0.Green and 0.B1ue. The £ button may be
used to search for or provide information on specific DigiFlow functions.

DigiFlow also provides time information about the input stream through the Time
compound variable. Typically this contains Time.fNow and Time.tNow giving the current
frame number and time (in seconds) relative to the start of the entire input stream. An
additional variable Time. iNow gives an iteration counter that is the frame number relative to
the start of those that are actually being processed. Details of the entire input stream are
provided through Time.fFirst, Time.fLast and Time.tFirst, Time.tLast that provide
details of the first and last frame/time that exist in the input stream. Moreover, Time. fFrom,
Time.fTo and Time.tFrom, Time.tTo provide information about which part of the stream is
being processed.

The main variables available are listed in the Variables list box. This list does not,
however, include any additional modifiers for the individual data plane variables beginning
with o. These modifiers include the description, scaling and (where appropriate) spacing of
the data. A more comprehensive list may be viewed by clicking the Variables button. For
further details, refer to the PIV data example below.

Note that regardless of the format of the input selectors, all processing is performed in
floating point arithmetic and normally the images will be scaled between an intensity of 0.0
for the darkest parts and 1.0 for the brightest parts. By default, when the image is saved to an
8 bit format, intensities less than 0.0 will be mapped to 0 and those greater than 1.0 mapped to
255. Refer to 88 for further details on the interpreter within DigiFlow to evaluate expressions.
The Preview button allows you to preview the result of the transformation before applying it
to the whole image sequence.

~174 -

DigiFlow Menus

IP:0‘224 (56) ,j: 434, 510 [x,y: 0,735, 1,475 mm [Frame: 0 (0.000s)

Figure 130: Example of previewing an image.

Note that the result of Transformation need not be an image, but can be a DigiFlow
drawing. In this case the return value from code specified for the Transformation must be the
handle to the drawing object (i.e. the handle returned by draw start(..)). In this case, the
output stream must have a format capable of containing a drawing.

If this feature is started from a dfc macro, then the code specified for the Transformation
has access to functions and variables defined in that macro. In the case of variables, the !
global access prefix must be specified.

A number of examples of transformation code are given below.

Rescaling an image
One of the simplest examples is rescaling an image so that its intensities always span the
range 0 to 1, regardless of the input values.
Find limits
vMin := min_value(P);
vMax := max_value(P);

Rescale
(P-vMin) / (vMax-vMin) ;

This particular code segment would have problems if the image was all the same intensity
as then vmin and vMax would be equal which would lead to division by zero. This problem
could be overcome in a number of different ways. The most straightforward is illustrated
below:

Find Ilimits

vMin := min_value (P);

vMax := max_value (P);

Rescale

if (vMax = vMin) {
0.5

} else {

-175—-

DigiFlow Menus

(P-vMin) / (vMax-vMin) ;
}i
Filtering
One process used frequently in image processing is filtering. In DigiFlow a number of
functions are provided specifically in support of this. In the context of the Transform intensity

facility, all that is necessary is to specify the appropriate filter, if it exists. For example
filter low pass(P,5);

will implement a low-pass convolution filter with a 5x5 kernel. In particular, the intensity of
each pixel will be replaced by the mean of it and its 24 nearest neighbours. The function

filter convolution(..) provides a more general alternative in which the convolution
kernel is specified explicitly, allowing a broad range of filtering operations. (The
filter low pass(..) function is effectively a call to filter convolution(..) with all

the kernel elements equal to 1/n?, where n is the specified size of the kernel.)

Built in nonlinear filters include erosion (filter min(..)) and dilation
(filter max(..)).

Using DigiFlow’s Fast Fourier Transform function allows the construction of filters in the
wavenumber domain. For example, a low-pass filter could be constructed using the following

Transformation code:
spec := fft 2d(P[0:128,0:128]) ;

k := sqrt(sEec.kxA2 + spec.ky”"2);

spec.re := where(k < 16,spec.re,0);

spec.im := where(k < 16,spec.im,0) ;

image := inverse fft 2d(spec);

image.re;
Here, we make use of the wavenumber arrays returned by ££t_2d(..) rather than having to
work out the ordering in which the function returns the data. The where (..) function then

simply sets all entries with wave numbers in excess of 16 to zero. Note that the ££t functions
can cope with arbitrary numbers of pixels, but are most efficient for powers of two and other
small primes.

Contouring
Often we would like to contour an image for one reason or another. Suppose we just want

to draw the contours in place of the image, then we could use the following code to step
through the various contour levels, drawing only those contours that were at least 100 pixels
long (thus discarding any high frequency ‘noise’):

Create image for output

out := make_ like(P,0);

Loop through thresholds

for thresh:=0.1 to 1 step 0.1 {
Find contours of this threshold and draw on blank image

this := contour_image (P, thresh,fill:=thresh,minLength:=100);
Superimpose new contours on output Iimage
out := this max out;

i

Return output image

out;
Obviously we could have superimposed the contours on the input image. Using other options
in the contour image (. .) function would allow us to apply a low pass filter to the contours.

Similarly, we could fit a parametric curve to the contours, or perform a FFT and filter them

to return a Fourier Descriptor of the enclosed region. This could be achieved by
this := pixel contour (P, threshold:=0.9,minLength:=500) ;
if (this.found) {
Compute fourier descripter
fft := £ft row(this.xy[0,:],this.xy[1,:]);
fft.re := where(abs (fft.kx)<8,fft.re,0);

~176 -

DigiFlow Menus

fft.im := where(abs (fft.kx)<8,fft.im,0) ;
cont := inverse fft row(fft.re,fft.im);

out := scatter_to_array(P,cont.re,cont.im,fill:=0);
} else {

out := P;
}s
out;

In this example we only find a single contour, the result of which is shown in figure131. The
code could easily be modified to loop and so find all contours satisfying the length criterion.
Note that the scatter to_array(..) function may leave some gaps in the curve rendered as
the curve is drawn using individual pomts rather than lines.

Figure 131: Elghth order Fourler Descrlptor showmg in black the region of the sheep’s back with an
intensity in excess of 0.9.

Fractal box count

Suppose we are interested in the fractal dimension of a contour from an LIF image (which
may have been processed using the facility described in 85.6.3.2). In this case we would
probably wish to have a log-log plot of the number of boxes verses the box size as the output.

This may be achieved as follows:
Extract fractal data

boxes := fractal box count(P,0.5);

Fit least squares line

fit := fit_expression("1;1n(size);","size;"
boxes[:,0],boxes[:,1],"1In(n);","n;");

curve := exp (evaluate_expression (fit,boxes[:,0]));

Axes limits

minSize := min_value (boxes[:,0]);

maxSize := max_value (boxes[:,0]);

minNum := min value (boxes[:,1]);

maxNum := max value (boxes[:,1]);

Create drawing

hDraw := draw_start(640,480) ;

draw_set axes (hDraw,minSize,maxSize,minNum, maxNum,
xLog:=true, yLog:=true) ;

draw_g_axis(hDraw,"Box size™);

draw_y_axis (hDraw, "Number of boxes");

draw_create_key (hDraw, 0.8*minSize+0.2*maxSize,
T0.6*minNum+0. 4*maxNum, "Key") ;

Draw data

draw_mark_type (hDraw, "plus");

draw_line_colour (hDraw, "red");

- 177 -

DigiFlow Menus

draw_mark (hDraw,boxes[:,0],boxes[:,1]);
draw_key entry (hDraw, "Box counts");

Draw fit

draw_line_ colour (hDraw, "blue");

draw_lineto (hDraw,boxes[:,0],curve[:])
draw_key entry (hDraw, "Fit: slope="+(-fit.coeff[1l]));
draw end (hDraw) ;

hDraW;

Here we see the key element for producing a drawing: the code returns the drawing handle
rather than an image.

Note that this code does more than the bare minimum. Not only does it plot the (hopefully
power law) relationship between the number and the size of the boxes to cover the contour,
but it also generates a least squares fit to that and plots it. Moreover, the key that is generated
will inform the user of the slope (the fractal dimension) of that fit.

Changing background to velocity data

Suppose we have an image stream containing velocity and vorticity data, but we wish to
change the background of the vectors to be speed rather than vorticity. In this case the
following code could be used:

out.u := Q.uy;

out.v := Q.v;

out.Scalar := sqrt(Q.u”2+Q.v"2);
out;

In this example, we have extracted the velocity data without change. Note that we have
used o.u for the x velocity. The name ‘v’ comes from the description of the ‘v’ data plane
stored in the input stream. We could equally have used the generic o.u name instead. For the
output image, we cannot use the ‘u’ name, but must resort to the generic ‘v’ name for the data
plane, as we have not yet got a description for this plane. Similar arguments apply to the other
two data planes. Indeed, we need to be a little bit careful as at present the output will inherit
the ‘vorticity’ description from the input, even though the output contains speed rather than
vorticity.

This naming problem, along with an associated scaling one is handled as follows. If no
other details are given, then the output will inherit the details from the corresponding input
plane (i.e. the speed output plane will be called ‘vorticity’ and have the same scaling as the
vorticity). However, overrides can be specified. If we wish to do this for the above example
we may specify a new description and scaling for the speed plane as follows:

out.u := Q.uy;

out.v := Q.v;

out.Scalar := sqrt(Q.u"2+0.v"2);
out.Scalar Descr := "Speed";
out.Scalar:Black = 0.0;

out.Scalar White :
out;

Manipulations that you might want to apply to the velocity data include setting a different
plot spacing and scale. This may be achieved in the above example by setting values for
out.u xStep, out.u yStep, out.u Scale, etc. Of course, you can also change the
description for the velocity data, should you so wish.

Note that the input values of these additional controls are available through o.u scale,
0.u xStep, Q.u yStep, ... Q.Scalar Black, and 0.scalar White. The input description is
also available through o.u pescr, ..., 0.u pescr. Other features of the input image such as
information about its coordinate system are available through o.dx, 0.dy, 0.xOrigin,
0.yOrigin, 0.xUnits, Q.yUnits and Q.cCoordName. These variables, however, are not listed
in the VVariables list box; a more comprehensive list may be viewed by clicking the Variables
button.

max_ value (out.Scalar);

~178 -

DigiFlow

Returning images

Images and drawings may be returned in a variety of ways from the code. In all cases, the
final computed or referenced value represents the image returned, but this may be an array, a
drawing handle, or a compound variable. The table below gives the possibilities and their
interpretation by DigiFlow.

Menus

Return type

Components

Interpretation

2D array Simple image. Colour scheme and scaling
determined by dialog settings.
3D array If the input is a 3D array, then the output will be
interpreted in the same manner. For example, a
3D array output from full colour input will be
taken as a full colour image, whereas a 3D array
output from a velocity field input will be
interpreted as a velocity field.
Compound . Image (array) Simple image, but with the code optionally
“B1ack (nNUMeric) specifying the |nt_en3|ty to set to black (.B1ack or
_ .black) and white (.white Or .white), and the
.mhite (NUMeric) colour scheme to be used (.colourScheme oOr
.ColourScheme (string) | -colourscheme OF .1uT). Only the specification
] of the image (.Image, .image OF .im) IS
.1LUT (string or array) mandatory.
Compound .Red (array) Full colour image. The arrays specified for .red,
Green (array) .Green and -Blue must all be two-dimensional
and of the same size.
.Blue (arra :
ue (aray) _ The optional .red Black, .Red White, etC., Set
.Red_Black (nUMeric) | the intensities to be interpreted as black or white
.Red white (numeric) | for each of the three colour components.
.Green Black
(numeric)
.Green White
(numeric)
.Blue Black (numeric)
.Blue White (NUMeriC)
Compound .u (array) Vector field, specified in .u and .v arrays, with
v (array) an optional background image specified in the

.Scalar (array)
.u_scale (numeric)
.u_xStep (nUMeric)

.u_yStep (numeric)

.u_ColourScheme

(string)

.Scalar Black

.Scalar array. Both (all three) arrays must be the
same size.

The spacing between the vectors is determined by
.u xStep and .u_ystep, Whereas the scale of the
vectors is given by .u scale. The default colour
for the arrows (black) may be changed by

.u_ColourScheme.

The black and white values of the optional

background image, and the associated colour

- 179 -

DigiFlow Menus

(numeric) scheme, may be changed by .scalar Black,
.Scalar White .Scalar_White and .Scalar_ColourScheme,
(numeric) respectively.
.Scalar ColourScheme
(string)
Drawing The drawing will be used. If the output is a raster
handle image, then the drawing will be converted into a
bitmap before saving.

5.7.3 Combine images

REkHEdCOHHnandSZprocess Tools CombineImages(..)

This process allows multiple input image streams to be combined in arbitrary ways to
produce an output image stream. This facility may be viewed as an expanded version of the
Transform intensity described in 85.7.2. This produces a very versatile tool, but one which
requires some experience to master. A simplified interface to the same underlying mechanism
is provided in Transform recipe described in 85.7.1.

—180 -

DigiFlow Menus

Tools: Combine Images g]
Inpits 9\‘
Source Image Source Image Source Image .
¥ Use ¥ Use [~ Use
From timet: Fram time, - DISABLED:
= 2l T
- Freview of [one of] the input
image(z]]
| et i | "ubbs i i |
Process... | File... | Process... | File... | | |
¥ Sequence Sift ¥ Sequence Sift I
v Dizplay {+ [v Dizplay T = .
Assigned to| Py F Assigned to [Ph ~ Asgzigned to
Ta.fFrom Gb.Sealar Ve
Ta.Mow 4 Qb ul v
Reset | First | Previous | Mext | Last |
|
Code Dutput ‘&
Rt
Static Output Image
Fd aridatary:
Select options for output
Put yGradient 55 image stream [e.0. colour, bit
i # behind velscity field depth, etz
aiing Qa.Scalar -= FPb;
Qa.Zcalar Black := Qb_Blachk:
Qa.8calar White := Qb.White:
Qa.u_Zcale *= Z; |
Qa;
Options... | Sawve Az
Image Scaling i W Display
ite
I~ From Master 10

oo [P0 | _Vaobe. |
E ﬂ? 0K Cancel

The code to combine the image streams. This should be exprezsed in terms of the image vanables 'Pa', &
'Pb', etc., their conesponding times 'Ta', 'Th', ete., [compound wanables that contain all the relevant
detailz). For multiplane images such as velocity figlds, the components are alzo available through the
compound variables '0a', 'Ok, etc.. Note that it is more efficient for any proceszing of static images (le. ™

Figure 132: Combine image streams in an arbitrary way.

Up to 26 image selectors (fewer if operating on a free licence) provide multiple input
streams in the Input group. These are visible three at a time, with the Next and Previous, First
and Last buttons providing the ability to move along the list of selectors. Each image stream
may be enabled or disabled through the Use check box, and each is assigned a two-letter
name. For accessing the basic image the first letter is always », while the second increases
alphabetically from a, for the first stream, through to =, for the last possible stream. As we
will see later, individual data planes for images with multiple planes of data may be accessed
using oa, Qb,... 0z, and drawings through npa, hpb,... hpz. The Reset button will clear the
inputs of all selectors, and clear the Use check box for all except the master stream (stream a).

The individual input streams may be taken as either dynamic or static. A dynamic stream,
indicated by checking Sequence, will have one image read from it for each frame processed.
In contrast, a static stream will read the input image only once at the start of the process.

Timing details may be set for both dynamic and static streams using the Sift buttons (see
84.3) to activate the standard Open Image dialog (84.1). For a static stream, the effect of this
is merely to select which image from a sequence is used as the static image.

—181 -

DigiFlow Menus

Using the Save As button, the Output group specifies the destination of the combined
image streams. If this process is acting as the source for another process, the Save As button
is suppressed (refer to §7 for further details).

Timing details for the output stream are determined by the master input stream. This stream
is selected using the Master radio button associated with each input stream. Note that while
only one input stream can provide the master timing details, the process will be terminated
when the first of the dynamic input streams runs out of images.

The Controls for this process comprise two code groups. The first code group, Static, may
be used to define functions and manipulate the static input streams using their respective
variables (e.g. po). This code is executed only once (except in so far as user defined functions
— 88.9 — may be executed many times). Images from either static or dynamic streams may be
referenced in the code, with those belonging to the dynamic stream corresponding to the first
images in such streams. Any return value from this code will be discarded, but any variables
created by the code will be available to the later \Varying code.

The second code group, Varying, is executed once for each frame of the dynamic input
stream in order to compute the output stream. This code may access any of the available
images (i.e. whether they are from static or dynamic streams), as well as any variables or
functions defined in the Static code. The final code statement provides the return value that is
stored in the output stream.

The output from the Varying code may be an array, a drawing handle, or a compound value
containing a number of different components. The various options here are identical to those
for Tools Transform Intensity and are described at the end of §5.7.2.

As noted above, the basic image from the input streams is supplied in the array variables
Pa, Pb, ... For simple images these will be a two-dimensional arrays. However, for more
complex image formats (such as velocity fields stored in .dfi files), ra, b, ... will contain
more than two dimensions. In such cases DigiFlow will also provide the same data split into
its individual component two-dimensional arrays in the compound variables oa, ob,... For
example, if the first input stream contains a velocity field generated by the PIV facility (see
85.6.5.2) then oa.u and oa.v will contain the two components of the velocity field, and
(depending on the options selected during the processing) ca.scalar may contain the
vorticity field. Full colour images are supplied as their red, green and blue components with a
three-dimensional pa array: pa[:,:,0] contains the red component, ra[:,:,1] contains the
green component, and pa[:, :,2] contains the blue component. For convenience, these are
also supplied as 0a.Rred, Qa.Green and ga.Rlue. The £2 button may be used to search for or
provide information on specific DigiFlow functions.. The %2 button may be used to search for
or provide information on specific DigiFlow functions. If the input stream(s) contains a
DigiFlow drawing (typically one or more .dfd files), then DigiFlow provides the drawing is
available through its handle npa, hoo, ... hpz in addition to a bitmap version of it in the array
variable p. Additional drawing commands may be added to the drawing handle, or it may be
incorporated into a compound drawing using draw_embed drawing(..).

DigiFlow also provides time information about the input stream through the Ta, Tb,...
compound variable. Typically this contains Ta. fNow and Ta.tNow giving the current frame
number and time (in seconds) relative to the start of the entire input stream. An additional
variable Ta.iNow gives an iteration counter that is the frame number relative to the start of
those that are actually being processed. Details of the entire input stream are provided through
Ta.fFirst, Ta.fLast and Ta.tFirst, Ta.tLast that provide details of the first and last
frame/time that exist in the input stream. Moreover, Ta.fFrom, Ta.fTo and Ta.tFrom,
Ta.tTo provide information about which part of the stream is being processed.

—182 -

DigiFlow Menus

The main variables available are listed in the Variables list box. This list does not,
however, include any additional modifiers for the individual data plane variables beginning
with 0a, ob,... Use the Variables button to generate a complete list of all the variables
available and their contents. (This button loads all the image data then calls the
view_variables (. .) function.)

If this feature is started from a dfc macro, then the code specified for the Static and Varying
code segments have access to functions and variables defined in that macro. In the case of
variables, the ' global access prefix must be specified. The Preview button allows you to
preview the result of the transformation before applying it to the whole image sequence (see
Figure 134).

Test of Combining Images

HHHHH
o T e e B
= D g e e e e e T T T e T T T e e
e R e e T e e e e

B] P -

S I] - oo
e e B L R T . o
\\\‘\\Q‘.\,\,\\.\.\.\.\\\.\.\\\x\\.\\\\\w.w.\.\.w.w.\n v .

k\i%\ NN LERLRLEL

\\\\\\\\\
\\\\\\\\\

.........

e,
atar
o
At el
Tt s
et NNl

X

Click. OF, to close preview

e i e
e e
o ST
e v
e

T eSO R S S i

B L e N,

—— e
e)

e g

=

S

-

T e A,

rrrrrrrrrrrrrrrrr
,,,,,,,,,,,,,,,,,

L e N oo

B N S N

T e L L B
B N e S
B L A A T P e
R e L N RS S S,
B R L L LU R e e e e e
B A i i P
B T A P S e
B
L
AR R LA AL AN A RN R E R R R R Re e
B T T A S
P

B g g N g
o e
e R W

e e LN N N N REAESE AN A A
L N S KA AL N SN I

Threa

Select "Option’ menu (Cursor: World: Frame: 0 (0.000s) 100%:

Figure 134: Preview for Tools: Combine Images.

As is standard with DigiFlow, all the input streams from integer format image files are
interpreted as floating point values between 0.0 for the darkest parts and 1.0 for the brightest
parts. By default, when the image is saved to an 8 bit format, intensities less than 0.0 will be
mapped to 0 and those greater than 1.0 mapped to 255.

Note that the result of VVarying need not be an image, but can be a DigiFlow drawing. In
this case the return value from code specified for the Varying must be the handle to the
drawing object (i.e. the handle returned by draw start (..)). In this case, the output stream
must have a format capable of containing a drawing. See the end of 8§5.7.2 for a complete list
of the output options.

A number of non-trivial examples are given below.

Aligning images
In some circumstances it may be necessary to force alignment of images. This may be due
to vibration of the camera, for example. Processing in this case would require two input

—183 -

DigiFlow Menus

streams: the images to be aligned, and a reference image. If the misalignment is small, then
the following code could achieve the desired effect. Suppose that we have some reference
point located near the bottom left corner of the image. These reference points may be found by
looking for some blobs with an intensity exceeding some predefined threshold. If the images
to be processed are presented to input stream pa and the reference image to rb, then we can
divide the task into two parts. The Static code would find the reference locations of the
points, while the Varying code would not only find the current location of the points, but also
shift the image accordingly. To save replication of code, we choose to define a user-defined
function within the Static code that is responsible for finding the current location of the

reference points:

function FindRef (Image, thresh) {
Find all the blobs
blobs := find blobs (Image, thresh) ;
Search for the largest blob.
Volume 1is stored in blobs[4,:]
iBlob := max index x(blobs[4,:]);
ret.x blobs[0,iBlob];
ret.y := blobs[1l,iBlob];
ret;

i
ref := FindRef (Pb[0:10,0:10],0.15);
For the Varying code we then use
now := FindRef (Pa[0:10,0:10],0.15);
dx := ref.x - now.x;
dy := ref.y - now.y;
shift (Pa,dx,dy) ;
Here the shift (..) function will only move the image to pixel resolution.

If you require subpixel resolution then use shift interpolated(..) instead. Note,
however, that the latter function must have arrays for the shift indices. This could be achieved
using the following code segment for \Varying code instead:

now := FindRef (Pa[0:10,0:10],0.15);
dx := make like (Pa,ref.x - now.x);
dy := make like (Pa,ref.y - now.y);
shift interpolated(Pa,dx,dy);
Here we use the make 1like (..) function to convert the shift increments into arrays for

feeding into shift interpolated(..).

Velocity fluctuations

Suppose we are interested in examining the velocity fluctuations relative to some mean
velocity field. In the simplest case we would look at the difference between the current
velocity field and a time average field. Suppose the time varying velocity field is available
through the ra source stream, and the mean velocity field (perhaps computed by the Time
Average facility described in 85.6.1.1) is specified as the po stream with the Sequence box
cleared. In this case we need not specify any Static code. For the Varying code we could

specify:

out.u := Qa.u - Qb.u;

out.v := Qa.v - Qb.v;

out.Scalar := Qa.Scalar - Qb.Scalar;
out;

In this particular case, since all three data planes are being treated in the same way and we
are not changing the description of scaling of the data planes, we could treat all three planes
simultaneously and simply use ra - pb. Validity of this, however, depends on the contents of
the scalar field.

~184 -

DigiFlow Menus

5.7.4 Accumulate

Toolbutton:

Shortcut:

REkHEdCOHHnandSZprocess Tools Accumulate(..)

The operation of this menu item is similar to that of Tools: Recipe (see §5.7.1), but rather
than taking a stream and returning one output image for each input image, here only a single
output image is created. The simplest form of an accumulation is the mean of the image
stream, but this tool is more flexible (but slightly slower) than the Analyse: Time Average
(see 85.6.1.1). The dialog controlling Tools: Accumulate is almost identical to that of Tools:
Recipe, with each accumulation recipe being assigned to a Group within a Category. Some of
the accumulation recipies also require Parameters to control their action.

Tools: Accurmulate @
|nput Streams Sy sl COutput i
Input With s h Transformed Image ia
Frarm tirne: DISABLED:

Prewview "wWith' image]

[s | [*Junk. dfi"

Process... | | | Options. .. Save fg... |
v Display Sift.. [Iv Display
Control ‘
Category Group Recipe Parameters)
Threzhold
Stuchure Analysis 1ol |0.25
\ng?:city Finimurm Contour Lengl [1n
tawirmum Contour Lenc {10000
Superimpose all contours - Image Scaling

[Same as input

*hil
| Black |- oK | Close | Eancel|

Figure 135: The Accumulate dialog.

User-defined recipes

Users can add their own custom recipes to the list by creating a file named
User_Accumulate.dfc either in the current directory, or in the directory in which DigiFlow is
installed. (A copy in the current directory will have precedence over one in the DigiFlow
directory.) A typical entry for a single-stream recipe in this file would look like

Accumulate.User.Statistics.NumberOverThreshold.Descr := "Count the
number of images exceeding a threshold";
Accumulate.User.Statistics.NumberOverThreshold.Accumulate := {
if (Time.iNow = 0) {
acc := make like(P,0);
thresh := p0;
}s

acc += P > thresh;

—185—

DigiFlow Menus

}s
Accumulate.User.Statistics.NumberOverThreshold.PostAccumulation :=

{acc;};
Accumulate.User.Statistics.NumberOverThreshold.PromptQO :=

"Threshold";
Accumulate.User.Statistics.NumberOverThreshold.ParamO := 0.5;
Accumulate.User.Statistics.NumberOverThreshold.Check := {if (p0 <

1) {"Must have positive threshold."} else {null};
This would appear under Categgory User, Group Statistics, Recipe NumberOverThreshold.
Here the recipe requires one parameter, producing the prompt Threshold in the interface. The
default value of this parameter is set by the . raramo variable, and the parameter is provided to
the code as the variable po. In this case, since a .cneck variable is specified, the value of the
parameter is checked. If the .check code returns a string, then this is displayed as a warning
message.

If two input streams are required, then the variable xxx.witnh should be defined, containing
either "sequence” Or "single", depending on whether a sequence or only a single image is
to be recovered from the With stream. The image recovered from the With stream is provided
to the .code in the variable po (or, for image planes in oo — refer to 85.7.2 for further details).

The facilities available within the code segment . accumulate are exactly the same as those
available in the Transform intensity and Combine images tools described in §85.7.2 and 5.7.3.
Typically the code will start with an if statement, checking Time . iNow, to set things up on the
first iteration. Once all the frames have been processed, the .prostAccumulation code is run
to form the final output.

Up to 6 prompts may be requested, their types (integer, floating point or string) being
determined by the type of the default value in the . paramn variable. Note that the description
and code may be specified interchangeably as strings, code segments or memos.

The database of built-in recipes may be found in DigiFlow_Accumulate.dfc in the DigiFlow
installation directory.

5.7.5 Slave process

Toolbutton:

Shortcut:

Re&ﬁedconﬂnandSZprocess Tools SlaveProcess(..)

Unlike most of the other features in DigiFlow, a Slave process is intended to provide a
mechanism for extracting information directly from an input stream (including live video) for
direct inspection by the user. The range of uses for this mechanism is continuously expanding
and includes processes ranging from velocity calculation to aids in setting up and focusing a
video camera.

Slawve Process @
Contral .
Category Group Recipe Parameters e
— n'ectors
Colour DarkStreaks 2
Denzity
Filker Streaks Wector Scale |
Intenzity . .
Liveiew Interragation Window S 20
Orientation
Optical Flow Welocity p
This process yields only a qualitative approximation ta the welacity fisld
Read recipes
i oK | Close | Cancel |

Figure 136: Dialog controlling a slave process.

—186 -

DigiFlow Menus

As with the recipes described in 85.7.1, the interface provides a hierarchical interface to a
series of macros providing the desired output. However, unlike a recipes feature, a slave
process does not have an explicit image stream for the source of its data. Rather, it taps on to
the image stream being displayed in the window that had the focus at the time the slave
process was started. This master image may be a movie opened by File: Open Image, the
output of another process, or live video. If the selected process is not too computationally
expensive, then it will take the information from this stream and process it to produce output
each time the master image is updated. When the master image is live video, then the output
may be less frequent, but can be tailored to make use of adjacent frames, for example.

To specify a slave process, ensure the desired master image stream is the active window
before selecting the slave process menu item. Slave processes in each Category are divided
into one or more Group, each of which contains a selection of Recipes. Once the required
recipe is selected, then the Parameters group may allow specification of optional parameters
to provide some control over the process.

User-defined recipes

Users can add their own custom slave processes to the list by creating a file named
User_SlaveProcess.dfc either in the current directory, or in the directory in which DigiFlow is
installed. (A copy in the current directory will have precedence over one in the DigiFlow
directory.) A typical entry for a single-stream recipe in this file would look like

Slave.User.Filter.LowPass.Descr := "Low pass filter";
Slave.User.Filter.LowPass.Code :=
{hS := get_active view()
im := get_image (hS);
if (not(is_null(im))) {
hV := view(im.image) ;
view_colour (hV, im.lut) ;
}s;
while (not(is_null(im))) {

out := filter low_pass(im.image,p0) ;
view (hV, out) ;
im := get_image (hS);

}s;
close_view(hV) ;

};

Slave.User.Filter.LowPass.PromptO := "Length";
Slave.User.Filter.LowPass.ParamO := 3;
Slave.User.Filter.LowPass.Check := {if ((p0 <= 0) or ((p0 mod 2)

<> 0)) {"Length must be positive odd integer"} else {null};};
This would appear under Categgory User, Group Filter, Recipe LowPass. Here the recipe
requires one parameter, producing the prompt Length in the interface. The prompt is specified
by the . prompto string and the default value of this parameter is set by the . paramo variable.
The type for the returned parameter must be the same as that of its default value. The specified
parameter is passed to the .code as the variable po. In this case, since a .check variable is
specified, the value of the parameter is checked. If the .cnecxk code returns a string, then this
is displayed as a warning message.

Unlike a recipe that needs to deal with only a single image (or single pair of images), a
slave process needs to handle a continual stream of images, and look after both their
extraction from the master image stream and their display in a suitable format. Typically the
code for a slave process starts by determining the source for the master stream by a call to
get_active view (). The macro get image (..) is then used to simplify the extraction of
the images from the master stream, whether it be a standard image stream or live video. In
both cases, get image (..) waits efficiently for a new image to be available. In the above

—187 -

DigiFlow Menus

example, a window (view) is created to contain the output, then further image are extracted
repeatedly from the master stream until either the slave process or the master image stream is
terminated.

5.7.6 To world coordinates
Toolbutton:
Shortcut:
Related commands: process Tools TransformToWorld(..)
Transforms an image stream to make the associated world coordinate system orthogonal.

L t
Input——. h Output ‘?—\v—

R aw Image Tranzformed Image
[default)

COutput image does nat exist

or is invald
[Thiz iz QK]
|"JPRD45.MOY" |"'ip_world. ofi"
Process... | File... | Options... Savebs..

v Display Sift. v Display

Contral

u

L

=

Coordinate System

[default)
el

|100.0 :
y ma Width g2

v Lock Aspect Fatio

ymin| Height ’W

0.0 |100.0

—— — Fill Intensity [0 o Cancel

b awimum warld coordinate » value

Figure 137: Transform an image stream to world coordinates.

A single image selector provides the input stream in the Input group. This may be taken
from a file using the File button, or from another Process.

The Output group specifies the destination of the transformed image using the Save As
button. If this process is acting as the source for another process, the Save As button is
suppressed (refer to 87 for further details).

The Controls for this process include the specification of the Coordinate System to be used
to map the image. The limits on the coordinates corresponding to the left (x min), right (x
max), bottom (y min) and top (y max) of the output image, the size of which is specified by
the Width and optional Height if the aspect ratio is not to be preserved.

Any pixels in the output image not corresponding to a point in the source image is filled
with Fill Intensity, 0.0 representing the minimum value, and 1.0 the maximum.

For multi-plane images containing vector fields, the conversion process will also rescale
the vector fields so that they are converted from pixel to world coordinate systems. Note that
this only applies if the input stream is in pixel coordinates. This feature is of particular value if
PIV velocity fields are computed in pixel coordinate yet are later required in world
coordinates.

—188 -

DigiFlow Menus

5.8 Window

The Window menu follows the standard Windows format and will not be given in detail
here.

5.9 Help

Documentation for DigiFlow resides largely in this manual plus the dfc Help facility
described in 84.5. This manual is distributed as both html format in DigiFlow.htm, and as an
Acrobat file in DigiFlow.pdf.

5.9.1 Help (browser)

Toolbutton:

Shortcut:

Related commands:

Clicking on the Help entry in the Help menu will start up an instance of Internet Explorer
and, where possible, take you to the table of contents in the html version of the DigiFlow User
Guide. Selection the function key f1 at any point will have the same impact, but where
possible will jump to the most relevant section of the guide.

5.9.2 dic Help
Toolbutton:
Shortcut:
Related commands:
This will start up the dfc Help facility described in 84.5.

5.9.3 Auto help

Toolbutton: 2

Shortcut:

Related commands:

When checked, a browser window containing DigiFlow.htm is opened and automatically
scrolled to the relevant section for each action undertaken within DigiFlow.

5.9.4 About DigiFlow

Toolbutton:

Shortcut:

Related commands:

The Help About DigiFlow option brings up a screen that gives you DigiFlow version and
build date information (see figure).

—189 -

DigiFlow Menus

[About DigiFlow

- \ -~

N A Ay
‘

DigiFlow v3.4.0 (ivf] 29 March 2012

[c) Dalziel Research Partners
1993-2012

digiflow@dalzielresearch.com

Figure 138: The About DigiFlow dialog.

—190 -

DigiFlow Techniques

6 Techniques

6.1 Determining black

There are a number of ways of determining the intensity to which black digitises. When
working with two light sources for LIF the easiest way is to take three calibration images. The
first image will have the left-hand light source only, the second the right-hand light source
only, and the third with both light sources turned on. By then using Tools: Combine Images
with these three images forming the Pa, Pb and Pc input streams, the following code will

determine the black value and test the hypothesis of linear dye response simultaneously:
Image:=Pa+Pb-Pc;

black := mean (Image);
message ("Black:"+black);
Image;

This code first evaluates the difference between the sum of the images due to the left and
right hand light sources separately, and the image due to the two light sources working in
tandem. If black were to digitise the some value rblack, then we would expect the resultant
Image to be rblack. Inspection of the resultant image will highlight any defects in the images
or assumptions, while the message box produced will give the black value.

An alternative method of determining black relies on the fact that it should have the same
digitised value regardless of the camera aperture. Begin by acquiring two images of the same
scene using different f-stops on the camera. The image with the wider aperture (smaller
f/number) should not quite saturate; the second image should be with the lens stopped down
by one f-stop. The scene should contain a broad range of intensities. Again using Tools:
Combine Images, with the two images as Pa and Ph, use the following code to first generate a
scatter plot, then fit a least squares regression to that line, and finally determine the intercept

between this and a line of unit slope.
Create scatter plot, scaling intensities from 0-1 to 0-255.
Image := make_ array (0,256,256);
Image := scatter_to_array (Image,255*Pa,255*Pb, fill:=1,flags:=1);
Find the centroid of the scatter plot
y := y_centroid(Image)/255;
® := X _index(y)/255;
Fit line to plot, but only to central part of data
fit := fit expression("1;x;","x;",x[50:250],y[50:250]);
Look for root of x = a + bx => x = a/(1-b)
rblack := fit.coeff[0]/(l-fit.coeff[1l]);
Generate the fitted line
f := evaluate_expression (fit,x);
Create a plot
hDraw := draw_start(640,480);
draw_set axes (hDraw,0,1,0,1);
draw_x_axis (hDraw, "Bright image");
draw_y_axis (hDraw, "Dim image");
draw_create_key (hDraw,0.1,0.6,"Key");
draw_mark (hDraw, x,vy) ;
draw_key entry (hDraw, "Scatter plot", line:=false,mark:=true);
draw_line_colour(hDraw,"blue");
draw_lineto (hDraw, x, f);
draw_key entry (hDraw, "Fitted curve",line:=true);
draw_text (hDraw,0.2,0.8,"Black:"+rblack) ;
draw_line_colour (hDraw, "green");
draw_line (hDraw,0,0,1,1);
draw_key entry (hDraw, "Unit slope",line:=true);
draw_end (hDraw) ;
Return the drawing handle as the "image"
hDraw;

—191 -

DigiFlow

The result of this code is shown in figure 139 below.

1.0

081 Black:4.315697234902829E-002
3,067 Key
o + Scatter plot
= o
=
Oo.

0.0™ i i i i i
0.0 0.2 0.4 0.6 0.8 1.0

Bright image

Figure: 139 Scatter plot used to determine ‘black’.

—192 -

Techniques

DigiFlow Chaining processes

7 Chaining processes

A powerful feature of DigiFlow is the ability to chain multiple processes together, thus
creating an efficient way of automating complex algorithms for processing image streams. In
addition, piping images allows the full resolution of the image stream to be used, without the
need to map the stream into some image format with a lower intensity resolution for each
pixel.

The procedure for creating a process chain begins by identifying the process producing the
output that is ultimately required, and work backwards from that point. For example, you may
wish to determine the standard deviation of fluctuations in concentration from an image
stream that contains corrected intensity images of a flow. The final process in this case is the
Time Averaging found in 85.6.1.1.

In the Sequence group, click the Process button to indicate that the input image stream
will be taken from another process. This starts the Image Source dialog.

Irmage Source @

Category Frocess Output

[from file) Accumulate

[from view) Combine Images

finalyze Tranzform Intensity

File Transform Recipe

T oolz Tranzform To wWorld

User DLL

Dialag...
Cancel

Figure 140: The image source dialog for connecting processes together.

This dialog contains three list boxes. The first, labelled Category, reflects the menu items
controlling processes, with the addition of (from file) that allows the image stream to be taken
from a standard file (enables the corresponding File button in the parent dialog). The Process
list box then lists the various processes available within the Category list, and the Output list
box indicates the one or more image streams produced. The source process is specified by the
combination of items selected in these three list boxes.

Clicking Dialog (or OK if this is the first time the Image Source dialog has been started for
this image stream and source process combination) will then start up the dialog box for the
source process. In this case the Transform Intensity dialog described in 85.7.2.

—193 -

DigiFlow

Toaols: Transform Intensity

=35

|put
Raw Image

L] COutput
o h Tranzformed Image

e

Tools: Transfarm [ntetsity
> pipe--»

Tools: Transform Intensity

|"JPROE MOV |- pipe-—>
Process... | File... | Options. ..
v Display it [v Dizplay

Transformation

.|

3% -

=

Controls

Image Scaling

filter min(P)|/filter low pas=(l');:

ariables

white [T P
[Same as input 1.0 Tirne. fFram

Tirne.fMaw
Black |* Time.fStep
TineTo -
ﬂ? | E | Previgw... | WVariables... |] | Cloze | Cancel |
filker_rminaray) o

filker_rnin[arran, huSize)
filber_min[amay mxSize.nySize)]

Figure 141: Transform intensity dialog as part of a process chain.

Chaining processes

When a process is acting as a server for another process, the normal Save As button is
disabled and the destination preview window indicates that the result will be piped into
another process. The remainder of the dialog is unchanged. Once the image source has been
specified using the File button, the timings and region may be set with the Sift button (84.3).
Alternatively, the chain may be extended by selecting another process with the Process

button.

Exiting this dialog with the OK button returns to the parent dialog (here the Time Average

dialog).

~194 -

DigiFlow

Analyse: Time Swerage @
Input Syl Cutput |
& w>
Sequehce : Average
Tools: Transform Intensity [default)
- pipE-y
Snalyze: Time Average Output image does not exist
or ig invalid
[Thiz iz OK]
|- pipe-—> | tveB dfi"
| Options. .. | Save bz
Iv Dizplay v Dizplay
Contrals
%5 Method
& Arithmetic " Min
" RMS T Max
" Std. Dev. oz
" Geometric Ees
" Harmonic
Cancel |

Figure 142: Time average dialog at the root of a chain.

Chaining processes

This dialog, at the root of the processing chain, requires the destination for the Output
image stream to be specified. The input image stream (the Sequence group) now has the File
button disabled and indicates the source process in the preview pane. Once the specification of

the dialog is complete, pressing OK will start the process.

—195—

DigiFlow Interpreter basics

8 Interpreter basics

DigiFlow contains a sophisticated mathematical interpreter capable of operating directly on
numbers, arrays and/or entire images, and of controlling and automating complex processes.
This interpreter is used widely within DigiFlow to provide the user with the maximum power
and flexibility. The language utilised by this interpreter is often referred to as dfc code within
this manual.

This section outlines the basic syntax, operators and execution control statements
understood by the interpreter, and provides the key elements required to enter expressions and
code segments in dialog boxes associated with the menu-driven processes provided by
DigiFlow. Discussion of the broad range of basic and advanced functions and the use of the
interpreter as a macro or command language are deferred until 89. Techniques used to access
built in DigiFlow processes and write complete macros are described in §10. However, only
brief details of the individual functions are given in this manual. More comprehensive
documentation is to be found in the DigiFlow dfc Help facility described in 84.5.

Note that the interpreter is case sensitive with all pre-defined constants, functions,
operators and variables specified by lower case names. Variables supplied by DigiFlow to
represent a data stream or the result of a specific manipulation normally begin with an upper
case character.

8.1 Syntax

The basic syntax of DigiFlow dfc code has some similarities with other high level
languages such as C, Pascal or Matlab, but also has a number of significant differences.

Of key interest to experienced programmers is that the assignment statement is : =, similar
to Pascal, with C-like +=, -=, = and /= variants. The conditional assignment operator 2= will
only make an assignment if the target variable (on the right-hand side) does not already exist.
Statements terminate with a semicolon (;), and blocks of code are delimited with braces
(t...1).

Array and list indices utilise square brackets (r...1), with parentheses ((...)) being used for
function arguments and mathematical brackets. Square brackets (...1) can also be used to
construct arrays, whereas double angle brackets (<<...>>) can be used to construct a
compound variable.

Exponentation uses a caret (»), while mod, div, max and min are all binary operators.
Logical true takes the numeric value of unity, while faise is mathematically zero. Logical
negation not (. .) is a function, while the binary comparative operators are =, <>, >, >=, < and
<=. Loops take the form for i:=0 to 100 step 2 {...}; Of while (condition) {...};.
Conditional execution uses if (conditionl) (...} elseif (condition2) (...} else
{...}:. Note that for both while and if that the condition must be delimited by brackets.

Variables may be integer, logical, real, array (of real values), string, compound or list (of
arbitrary types). A compound variable is similar to a structure in other languages, but is more
flexible, whereas a list is effectively an array that can contain a mix of variables of any or all
types. Arrays can be constructed using make array (..), Or directly using square brackets,
e.g. (1 2 37 0r [1,2,3]. Components within compound variables are separated with a dot
and can be constructed using double angle brackets (e.g. <this 1=
<<time:=3.0, frame:=6>>).

Standard strings are specified using double quotes as "This is a sample string". TO
include double quotes within the string, double the quote up, i.e. "To use ""quotes""
within a string." However, there is a maximum length to a standard string of 256
characters. Longer strings should be specified as a memo, delimited as { /2 memo can hold

—196 -

DigiFlow Interpreter basics

a string of arbitrary length. All DigiFlow functions where the 256
character limit on a standard string is likely to be limiting can accept

memos as well as or instead of strings./}.Both strings and memos (and also blocks
of code) may be concatenated using the + operator. Concatenating a numeric value with a
string will cause the numeric value to be converted into a string before the concatenation.
Similarly, concatenation of a string or a numeric value with a memo will result in a memo.
For example, "ri1e"+123 will yield the string "ri1e123". More control over the format
when converting a numeric value to a string is achieved using make string(..). The
function replace hashes(..) provides a convenient method for constructing file names
with a fixed number of digits including leading zeros.

A key difference compared with languages such as C or Pascal is that variable typing is all
dynamic and determined by the assignment statement. A given symbol/name may change
between any one of the basic types during the execution of code. Expressions involving mixed
type are often permitted, with the result being, generally, what is expected. For example, if
arr IS an array, then the expression arr + 3 will add three to every element in arr.

By default, all user-defined functions are pure functions in that changes to any of the
parameters are discarded with the return value being the way of returning all information to
the calling code. The return value is the result of the last statement to be executed. It is not
necessary for this statement to have a corresponding assignment. For example, the definition
function Three() {ret := 3;}; and function Three() (3;}; Will both return the
integer three.

8.2 Variables

DigiFlow allows the use and creation of variables within all code segments. Variable
names may use any alphanumeric character, plus the underscore. Names must not start with a
numeric character. Variable names are case-sensitive.

8.2.1 Simple variables

There are four basic types of variable: integer, floating point, array and string. Additionally,
there are a number of special purpose variable types, specifically memo, code and null. The
last of these, nu11, is simply a place holder with no value, while memos provide a container
for blocks of text that are too long to fit in standard strings. Code variable are a specialist form
of memo that contain executable code.

Normally, declaration statements are not required to create a basic variable: it need simply
occur on the left-hand side of an assignment statement (88.3). However, in some cases an
array of a particular size may be required, and in such cases the make array(..) function, or
one of the other more specialist array constructors (e.g. make like(..), random array(..),
gaussian array(..), x_index(..),y index(..)) should be used on the right-hand side of
an initial assignment statement. Similarly, a list can be created and initialised using
make list(..).

Both arrays and lists of strings can also be constructed in line using square brackets. If the
contents between the square brackets are purely numeric, then an array is constructed. If the
contents includes any strings, then a list is created. For example, (99, 9s, 97, 96] will
construct a one-dimensional array with four real elements (there are no integer arrays). In
contrast, ["dog™, "cat", "mouse"] produces a list with three string elements. The elements
of a list need not all be of the same type, thus ["two", 3, "four"] is valid. Further
information about arrays is given below in 88.4 and lists in 88.5.

A null value can be obtained either by assignment of nu11, or as the return value of certain
functions (sometimes representing an error condition).

—197 -

DigiFlow Interpreter basics

Memo variables can be constructed using the following syntax: MyMemo := {/The memo
is contained between an openning brace-slash pair, and a corresponding

closing slash-brace pair./};. Whereas standard strings in DigiFlow have a fixed
maximum length, memos can be of arbitrary length. In many places, strings and memos may
be used interchangeably.

Blocks of code are delimited by braces, whether as part of a control structure (e.g. a for
loop or if block) or when being assigned to a variable. For example vMycode := {a += 5;};
execute (MyCode) ; creates the code variable uycode then executes it.

For mathematical computations, type conversion will take place automatically as and
where it is appropriate. For example, multiplying an array by a scalar will produce an array.
Division of two integers will produce a real (floating point) value (integer division is achieved
using the div operator).

8.2.2 Compound variables

Compound variables are similar to “structures” or user-defined “types” in other languages.
Compound variables may be used to store more than one value of the same or different types.
They are distinguished by having a dot (.) within their name. The part of the name to the left-
hand side of the dot is the name of the compound variable, while the part of the name to the
right-hand side is the name of the component: name . component. Each component may itself
be any DigiFlow variable type, including arrays, lists and compound variables.

Whereas in most languages, the components contained within a compound variable need to
be declared in advance, this is not true for DigiFlow. Here a compound variable is created by a
standard assignment statement, and as many component variables as required may be added.
Moreover, each of these component variables may themselves be compound variables.

The following example illustrates the use of simple and compound variables.

Start := 0; # Assignment to a simple variable
Using.Code := {1 - P}; # Create a compound variable
and component variable
Using.File := "Test.dfm"; # Add a second component variable
Using.File Time.FromStep := 0; # Component variable Time is a
compound variable
Using.File Time.ToStep := 1;
Result := MyProc(Start,Using); # Pass both simple and compound

variables to a function.
If an existing simple variable appears on the left-hand side of a compound variable
assignment, then the original contents of the simple variable will be discarded and a new

compound variable of the same name created. In particular,
Var := "simple"; # Simple variable
Var.Handle := 1; # The string "simple" is discarded

Both simple and compound variables may be passed to functions or returned from
functions (see 88.9). Compound variables are of particular value dealing with the processes
that can be started from menu items (see §10.1.1).

In some circumstances, it can be convenient to assign multiple parts of a compound
variable in a single statement. This is particularly true when calling a function which takes a
parameter as a compound variable, but where you do not have such a compound variable
setup already. Consider the assignments

This.time := 1.0;
This.frame := 25;
This.file.name := "Test.dfi";
This.file.sequence := false;
These may be reduced to the single compound statement:
This := <<time:=1.0; frame:=25; file:=<<name:="Test.dfi";

sequence:=false;>> >>;

—198 -

DigiFlow Interpreter basics

The compound variable constructors, the << ... >> pairs, are used to bracket the values to be
combined into a single compound variable. As illustrated in the above example, the
compound constructors may be nested.

8.2.3 Type query functions

The type of a given variable may be determined through one of the inquiry functions
is_array(..), is_list(..), is_code(..), is_compound(..), is_integer(..),
is memo(..),is null(..),is_numeric(..),is_real is_string(..).

8.3 Assignment

Assignment takes place once all the operations and function evaluations are complete, if
there is an assignment operator and variable at the start of the expression (e.g. a := b+c;). If
there is no assignment, the result will be discarded, or, if it is the last result in a segment of
code, it will be returned to the routine calling the interpreter.

The various assignment operators are listed below:

Assighment Description Example
Operator

i= Standard assignment. The result of the MyArray := (Pa + Pb)/2;
expression on the right-hand side is stored
in the variable on the left-hand side.
= Increment assignment. The result of the Count += 1;
expression on the right-hand side is added . [¢ 17 c0vaont fo
to the contents of the variable on the left-
hand side and the result stored back on
the left-hand side.
= Decrement assignment. The result of the ~ Total —= a;
expression on the right-hand side is Poll S L cgavadent to
subtracted from the contents of the
variable on the left-hand side and the
result stored back on the left-hand side.
Multiple assignment. The result of the Value *= 2;
expression on the right-hand side is Lnie e cguivsdent ol
multiplied by the contents of the variable
on the left-hand side and the result stored
back on the left-hand side.
/= Fraction assignment. The contents of the =~ Test /= £ ,
variable on the left-hand side is divided 71077 "o cdiivatent tof
by the result of the right-hand side and the
result stored back on the left-hand side.
Conditional assignment. An assignment is This ?= default;
made only if the target variable does not ioThe above is equivalent
already exist. If the target variable does Tmp := default;

exist, then its contents remain unchanged. if (not(exists ("This")))
{This := default;};

8.4 Arrays

All array variables are inherently four-dimensional, although in most cases only the first
one or two dimensions are used and some cases the dimensions may be collapsed to make a
vector (scalar). Use of specific elements within an array, and assignment to specific elements
of an array may be performed as shown below. Note that an assignment statement specifying

—199 -

DigiFlow Interpreter basics

specific array elements requires the array to exist already. If the target array of an assignment
does not already exist, then the assignment can only specify the entire array.

Arrays are generated as the result of expressions and as the return value of many dfc
functions. DigiFlow also includes two functions specifically designed to construct arrays:
make array (fill, nx, ny, ..) and make 1like (template,value). In the first case, between two
and five parameters may be specified to the function, the first giving the value the array
should be initialised with, and the remainder giving the dimensions of the array (up to four
dimensions can be specified, although only the first dimension is mandatory). The fill
parameter must be either an integer or floating point scalar value. The second constructor,

make like (..), takes the specified template (which must be an existing array) as a guide to
the dimensions of the array that is required, and initialises it with value. Unlike fill in
make array (..), the value passed to make like (..) may be an array, the values of which

will be packed into the new array (e.g. the function may be used to convert a two-dimensional
array into a one-dimensional array, or vice versa), filling any extra values in the new array
with zeros, or discarding any surplus values from value if the total number of elements do not
coincide. If value is a scalar (integer or floating point value), then it is simply replicated to
each of the elements in the newly constructed array.

Array Description Example
a For array variables in expressions, the 7 Average two images
This := (First + Second);

entire array will be utilised. For arrays
on the left-hand side of assignment
statements, the old contents of the
variable will be discarded and
replaced by the result of the

expression.
ari,j Access to the i,jth element of the array # Location fé C}f“tf@ 4 /2
- . . - - 1 = x_s:l.ze ackgroun ’
a. SpeC|f|cat|_on In an expression will 5 := y size(Background)/2;
return a floating point scalar. # Intensity at centre
Specification on the left-hand side of =~ iCentre := Background[i,jl;

an assignment will cause only the i,jth
element to be updated. If the right-
hand side returns an array, then the
corresponding i,jth element from the
right-hand side is used. If the right-
hand side returns a scalar, then this
value is used.

—200 -

DigiFlow Interpreter basics
ario:i1, jo:j1 Access to the sub-array of a spanning Zf Men intensity(i” window;
. g . verage := mean
from io to i1 and jo to ju. Specification . - "7105.000,
in an expression will return an array 100:200]) ;

a[i0:i1:Si,j0:jltsﬂ

arko:ki

arko:Ki:Sk]

of size (ix — io + 1)x(j1 — jo + 1).
Specification on the left-hand side of
an assignment will cause only this
sub-array to be updated. If the right-
hand side returns an array, then the
corresponding sub-array of elements
from the right-hand side is used. If the
right-hand side returns a scalar, then
this value is used. If one or both limits
are omitted, then the corresponding
limit to the dimension will be used.
Hence a [:, :] corresponds to the
entire two-dimensional array.

As with the above form, but access
elements at intervals of s; and s;j in the
two dimensions. Note that s, sj can be
negative if the corresponding limits
are in reverse order. In this case the
order of elements will be reversed.
Access to the kth element of a one-
dimensional array. If a is specified in
an expression, then this will return a
floating point scalar. Specification on
the left-hand side of an assignment
will cause only the kth element to be
updated. The right-hand side must
evaluate to a scalar numeric value.
Access to the one-dimensional sub-
array spanning from the koth to the
kith element of a one-dimensional
array. It does not matter if the array is
a column or a row.

As with the above form, but access
elements at intervals of sx. Note that sk
can be negative if ki < ko.

Increase gain
Image[100:200,100:200] *=
2/Average;

reduced := this[::2,0:10:5]

Red := LUT[0:255,0:07;
Red[0] := 0;

Green := LUT[1:255,1:11];
Green[0:128] := 0.5;

reverse := this[nx-1:0:-1]

The entire array with all its
dimensions. This is equivalent to
ar:,:,:,:1.Ifon the right-hand side
of an expression, then it is simply
equivalent to specifying a. However,
if on the left-hand side, the array
elements are replaced by the right-
hand side, maintining the size and
shape of the array.

Assign to all elements of
array

this[] := 5;

Replace array with scalar

this := 5;

—201 -

DigiFlow Interpreter basics

v0,vl, .. When at the end of a variable name, a Pash := [2,2,4,2];
] pair indicates array indices (or a
range of indices) used to access an
element (or range of elements) from
an array. However, if not at the end of
a variable name, thena [..] pairis
used to construct an array from the list
of numeric values it encloses. If the
data is all on the same line, or there is
only one data item per line, then a
one-dimensional array is constructed.
If there is more than one item per line
and more than one line, then a two-
dimensional array is constructed. For
more general input, refer to
read data(..).

Additionally, it is possible to use an array containing integer values as an index into
another array. For example,

X := X index (10);

y = [1 4 5];

x[y] := 0; # Zero some elements

z := x[y+1]; # Extract some elements

returns one-dimensional arrays in < and z. These contain (0 0 2 3 0 0 6 7 8 97 and [2 0
61, respectively. If the index array is two-dimensional, then it may be used to access multi-

dimensional source/target arrays. For example

® := X _index(10,10) + y_index(10,10)/10;

y := make array(0,3,2);

y[0,:1 = [5 2];

y[1l,:1 := [3 6];

vIl2,:1 = [9 41;

z = x[vy];
gives z as [5.2 3.6 9.4]. An array index of this form always returns or absorbs a one-
dimensional array. Similar functionality may also be obtained using indirect(..),
sample values (..) and scatter to_array(..).

One-dimensional array indices can be used for each of the dimensions of the source/target

array to extract or assign over an ordered two-dimensional space. Moreover, one-dimensional

array indices may be used in conjunction with index spans or fixed index values. For example,
x := x_index(10,10) + y_index(10,10)/10;
i := [1 4 5];
z = x[1,2:3];

gives z as the two-dimensional array [[1.2 4.2 5.2][1.3 4.3 5.3]]. Although the above
example is used with an array index on the right-hand side, a similar arrangement can be used
for a combination of normal and array indices on the left-hand side of the assignment.

8.5 Lists

A list is similar to an array in that it contains multiple values which are accessed by
specifying different indices or ranges of indices. However, unlike an array, a list can contain a
mix of different data types. For example, a[0o] might contain an integer, a[1] might contain a
string and a[2] might contain an array, a compound value or indeed another list.

All list variables are inherently two-dimensional, although in most cases only the first
dimension is used. Use of specific elements within a list, and assignment to specific elements
of a list may be performed in the same way as for regular arrays. As with arrays, an

—202 -

DigiFlow Interpreter basics

assignment statement specifying specific list elements requires the list to exist already.
However, unlike arrays, computations cannot be performed simultaneously on the entire list,
although lists can be passed as arguments to functions, etc.

Lists are generated as the result of the return value of some dfc functions (they cannot be
the result of expressions other than a simple assignment). DigiFlow also includes a function
specifically designed to construct arrays: make 1list (fill, nx, ny). As with make array(..),
the list is initialised to the value specified in fill; this may be any data type, including a list.
The second, and optionally the third, parameter then specifies the dimension(s) of the list.

Some restrictions apply to list elements containing arrays, compound values or lists. In
particular, the list syntax does not allow direct access to components of such values, although

the list may contain an array, compound value or list in its entirety. For example
List := make list(null, 3);
cValue.string := "Valid example";
cValue.version := 1;
List[1l] := cValue;

this := List[1];

message (this.string) ;

List[l].string := "Replacement string";
A := x_index (100);

List[2] := A;

B := List[2][10:201];

is valid, while
List := make list(null,?2);
List.version[l] := 1; # List is a 1list, not a compound value
message (List.string[l]); # List is a list, not a compound value

IS not.

The rules governing indices for lists is the same as those for arrays, with the one difference
that lists are limited to two dimensions only. Thus, techniques such as array spans and index
arrays can be applied to lists.

8.6 Operators

A complete list of the operators understood by DigiFlow is given below, grouped in order
of the precedence (i.e. the order in which they are computed). For arrays, all operations are
computed element by element. Hence, two arrays multiplied together produce and array where
each element is the product of the two corresponding elements in the two source arrays (i.e.
not matrix multiplication).

Group Operator Description Examples

Association
() Brackets. Terms within innermost
brackets computed first.

Unary
- Negative. -a returns the negative of a.
Power
: Exponentation. a~b raises a to the 372
power of b. p~(1/2)
Term
* Multiplication. axb multiplies a by b. 3%2
2.1*sin(x*pi)
/ Division. a/b divides a by b. 1/2
exp(r/p)

—203 -

DigiFlow Interpreter basics

div Integer division. p div 16
a div b returns the integer part of a/b. fdiv(1+09)
mod Modulo division. q mod 10
amod b returns a — ¢ where c is the (i+1) mod n
largest integer multiple of b less than or
equal to a.
Sum
* Addition. a+b adds a and b. Also used 3+p/2
to concatenate strings, memos or code log(1+x)
variables.
- Subtraction. a-b subtracts b from a. 1.9-p
pi*sin(x)-pi/2*cos(x)
min Minimum. a min b returns the lesser of
aorb.
max Maximum. a max b returns the greater of
aorb.
Group
= Equality. a = b returns true (1) ifaand b
are equal, or false (0) if unequal.
< Inequality. a <> b returns false (0) if a
and b are equal, or true (1) if unequal.
” Greater than. a > b returns true (1) if a is
greater than b, or false (0) if a is less
than or equal to b.
- Greater than or equal to. a >= b returns
true (1) if a is greater than or equal to b,
or false (0) if a is less than b.
< Less than. a < b returns true (1) if ais
less than b, or false (0) if a is greater
than or equal to b.
<= Less than or equal to. a <= b returns true
(1) if ais less than or equal to b, or false
(0) if a is greater than b.
Logical
and Logical and. a and b returns true (1) if
both a and b are true.
Or Logical or. a or b returns true (1) if
either a or b are true.
eor Exclusive or. a eor b returns true (1) if
only one of a and b is true.
xor Identical to cor.

8.7 Constants

Constant Value Description

true 1 Logical true. In arithmetic operations, true takes the value of
unity.

false 0 Logical false. In arithmetic operations, false takes the value of
zero.

pi T Approximately 3.141592653...

—204 -

DigiFlow Interpreter basics

null no value Used to indicate that no value is specified. This may be tested
by the is_nul1(..) function. Some functions (e.g.
read_image (..)) return a null to indicate failure. Null values
cannot take part in any expression except as the parameter to
the is_null(..) function.

wait for ever _ This constant is intended for use as a timeout parameter in some
of the thread and timing related functions (e.g.
kill_thread (. .)). Specifying this value will cause the
corresponding function to wait for completion.

do_not wait 0 This constant is intended for use as a timeout parameter in some
of the thread and timing related functions (e.g.
kill_thread (. .)). Specifying this value will cause the
corresponding function to return immediately and not wait for

completion.
8.8 Execution control
Control Description Example
comment Comment. Ignore all textupto & := 3; # Initialse
the end of the line.
if (condition) (code;; If statement. The code is if (Failed) A
executed only if condition . S
returns a nonzero scalar value.
For array conditions, the
where (. .) function should be
used.
if (condition) { code:r If statement with else clause. If ~if (is_array(Image)) {
} else { code; } ; condition is a nonzero scalar } el::e:’(hwew’mage)’
value, then codez will be close view (hView);

executed, else if condition is a }i
zero scalar value, then code;

will be executed. For array
conditions, the where (. .)

function should be used.

if (conditiony) Compound if statement. The if (SESLEtf:lS) R
(coder } code associated with the first | (1 Cie mooiil - 6)
elseif (conditiony) condition evaluating to a Test := 8;
{ codez nonzero scalar will be executed. | else {
elseif (conditions) If all conditions produce zero . Test := 9
{ codes } values, then coden will be
executed (if specified). Note
else (coden | ; that the else statement is
optional.
while (condition) Execute the code repeatedly 1= 05 ,
(code} ; while condition evaluates toa ~ "nte (fmage (10 p)

i +=1;
nonzero value. };

—205—

DigiFlow Interpreter basics
for var := start to end Execute code repeatedly with for k:=0 to 255 {
(code} ; var taking successive scalar iggﬁtg; -]f/%SS"
values from start to end, k/255;
incrementing by one on each LUT (k,2) := k/255;
successive iteration. Vi
for var := start to end Execute code repeatedly with for i:=0 to 100 step 10 {
step incr {code;; var taking successive scalar oo = v 0k
values from start to end,
incrementing by incr on each
successive iteration. Note that
start, end and incr may be
either integer or floating point
values.
for var := array Execute code repeatedly with for this := val[:,3] {
(code; ; var taking each element from " frlog(this);
array in turn..
for var := list (code}; Execute code repeatedly with for zgis_f files[:] |

var taking each element from
list in turn..

Executes the code, string or
memo stored in a variable. This
includes compiled code (see
below).
Similar to the execute (. .)
statement, except that if the
code contains an error it does
not prevent the dfc code from
continuing to run. In particular,
try_execute (..) returnsa
logical that |nd|cates if the code
rand without error (true) or not
(false).

execute (COde)

try_execute(COdE)

exit; Leave the current execution unit
(e.g. a function or for loop).
quit; Terminate the current code.

exit digiflow(); Terminate DigiFlow with a zero
exit code.

Terminate DigiFlow with the
exit code exitCode. It is
normally necessary for there to
be a small delay between
issuing this command and
starting to terminate DigiFlow
to allow the current code
segment to complete. The
default delay is 2 seconds, but
may be changed with the
optional delay.

exit_digiflow (exitCode
[, delay))

read_image_details(this);

}i

Code := {A :=B + 1;};
execute(Code)

string := "cos (A)"

q = execute(strlng)

Code := {A :=B +/ 1};
ret := try execute (Code);

The return value (ret)
will be false since Code
contains an error

— 206 —

DigiFlow Interpreter basics

compile (COde[, runj) ; Compiles code to an Code := {for i:=0 to
intermediate level that provides 73775 (B)-1 (P[] /=
approximately a factor of tWo comp :- compile (Code) ;
improvement in performance execute (Comp) ;
for loops containing simple
operations. The return value can
be run multiple times, or the
code may be executed directly
by specifying the optional run
parameter.
Note that the use of array
operations, rather than loops,
will almost always execute very
substantially faster.
reverse polish(code); Execute the specified code reverse_polish ({0)P
using dfcRP, the DigiFlow x;s;z[e}() L-1M {111
reverse polish interpreter. (The '
example here is directly
equivalent to that used in the
compile (..) example. Note
that compile (..) can also be
used to improve the
performance of dfcRP code.
in_parallel (parallel) On multiprocessor systems,
determines whether DigiFlow
should try to execute parts of its
code in parallel (when possible)
to improve performance.
is_parallel () Indicates whether parallel
execution has been requested.

8.9 User-defined functions

The DigiFlow interpreter accepts user-defined functions. The syntax of the definition is
function func(a,b,...) (statements... };
where func is the user-specified name of the function and a,b,... are the one or more formal
arguments. The statements to be executed when the function is invoked are enclosed by the
pair of braces.

By default, variables used within the function (including the formal arguments) are local to
the function. If you wish to read (or write to) a variable that exists in the parent context, the
name of the variable should be preceded by an exclamation mark (e.g. to access the variable p
from the parent context, use 'p). Note that ! will provide access to variables in all ancestor
contexts of the function (i.e. the variable need not be in the immediate parent). Global
variables (e.g. pi) are always available for use in an expression and do not require the
ancestor access prefix; any attempt to write to a global variable will throw an error.

The return value is the result of the last statement executed. To return a specific value, this
need simply be the content of the last statement. Note that either simple variables (88.2.1),
compound variables (88.2.2) or lists (88.5) may be returned.

—207 -

DigiFlow Interpreter basics

By default, the return value of a function (the last value of the function computed) is copied
across before the local function variables are destroyed. This behaviour is not always optimal.

For example, with the function
function UnitArrays(nx,ny) {

a.x := x_index(nx,ny)/(nx-1);
a.y := y_index(nx,ny)/(ny-1);
a;

}i
a copy of the compound variable a has to be made. This requires time and increases the peak
memory requirements. As an alternative, the return value can be specified as chame, as in the

modified example
function FastUnitArrays(nx,ny) {

a.x := x_index(nx,ny)/(nx-1);
a.y := y_index(nx,ny)/(ny-1);
Qa;

}i
In this case the contents of the variable a is taken over by the return value of the function,
improving performance. Note, however, that the syntax ename will not work if the return
value is itself an expression, a number or a string.

The return value of a function need not be used by the calling code. Invoking a function
without an assignment statement simply executes the function and discards any value
returned.

In the function declaration it is possible to specify default values for the formal arguments,

thus making their specification optional in the call to a function. For example, in
function RescalelImage (im, Scale:=1,Black:=0) {
Scale* (im-Black) ;
};
The im parameter is mandatory, while both scale and Biack are optional. If scale is not
specified, then it takes the value 1. Similarly, if 81ack is not specified, the value defaults to o.

The function may then be called in one of the following ways:
RescaleImage (P) ;

RescalelImage (P, 2) ;

RescalelImage (P, Scale:=2);
RescalelImage (P,2,0.03);
RescaleImage (P, Scale:=2,Black:=0.03);
RescalelImage (P,Black:=0.03);

When a parameter is not specified, the default value is that given by the corresponding
assignment statement within the parameter list in the function declaration. Thus the above
function calls are equivalent to

o o o} o} O @]

Q := RescalelImage(P,1,0);

Q := RescaleImage(P,2,0);

Q := RescalelImage (P, Scale:=2,0);

Q := RescalelImage(P,2,0.03);

Q := RescaleImage (P, Scale:=2,Black:=0.03);
Q := RescalelImage(P,1,Black:=0.03);

In mostcwcumstances the last of these in its original form, i.e.
Q := RescalelImage (P,Black:=0.03);
should be avoided: you should only exclude parameters from the end of the list. As an
alternative, a null could be specified for scaie, with the declared function resolving the
appropriate default in that case. In particular,
function RescalelImage (im, Scale:=1,Black:=0) {
if (is_null (Scale)) then {Scale := 1};
Scale* (im-Black) ;
}i
then allowing a call of the form
Q := RescaleImage (P,null,Black:=0.03);

—208 —

DigiFlow Interpreter basics

By default, variables, constants and expressions are passed to functions by value. This
means that the formal parameter is treated as a local variable within the function and any
changes you may make to it are not reflected in the value of the actual parameter in the code
calling the function. In this model, the only way of returning information to the calling code is
through the return value.

DigiFlow also supports a mechanism for passing arrays and compound variables by
reference. Although problems can arise using this mechanism, it can greatly improve the
efficiency of functions by reducing the amount of copying the interpreter must do.

To invoke passing a variable by reference, the names of the formal arguments must be
prefaced by an @ character in the formal parameter list. For example, the code segment

function Try(Qtest) {
test[1l] := 2;
}i
This := [0 0];
Try (This) ;
completes with This equal to [0 27.

While this can speed up execution, especially if passing large arrays, the precise behaviour
is complex. It is therefore recommended that you obey the following guidelines when using an
ename:

¢ If ename refers to an array or list, it should only appear on the right-hand side of an
assignment statement, although array elements or subarrays can be on the left-hand side

of an assignment (as in the above example). Thus
function Assign(Q@Qarray) {
array := 0;
i
is not acceptable whereas
function Assign(Q@Qarray) {
arrayl[:] := 0;
i
will behave predictably.

¢ If ename refers to a simple scalar (integer, floating point or string), it will always be
passed by value.

¢ If ename refers to a compound variable, it may appear on either the left- or right-hand
side of an assignment statement. If it appears on the left-hand side, then the assignment
must be to only one of the component variables. In this case, the modified component
will be passed back to the calling routine.

As the components of compound variables may be of any type without affecting the above
guidelines, it is recommended that compound variables be used to improve execution speed
where appropriate. In general, however, it is better to write pure functions that only return
information via their return value. This return value, of course, may be any type of value, thus
allowing full flexibility.

As with other DigiFlow functions, user-defined functions may be used with or without
keywords.

8.10 User input and ouput

The interpreter supports a variety of functions for interacting with the user during
execution. These include the input functions ask_string(..), ask_list(..),
ask_integer(..), ask real(..), ask yesno(..), ask _image(..), ask _file(..),

—209 -

DigiFlow Interpreter basics

ask_directory(..) and ask_printer (..). These functions are all modal (i.e., they take the
focus away from the rest of DigiFlow and you will not be able to do anything else until you
have closed the associated dialog). However, most also have modeless equivalents that allow
you to continue working on other things before dealing with the dialog. In particular,
ask_yesno _modeless(..), ask_integer modeless(..), ask_real modeless(..),
ask string modeless(..), ask list modeless(..), ask image modeless(..),
ask_file modeless(..), ask_directory modeless(..), and message_modeless (..).

Alongside these are the mouse input functions get mouse click(..),
get mouse_line(..), get _mouse_rect(..), and get mouse box(..) with
get_mouse position(..) detailing the current location of the mouse. (The functions
mouse get mode (..) and mouse set mode (..) can be used to determine or set whether the
mouse is acting normally, scrolling/panning, measuring, etc.) At a more basic level,
get_key (..) can be used to determine the state of a key on the keyboard.

User output is provided through message (..), beep (..) and status_bar message (. .).

A different approach to user input and output is through opening a console. This can be
opened with open_console (. .). Input and output via the console can then be achieved using
read_console(..) and write_console(..). When finished, the console may be closed
using close console (. . . Note that the functlons open file(..), write file(..) and
close file(..) may also be used with a console.

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow. See also §9.7 on file handling.

8.11 Input of code from files

In many cases it is desirable to be able to store interpreter code in a file for later use.
DigiFlow supports the use of such code through the include (S) command. Here, s represents
a string variable or string constant specifying the file name. Upon execution, include (S) is
replaced by the contents of the file named by s. This file may contain one or more statements,
function definitions, etc., and may be called either as a statement (with no return value), or as
a function within an expression. Note that, unlike a normal user-defined function, variables
used and declared within the file have the same scope as though they were included explicitly
within the parent code. In this way the include (S) Statement is similar to (but more flexible
than) the ‘include’ directive used in many programming languages.

If the string s does not specify a file extension, then .dfc will be assumed. Moreover, if the
file is not found in the current working directory, the dfc search path (see get dfc path(..)
and set_dfc_path(..)) will be used. If the file is still not found, then the DigiFlow program
directory will be tried.

To improve execution speed, the file specified by inc1lude (S) is read in only once within a
given process, and stored for any subsequent use. This behaviour reduces the need to define
functions in static code expressions to handle dynamic data streams.

The function get_file variables (..) Will execute the dfc code in a file in a similar way
t0 include (. .), but will return all the varlables created in executing as a compound variable.
The file specmed in calling this function is executed as though embedded in a user defined
function (i.e. it will need to make use of the ! global specifier to access variables from the
calling context).

If you wish to include and execute code that might fail or might contain errors, then
try_include(..) Will include and execute the code, but return a logical variable that
indicates if the code ran successfully (true) or failed (£alse).

—210 -

DigiFlow Interpreter basics

8.12 Debugging

DigiFlow provides a number of useful debugging tools for identifying problems in user-
supplied code. These tools include retrospective error handling, output messages, and
interrogation of the variables defined at a given time.

8.12.1 Error handling

Inevitably there will be times when user dfc code encounters a problem. Although it may
not always succeed, DigiFlow will attempt to identify this problem and terminate the process
in a clean manner. In doing so, it will produce the diagnostic dialog shown in figure 143.

An eror hag occurred in the thread 'dfcConsole’; Yarablez |y

Errar in zelection

Details |[nu:une]

$0o ariable: N
Yariable not found. Acceszs may require global zcope prefis 1" by
Cauzed by

Kind

Code
draw_end(hD) ; %

h¥ := wiew(hV,hD}; W alue
}:

function getItem (W) |
w8 = EEG;
ret = get mouse click (kW) ;
if (ret_button = "left") |
item = int (3*{ret._ y-32)/0.6/v5)
hir = dizplayMera(hV,item) ;
} else |
item = -1;
:I:!..tr-em.; Functionz dizplaybdenul
b getltem|

h w Yariables Continue | |

Figure 143: The dfcerror diagnostics dialog.

The basic error message is displayed in the two top edit boxes of the dialog, while the code
causing the problem is displayed in the Code box. The particular statement at fault (or one
very close to it) is left highlighted in this box.

The Variables list gives information about all the variables defined at the time of the error
occurring. The type contents of each variable are given in the Kind and Value boxes,
respectively. For arrays and drawings, the View button may be used to give a graphical
representation. If you require more detailed access to the variables, click the Variables button
at the bottom of the dialog. This will start up the View Variables dialog (see §8.12.2). Finally,
the Functions box lists any user-defined functions in the current context.

-211-

DigiFlow Interpreter basics

8.12.2 View variables

When debugging code it is often useful to interrogate the contents of all variables at a given
point in the calculation. This may be achieved by a call to the view_variables(..) function.
Calling this function from within a dfc code segment will produce the dialog shown in figure
144,

DigiF low: View variables - dfcConsole

pr
ret
scale

P

Variable Sub variable Sub sub variable View
im A |concFile
i | dtOut
iint vortFile
v
k
mask
n
nPx
nPy
nStrip
hni
nhy
nx

Value

out.dtlut =

out.concFile :

out.vortFile :

"SolitConc.mov";
1;
"SolitVort _mov";

vV Auto scale

White I"—

sp Black
space |

tMax Kind
theta compound
vort
#Size
ySize -3
$Calculator v

: : Functions
out.concFile :-= "SolitConc.mow"; ~ - - -
out.dtlut := 1; 2 displayMenul | Type and size of variable
#out . summeryFile := "Progress.log'", getltem(L o

5 i streamfunction_vorticity(

streamfunction vorticity(wvort,
conc,flux,mask,xSize,YSize,tHax,dtHax,g,theta,out):l

e | #] |

; Not Again

Figure 144: The view_variables (..) dialog.

Selecting a variable from the Variable list will display its contents in the \VValue box. If the
variable is a compound variable, then the names of its components will be displayed in the
Sub variable list. Selecting a name from the Sub variable list will refine the \Value displayed.
Similarly, if the selected Sub variable is itself a compound variable, the components will be
displayed in the Sub sub variable list.

If the variable selected is an array or a drawing object, then a graphical representation of it
will be displayed in the View box. To obtain a larger version, click on the View button. For an
array, the scaling of the image is controlled using Auto scale in conjunction with Black and
White. The View button will produce an enlarged version of the image in its own window,
whilst 2, £ and & zoom in, zoom out and change the colour scheme, respectively.

Note that variables beginning with a dollar (s) symbol are system variables and are not
available for direct use by the user. In the example shown in figure 144 these system variables
contain the root copy of the drawing identified by the user variable npraw.

The view variables(..) function has one optional logical parameter: if true (the
default), then the dialog will be displayed. If £alse, then the dialog will not be displayed.

-212 -

DigiFlow Interpreter basics

Related to this is the return value of the function: true if Close is clicked, or false if Not
Again is pressed. This provides a convenient method of switching off the

view variables (..) output, as illustrated in the following code segment:
debug := true;
for i:=0 to 100 {
Statements
debug := view_variables (debug) ;
i
Here, the variable debug is initially set to true, thus enabling view variables(..). This
state will continue until Not Again is clicked, effectively setting debug to £false. Of course, it
is possible for the code to subsequently set debug back to true and thus turn the viewing of

variables on again.

8.12.3 Messages

The most basic approach to debugging is to write out information to the user/developer as
execution of code proceeds. DigiFlow provides two main mechanisms for this: the
message (..) function, and writing out to a console. While the message (..) function
provides the simplest route, it can be annoying to the user to have to respond to each and
every message produced from within a loop. In contrast, by using the open_console (. .) and
write console(..) functions (or the equivalent open file(..) and write file(..)
implementations) a continuous stream of data will be written to a console window. For
example, the code

hFile := open_file();
x := make_ array (0,128);
x := x index (x);

for k:=0 to x_size(x)-1 {
write file (hFile, "Now at", k,x[k]);
i
produces the console window shown in figure 145.

+ DigiFile: dfc macro console

126 . A80BBOREARAN
127 . 80880 8888a9

Figure 145: Example of output to console window.

For short messages, it may prove convenient to write them to the status bar with
status_bar message (..). This technique can work well for something running in the
background, but it can be confusing if more than one macro is trying to do the same thing!

—213 -

DigiFlow Interpreter basics

Another option, which has some advantages but tends to be a bit more cumbersome, is to

write text either to the window (view) title using view title(..), Or to write the text to its
own view window. Both these possibilities are illustrated in the following code:
hV := new_view (256, 64) ;

view_title(hV,"View to contain text messages");
view (hV,"This is an example of text to a view.");

The output produced by this is shown in figure 146. Note that unlike the console, a second
view (..) Statement specifying text replaces the original text rather than appending it to the
view.

™ View to contain text messa.. D@E|

Thiz iz an example of kext to a wiew,

RiFF;GFFEFF iji 199, 31 %,y 0.081,

Figure 146: Example of text written to a view.

8.12.4 Queries

The ability to determine the intermediate results within a statement without affecting the
result of that statement may sometimes be useful while debugging. DigiFlow supports this
through the query operator ». This operator has no effect on the sequence of execution, but
simply causes the result of the statement or sub-statement immediately following it to be
displayed in some manner. The following illustrates by way of example the effect of the query

operator.

Example Result

25 + 3 5

2(5 + 3) 8

?a := 5 + 3; 8

sqrt (216) 16

?sqrt (16) 4

?img [0, 0] The contents of the first element of the array.
?img The whole of the img array.

By default, query operators are ignored in standard interpreter contexts. That is, they have
no effect on the code and produce no output. To turn on the output, simply call
allow_query (). In the standard context, this will then generate a message box for each query
as it is processed. Query output may be turned off again by allow query (false). When
running in the dfcConsole (see 88.12.7), the output of queries is written to a dedicated
window.

8.12.5 Break points

Another valuable debugging tool in DigiFlow is the provision of break points which allow
monitoring of code execution without otherwise affecting that execution. A break point is
specified by the ampersand character s, and may inserted into any point in the code. The
interpreter’s response to the break point depends on the environment in which DigiFlow is
running.

In a standard interpreter context, breaks will have no effect unless first enabled by a call to
allow break(..). If called in a standard interpreter context, then will invoke the
view variables (..) function. Clicking Not Again to exit view variables(..) Will
suppress the action of further break points unless another call to all1ow_break (. .) is made.

~214 -

DigiFlow Interpreter basics

If called in the dfcConsole, then execution will stop and the view variables(..)
functionality is again available. The execution or otherwise of breaks is controlled by a check
box.

8.12.6 Tracing execution

Sometimes, the best way of locating a bug is to keep track of exactly where execution is
taking place in the code. The function trace (. .) turns on a facility to do this. Tracing can be
provided either to a specified file, or to a console window (which is opened automatically).
The trace will write to the file (or console window) each statement as it is executed. This

logging continues for the period of time specified in the call to trace(..) (the default is 10
s). Note, however, that trace(..) is only available for dfc code executed through the
dfcConsole.

8.12.7 dfcConsole
The dfcConsole, described in 85.2.10, provides a powerful interactive tool for both editing
and debugging dfc code.

—215-

DigiFlow

Interpreter basics

g

5| dfcConsale:

| ke := get active wiew();
im = get_image(hS):
if i(motiis null{im))) {
omega = pd;
t0 = im tFirst;
if (pl < 03 £
¥0 = x gizel(in. image)/2;
1 elze {
x0 = pl;
I:
if f{pz < 0y [

vO = ¥ sizel{im.image) Z;
1 else [
wO = pZ;
HE
hy = view rotated(0,im. imacge 0);

view colour(hV im. lut);
HE
n = 0;
code = [
while (true) [Hoobiis melliimlly o
T9959;
pause thread();
im := get image(h3);
Ttest = ig null(im};
n o+= 1;
p o= nmod Z;
if (mot(is nulliim))) [
tangle = Yomega*(?im. tNow - Tt0);
riew rotated(hV,in. image,angle, 0,1, x0,vw0);
& viaew btime iV, im. fifow, im. $Now) o

m

function myfunction{perend, peranl, .. .) {-statement=-1;
function myfunction{perend, peranl:-=d=feultl, ...y [—=tatement=s-1;

(o]l E |ms]

Execute

Interpreter

Wi, .

Reszet| Ermor

=]

2 £

1
o
CL

E
=
2

¥
@

u# #7'£
B Al E
re

v <o)
= | B
Clueriesz

Show | Clear

g

function_help
install function_ d4dl1
stream function

_____ [v Enable[7)
D el User-defined. -
4 m Cloze
[Lizt] & |function
Thiz function

Figure 147: The dfcConsole for writing and debugging dfc code.

This resizable window contains an edit control allowing interactive editing of the dfc code
to be run, alongside a series of controls allowing control over the execution environment and

providing timely information.

The Execute group may be used to selectively execute code. If there is no text selected,
then Line(s) will execute the current line. If there is an active selection, then Selection will
execute the selected code, and Line(s) will execute not only the selected text, but all the lines
on which some text is selected. Regardless of the selection, All will cause the entire code to be

executed. Note that <a1t><enter> IS equivalent to clicking Line(s).

All the control buttons are disabled while the code is executing with the exception of Stop
in the Execute group. Clicking the stop button ™ will abort the currently executing code,
while the pause button I will temporarily suspend execution. Checking Breaks (&) causes

—216 -

DigiFlow Interpreter basics

break points, indicated by an ampersand in the code (see §8.12.5) to be executed as and when
they aroe found by the interpreter. If cleared, then the break points are ignored. Note that the
status of the Breaks (&) dialog may be changed by the user as the dfc program runs.

The Interpreter group controls the internal state of the DigiFlow interpreter. Reset will
clear all variables and functions from the interpreter, while View displays the variables and
objects defined within the interpreter using the view variables(..) interface. If an error
occurs, then Last Error will redisplay the last error message.

The Code group controls the action of the edit control containing the code.

For further details, refer to 85.2.10.

- 217 -

DigiFlow Functions

9 Functions

This section describes the more advanced functions available within DigiFlow. Like the
functions described in 88.9, these functions can be called with or without key words. For
example,

view (hPic, Image,0.0,1.0);
will display on the window identified by nhric the array 1mage, taking a value 0.0 to represent
“black” and 1.0 to represent “white”. The same command may be written more clearly as

view (hView:=hPic,array:=Image,black:=0.0,white:=1.0);
or with its arguments in a different order as

view (array:=Image, hView:=hPic,white:=1.0,black:=0.0);
Note, however, that the third of these options (i.e. the arguments not in their natural order) can
incur a significant computational overhead, and is therefore discouraged except in
circumstances where the reordering improves readability.
Similarly, many of the functions can accept arguments with a range of different types, and
may have optional arguments. For example,

view (hView:=hPic,array:=Image) ;
will have the same effect as the earlier example, except that the black and white levels are not
specified by the user (the default values are in fact 0.0 and 1.0, respectively). In contrast,

view (hView:=hPic,hDraw:=myDrawing) ;
will view a drawing previously created by the drawing routines described in §11. DigiFlow
determines the action to be taken by the type of data it is provided with, hence

view (hPic, Image) ;
and

view (hPic,myDrawing) ;
would perform the same action as their counterparts with key words. Using the key words,
however, improves the clarity of the resulting dfc file by underlining the role played by each
of the arguments.

DigiFlow has a vast array of predefined functions. Full details of all of these are available
via the interactive help system found under Help: dfc Functions... and at the 2 button of
dialogs that make use of dfc code.

The following subsections give an overview of the functions available, but do not provide a
complete list. In all cases the name of the function is self-explanatory, although of course the
parameters and return value may need some explanation.

DigiFlow functions may be used with or without key words. If key words are given, then
the order of the arguments does not matter. However, if keywords are not given, the
arguments must be in the order stated here. For example,

This := where(Image>0.5,1.0,0.0);
will set This to an array of zeroes and ones, depending on whether the array tmage is greater
than or less than 0.5. The same command may be written as

This := where (mask:=(Image>0.5),vTrue:=1.0,vFalse:=0.0);
or with its arguments in a different order as

This := where(vFalse:=0.0,vTrue:=1.0,mask:=(Image>0.5));

—218 -

DigiFlow Functions

Note, however, that the third of these options (i.e. the arguments not in their natural order) can
incur a significant computational overhead, and is therefore discouraged except in
circumstances where the reordering improves readability.

A complete list of all functions known to DigiFlow at time of writing is given in §9.32.

9.1 Basic mathematical functions
DigiFlow supports a full range of basic mathematical functions. Some of these have more

than one variant. For example, sin(..) returns the sine of an angle specified in degrees,
while sin_rad(..) expects the angle to be in radians. Similarly for cos(..), tan(..), and
their inverses asin(..), acos(..) and atan(..). These are in turn supported by
degrees_from radians(..) and radians_from degrees(..).

Both natural and base ten logarithms are supported through in(..) and 1log¢..),
respectively, with the former’s inverse exp (. .).

Other basic functions include abs(..), sign(..), sqrt(..), int(..), real(..) and
not(..).

Additional transcendental functions include bessel (..),erf(..) and erfc(..).

round(..), floor (..)

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

9.2 String functions

The string functions bear some resemblance to those found in some dialects of Basic. The
list of possible functions include upper_case(..), lower_ case(..), length(..),
search _string(..), left string(..), right string(..) and mid strlng). The
maximum length of a standard string is given by max string length(..); the functlons
noted here can be applied to memos when longer strings are required.

Other string manipulation functions include remove spaces(..) and
scrunch_string (..) for creating shorter strings with undesirable characters removed, while
replace_hashes (..) allows hash characters ("#") in a string to be replaced by a number
(useful when constructlng file and directory names). Values complying to dfc syntax may be
retrieved from a string using read this(..), or dfc code in a string may be executed with
execute (..) O try execute(..).

The command line used to start DigiFlow is available through
command line arguments(..).

There are also a set of more specialist string functions for converting numeric data to
strings. The simplest of these is make_string(..), which provides Fortran-like control of the
string formatting, while remove_trailing_zeros(..) can help clean up a string.. More
specialist functions include £it_as_text (..), which converts the result of a least squares fit
into a LaTeX-compatible attractive text strlng and nice number string(..) that creates a
LaTeX-compatible attractive version of a number.

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

9.3 Array functions

To supplement standard array access using syntax of the form var[iO:il:isj, and the
constructor (make array(..), make like(..)) and conditional (where(..)) functlons
DigiFlow provides other methods of accessmg arrays such as extract(..), indirect(..),
sample_values (.) and look _up_table(). Creating an array contalnlng a row or column
repeated is achieved through x_repllcate(..) and y replicate(..). Specialist array

-219 -

DigiFlow Functions

constructors include x index(..), y index(..), =z index(..), t_index(..),
identity_matrix(..),random_array(..)andgaussian_array(..L

Matrix support is provided through the likes of transpose(..), matrix multiply(..),
least squares(..), eigen_ system(..), eigen _values(..), solve linear(..),
solve _svd(..) and singular_value_decomposition(..). Other basic manipulation
functions include roli(..), £lip horizontal(..), flip vertical(..),
rotate clockwise(..) and rotate_anticlockwise(..).

In addition to the standard arithmetic operators (that function on and between arrays in the
obvious way), there are a special set of functions that provide the possibility of combining
arrays of different dimensions. The cropped set of functions (cropped add(..),
cropped sub(..), cropped sub reversed(..), cropped mul(..), cropped div(..),
cropped_div_reversed(..), cropped power(..), cropped power reversed(..) and
cropped_assign (..)) perform the indicated operation only on the portion of the arrays that
overlap/intersect. Simlarly, the wrapped set of functions (wrapped add(..),

wrapped sub(..), wrapped sub reversed(..), wrapped mul(..), wrapped div(..),
wrapped div_reversed(..), wrapped_power (..), wrapped power_reversed(..),
wrapped assign(..) and wrapped extract(..)) perform the indicated operation by
wrapping the larger array around the smaller array.

Other array-specific functions include sort_array (. .), which is an array-specific version
Ofsort(.J

9.4 Type manipulation functions

This group of functions has the ability to manipulate the types and sizes of values.

The make array(..) and make like(..) functions are particularly valuable for
constructing and reshaping arrays, with make 1ist(..) playing the same role for lists. The
where (..) function provides a convenient method of conditionally accepting values (a little
like an if statement for arrays), while make string(..) provides a way of converting
numeric data to a string using a particular format. At a more primitive level, char(..) and
ascii (..) work on a single character basis. A read data (..) Statement in conjunction with
an end data Statement provides a convenient method of entering arrays of data in-line in
place of the normal [value0, valuel, ...1 syntax. (A related approach is used for the drawing
funCﬁonSdraw_begin_lineto(..),draw_begin_mark(..)anddraw_begin_vector(..))

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

9.5 Information functions

This group of functions returns structural information about the value containing in a
variable or expression. These include the type tests is integer(..), is real(..),
is_numeric(..), is_string(..), is_array(..), is_list(..), is_compound(..),
is_code(..),is_memo(..) and is_null(..). Other special information functions include
is_drawing(..), is_view(..), is_live view(..) and is_running(..) 10 determine
information out specific objects. The function exists (..) determines whether a variable of a
specified name exists, while the functions x_size(..), y_size(..), z_size(..) and
n_size(..) return size information on an array. For compound Vvariables,
n_components (..) returns the number of subvariables contained.

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

—220 -

DigiFlow Functions

9.6 Variable functions

In addition to being able to manipulate variables through the assignment statement,
DigiFlow provides set variable(..), get variable(..) and get component(..) tO
create or retrieve variable values based on string arguments. While the first two of these work
directly on the dfc interpreter’s current context, the third recovers information from a
compound variable. The function component _names (..) can be used to recover a list of
names of components in a compound value, while exists (..) can be used to determine if a
given variable exists. (Note: exists(..) should not be used in code to be compiled with
compile (..).) The functions set global(.) and get global (..) manipulate the global
(root) mterpreter context, and should be used only with great care, as should the functions
set_configuration(..) and get configuration(..).

The functions get_user variables(..), get_local_variables(..) and
get _file variables(..) Can provide a snapshot (as a compound value) of the current state
of variables in the interpreter, while list_local variables(..),
list user variables(..), list_global variables(..), list system variables(..)
and list components (..) recover the names of all the relevant variables.

9.7 File handling

DigiFlow provides a variety of standard file functions for handling input and output from a
dfc file. As is common with many languages, a file handle is provided by opening the file, and
this handle must be used for all subsequent access to the file. The file will be closed either
when the close_file(..) command is executed or the file becomes out of scope. A file
becomes out of scope when the execution unit it was opened in is terminated. For example, a
file opened within a function will be closed automatically when that function terminates.

Files are opened by open file(A console window may be opened elther with
open_file(..) OF With open_console (. The handle returned by open_file(..) is then
passed to the other file manlpulatlon functlons write file(..), wrlte_array(o),
read file(..), read line(..), read array(..), flush file(..) and close file(..)
(fOI‘ a COI']SO|€, write console(..), read console(..) and close_console(..) May be
used instead).

Information about files may be obtained with file details(..), is_file local(..)
and computer for file(..), While files may be copied using copy file(..) oOf
copy_file wait(..), moved with move file(..), and deleted using delete file(..).
The current directory may be determined with current directory(..), and changed by
change directory (..), While new directories are created with create_dlrectory (..) or
removed by destroy_directory(. .). Note that DigiFlow retains a current directory
separately for each dfc code being run, as well as a separate current directory for the main
DigiFlow process. The DigiFlow directory structure may be probed using
start_directory(..) and digiflow_directory(..) with the variants
start_directory url(..) and digiflow directory url(..) providing an alternative
view of the path for networked drives. The name of the DigiFlow executable itself can be
determined from digiflow executable(..).

One of the simplest ways of reading data from a file is with read array (. .), although the
functions read into_array(..) and read table(..) provide an alternatlve when only
partial data exist (read _into_array (..)) Or the data is of mixed types (read table(..)).

Support for binary files is prowded through open_binary flle(.), read _binary(..),
write binary(..), set_file pointer(..) and set file end(. A binary file may be
closed using close file(..) asnormal.

—221 -

DigiFlow Functions

Support for files already in the file system includes copy file(..),

copy file wait(..), move_file(.) and delete file(..). Information about a file is
obtained with file details(. Whlle list files(prowdes access to the contents of
directories, with greater deta|I avallable through l:Lst_f:Lle_deta:Lls(..). Unless an

absolute path specification is given, the last two functions search relative to the current path
for the dfc macro (See change directory(..)). The same can be achieved relative to the

global DigiFlow path using llst_f:l.les_global (..) and list file details global(..)
instead.

The function wait for file(..) provides an efficient way to wait until a specific file
exists.

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

9.8 Reading and writing images

In addition to accessing images through the built-in menu options, DigiFlow command
files may read and write images directly. Note that this mechanism bypasses the normal file
handling outlined in §9.2.

Functions that support the reading of images include read image(..),
read_image when ready(..), read image from view(..) and
read image details(..). In some circumstances, asynchronous reading of images can
substantially speed up the processing. This can be achieved by using
read_image queue_create (..) t0 Set up the queue, read image_queue (..) t0 recover the
next image from the queue, and read image queue destroy (..) to close the queue.

The function get_process_details(..) recovers what is known about how an image
was created in a form compatible with the process and dialog commands.

Conversely, the saving of images is achieved through write image(..) and
save view(..). For a full colour image, write rgb image(..) provides a simplified
interface. Rather than the direct write provided by write image(..), images can be queued
for asynchronous Writing using write image queue(..) and
write rgb_image queue(..). An indication of the number of images currently queued is
obtained with n_wa1t1ng_wr1te_1mage (..) and the wait function
wait_ for write_image queue_empty(..).

Custom image readers may be constructed using dfc code and installed in DigiFlow using
add_image_ reader macro(..).

MetaFile support is provided through draw on emf(..) as well as the standard
write image(..).

Printer support is provided through ask printer(..), print view(..) and
print view dialog(..) While Encapsulated PostScript generation support includes
export_to_eps(..) and export_to_simple eps(..).

Turning on and off the reading and writing of DigiFlow image archives (.dfa files) is
controlled by read image_ archive(..) and write image archive(..).

Some image formats support additional functionality, such as jpeg _get comments(..).
The function add movie reader (..) provides the ability the add additional movie formats
to DigiFlow.

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

—222 -

DigiFlow Functions

9.9 Windows and views

The image processing and plotting features of the DigiFlow interpreter are enhanced by its
ability to handle windows. In the terminology used in DigiFlow, a window containing an
image or other graphical object is referred to as a view.

Basic handling of views is achieved through new view(..) and close view(..). Once
created by new view (. .), the handle returned by this functlon is used to identify the view to
be operated on. The functlon view (..) has a large number of variants for displaying a diverse
range of data in an existing view, Whlle view rotated(..) adds to it the possibility of
rotating the display. Alternatively, images may be Ioaded dlrectly into a new view using
open_image(..) OF open image when ready(..). When a view contains a selector
specifying multiple images, animate_view (..) may be used to control the replaying of the
sequence.

Views with slightly different characteristics may also be created using
new_view_clean(..) and new _view floating(..), While the connection and
disconnection of a window to an execution thread can be controlled through
view_connect_thread(..) and view_disconnect_ thread(..), respectively.

Icons may be superimposed on a view and manipulated with view icon(..) and
move_icon(..).

The currently active view may be identified using get active_view(..), and its contents
retrieved as an image using get_view as_image (. .). Information about the type of view can
be recovered with get_view_class(..), while |nformat|0n about a view-specific coordinate
system can be read or set using view get coord system(..) and
view_set coord_system(..).

Associated data for a view may be set with view title(..) and view time (..), While
the size and arrangement of views may be controlled using view zoom(..),
view_zoom all(..), view_zoom to fit(..), view_zoom all to fit(..),
view_fit to_zoom(..), view_fit all to_zoom(..), tile views(..),
cascade_views (..), maximise view(..), minimise view(..) and restore view(..).
The function close_all views (..) can be used to close all views (or all views not currently
involved in a process), and view get time (..) Can recover timing information set either by
view_time (..) Or as part of a DigiFlow process.

The appearance of a view may be controlled through view colour(..), with the
associated colour schemes manipulated using colour_scheme(..),
colour_ scheme_ from image(L), add_colour_scheme (. .) and
delete colour_scheme (..). A false colour scheme may be toggled to greyscale using
view toggle colour (Other functions affecting the appearance in a view of a vector
field include view_vector_colour(..), view_vector_scale(..),
view_vector_spacing(..), view_scalar colour(..) and view_scalar range(..).

Specialised slave views are created and controlled using slave view 3d(..), while plots
may be rendered in 3d using view 3d(..), render 3d(..), view_points_3d(..) Of
render points_3d(..).

Details from a view may be sent to a printer of PostScript file through print view(..),

print_view_dialog(..) and export_to_eps(..).

Arrangement of the main DigiFlow window is achieved through
maximise digiflow(..),minimise digiflow(..) and restore_digiflow(..).

Icon-like images may be placed on, moved around and deleted from views using
view_icon(..), move_icon(..) and remove_icon(..), while view_counter(..) returns a

value that indicates if the contents of the view has changed.

—223 -

DigiFlow Functions

For a more complete list, and further details on these functions, refer to the .d7c function
help facility within DigiFlow.

9.10 Timing functions

This group of functions returns timing information. The group includes time(..),
date(..) and process time(..). Functions for generating delays include
start timer(..), wait for timer (..) and sleep for(..). For high-precision timing,
USE time_interval(..).

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

9.11 Statistical functions

This group of functions returns statistical information. Most of these functions have three
variants: one that returns scalar statistics for the entire array, one that returns an array of
statistics collected along the x direction, and a third that returns an array of statistics collected
in the y direction. Examples of entire-array statistics include count (..), sum(..), mean(..),
rms (..), max_value(..), min_value (..). The corresponding x direction statistic functions
are x_count(..), X sum(..), X mean(..), x rms(..), x max value(..),
x_min_value(..) and the y direction statistic functions are y count(..), y_sum(..),
y mean(..), y rms(..), y max value(..), y _min value (. A subset of the radial
(r_count(..), r mean(..), r_sum(..)) and azimuthal (theta mean (..)) equivalents are
also provided.

The moment functions x_ moment(..), y moment(..), x centroid(..) and
y_centroid(..) all return arrays of data. The location functions max index x(..),
max_index y(..), min_index x(..) and min_index y apply to the entire array, while
x_max index(..), y max index(..), x _min index(..) and y _min index(..) return
arrays. In a similar vein, the function where is(..) determines the indices where a particular
condition is satisfied.

Random number support is available through both scalar random number (..) and array
random array (..) entry points, while randomise(..) will reorder an array or list, and
gaussian_array (..) provides normally distributed random numbers.

The hlstogram) function allows binning of information, while sample values(..)
provides an efficient mechanlsm for extracting data from predetermined locations in an array.
The functions x_accumulate (..) and y_accumulate (..) accumulate the contents of arrays,
effectively integrating them in one direction from one edge.

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

9.12 Image processing functions
Image processing functions allow basic manipulations of array values in a manner that is of

use for image processing operations. The functions transpose (..), £lip horizontal(..),
flip vertical(..), rotate_clockwise(..) and rotate_anticlockwise(..) Can be
used to re-orient an image, while rotate image(..) allows for more general rotations.
Images may be translated using shift(..) Or shift interpolated(..), and their
resolution changed using rescale image(..) Or the more sophisticated weighted
interpolate_image(..).

Basic filter operations include filter low pass(..), filter convolution(..),
filter min(..), filter max(..), filter median(..), filter centile(..),

— 224 —

DigiFlow Functions

filter std dev(..) and filter geometric(..). These may be extended further using the
Fast Fourier Transform function ££t_2d (. . and |ts INVerse inverse fft 2d(..).

The basic filters assume the edges of the image are independent. However, sometimes it is
more appropriate to consider the image as one period of a periodic array. Support for this view

is provided through filter periodic_centile(..),
filter periodic_convolution(..), filter periodic_geometric(..),
filter periodic_low _pass(..), filter periodic _max(..),
filter periodic_median(..), filter periodic_min(..) and
filter periodic_std dev(..).

Variants on filter min(..) and filter max(..), that exclude the plxel |tself are
available through filter min neighbours (.. and fllter max_neighbours (. These

can be particularly valuable for identifying turnlng points in an image.

Further information about the structure of an image is available via contouring with
contour_image (.), find_contour_start(..), pixel contour (.) and
smooth_contour (..). A contour may be resampled with resample curve(..). A related
function, flnd_edge(..), uses gradient information to identify the edge of a region.
Alongside these, find blobs(..) can determine the properties of islands satisfying an
intensity threshold, and £ill blobs(..) and £ill blob list(..) can flood-fill such
entities. The function fractal box count (prowdes access to the Kolmogorov capacity,
while the related fractal box_ count dlglmage) provides a similar function that makes
the calculation in the same way as Diglmage.

Transitions within an array may be found conveniently with x_transition index(..) Of
y_transition_index(..).

Colour space manipulation is available through rgb from bayer(..

(..)
bayer from rgb(..), hsi_ from rgb(..), hue from rgb(..),
saturation_ from rgb(..), intensity from rgb(..), grey from rgb(..),
red from rgb(..), green from rgb(..), blue_from rgb(..), cyan from rgb(..),
magenta from rgb(..), yellow from rgb(..), cmy from rgb(..), cmyk from rgb(..)

and rgb_from hsi(..).
For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

9.13 Flow functions

The purpose of these functions is to help with the post-processing of fluid flows. These
include stream line(..) and follow_optical flow(..).

9.14 Coordinate functions

These functions provide access to the coordinate system mechanism within DigiFlow.

At the simplest level x_index(..) and y_index(..) provide a convenient method of
generating arrays containing pixel indices, whlle x_index world(..) and
y_index world(..) do the equivalent with world coordinates. The more general functions
world_coordlnate(..) and pixel coordinate(..) May be used to convert between
coordinate systems.

Coordinate systems may be created with coord system create(.) in conjunction with
coord system_add point(..) and coord | system 1 mapplng . The default coordinate
system may be set using coord system set default(..), and a coordinate sytem can be
removed with coord system destroy(..). The available coordinate systems may be
determined with coord system 1list(..) while information about an individual coordinate
system can be obtained with coord system destroy(..),

—225—

DigiFlow Functions

coord system get mapping(..), coord system get points(..) and
coord system units(..).

Once created, a coordinate system can be modified, thus creating a new coordinate system
uﬁng coord system apply region(..),coord system translate(..) and
coord system translate pixel(..).

The definition of a coordinate system can also be written to a dfc file with
coord_system_save(..L

In some cases, it can be desirable to create a mapping from pixel to world coordinate

systems. The functions coord system create mapping array(..) and
coord system transform array(..) support this. The specialist function
stereo _velocity to 3d(..) provides support for stereo PIV calculations.

View-specific ~ coordinate information can be read or set through
View_get_coord_system(..)andview_set_coord_system(..L

Alongside the coordinate system creation is the ability to create regions for use in the Sift
facility using region_create(..) and match_intensity_create(..).'Theregkﬂw already
defined can be determined with region 1ist(..) and the details of an individual region are
retrieved using get region(..). Regions may be removed from the list with

region destroy(..).

9.15 Bit-wise operations
It can be useful sometimes to operate on the individual bits of integers as binary numbers.

This functionality is provided through bit and(..), bit or(..), bit eor(..),
bit not(..), bit rotate(..), bit test(..), bit set(..), bit clear(..) and
bit_shift(..).

9.16 Camera control

Camera control in DigiFlow dfc code is provided through two different, complementary
mechanisms. The first is via the process command to invoke the corresponding items from
the File menu. The second mechanism is provided through a direct dfc interface. To make use
of this, first create a live view, either using the process interface, ore more simply by a call to

camera live view (..). If you then wish to save the digitised images to a DigiFlow .dfm file,
then first call camera capture file(..) to set up the file, and
camera start capture(..) 10 Start the capture process. Image saving capture may be
terminated either when a specified number of images have been captured, or a call is made to
camera_stop_capture (..). During the period while the video is being captured, the
function camera_is_capturing(..) Will return true. The live view may be terminated by
simply closing the associated view (camera live view(..) and camera get view(..)

return the necessary handle). A typical example of code to capture a sequence using this

interface is given below.
hView := camera live view();
sleep for(10); # Wait until we are sure the camera has started
camera_ capture file ("MyMovie.dfm");
camera start capture();
sleep for(20); # capture period
ret := camera stop capture();
message ("Frame rate achieved:"+ret.fpsAchieved);
close_view(hview);
For cameras that support full asynchronous triggering, camera set mode (..) may be used
to change from continuous acquisition to one-shot triggered mode. In the latter case an image
will only be acquired (and correspondingly written to any output file) when an explicit trigger

is sent. This trigger may be provided either by external hardware (via the frame grabber card),

— 226 —

DigiFlow Functions

or from dfc code through camera trigger(..). The code example below illustrates how to
capture images on demand by the user cllcklng a button.
hView := camera_ live view();
sleep for(10); # Wait until we are sure the camera has started
camera capture file("MyMovie.dfm");
camera wait for capture ready(); # Wait before making async

camera _ T set mode("oneshot");
camera _ T start _capture() ;
another := true;
while (another) {

camera_ trigger();

another := ask_yesno ("Capture another image?","Snap

images",allowCancel :=false) ;

i
camera_ stop_ capture() ;
camera set mode ("continuous");
sleep for(5);
close_view (hView) ;

Of course the sleep for(..) Or wait_for timer (..) functions may be used in place of
the user clicking a button to provide more precise but erX|bIe timings.

The camera wait for capture ready(..) call is necessary here to ensure that the
capture file is set up properly before switching to asynchronous mode. This is necessary
because camera_capture file(..) does not itself initialise the capture file, but rather asks
the video subsystem to do so asynchronously as frames are processed by the system. In the
first example above the camera start capture(..) call implicitly issued a
camera_wait_ for capture ready (..) Call before commencing the capture. However, in
the second example, the code would stall if we relied on this since
camera_set mode ("oneshot™) prevents any more frames being processed except by calls to
camera_trigger(..). We must therefore either do the wait with
camera_wait_for_capture_ready () before making the camera asynchronous, or ensure the
camera produces a few frames using camera trigger(..) between
camera set mode ("oneshot") and camera_start capture(). The functions
camera frame number (..) and camera frames captured(..) provide additional
functionality for monitoring the capture process.

Single frames may be grabbed directly from live video through camera grab(..) or
camera_grab_last(..), While individual lines or columns can be returned through
camera_grab_line(..) and camera_grab_column (..), respectively.

In some circumstances it may be desirable to lock the acquisition to the display rate of the
computer monitor. To aid in this the directdraw trigger(..) and
directdraw trigger period(..) functions not only handle the display, but also send a
trigger to the camera. These can mteract with functions such as camera_set_sync_line(..),
camera_set_strobe(..), camera_trigger(..), camera wait for frame(..),
camera wait for_ sync(..),wait for_ capture(..),wait for preprocess(..).

Communications with the camera are possible for many CameraLink cameras using
camera serial(..). The gain and shutter speed can be controlled using
camera_set gain(..) and camera shutter speed(..), respectively. The function
camera set frame rate(..) USeS a variety of techniques, dependent on camera type, to
adjust the frame rate. This should be issued prior to the corresponding
camera_capture file (..) if a different capture rate is required. Capture through the default
CapUHefHeIsamedbycmmera_save_cache(.. andcamera_cache_flle_name(..L

Where it can be adjusted, the black level of the camera is set by camera set black(..).
For some cameras, the optimal black level depends on the shutter speed. In such cases, a call

—227 —

DigiFlow Functions

t0 camera_optimal_black(..) may be used from within camera_shutter_ speed(..) tO
set the black level.

The current settings for the camera can be established with camera get settings(..),
and a summary of these settings displayed on the status bar using camera_show_status(..).

The display of images can be controlled with camera display now(..) and
camera set display rate(..).

Other low-level framegrabber specific controls include camera low level(..),

camera gpout(..) and camera override_sync(..).
Details of the camera may be found using camera capabilities(..), and some of these
may be overridden through camera override(..), while camera get settings(..)

determines key parameters controlling the camera. Persistent wrapping problems may
sometimes be solved through camera_set frame offset(..).

9.17 Array plotting functions

Array plotting functions allow data to be transferred into an array in a manner similar to
plotting.

Some of these functions are much more restrictive than the drawing functions described in
811, but have their use in manipulating images. Examples include scatter_to_array(..).

A three-dimensional iso-surface can be created from a three-dimensional array using
render 3d_isosurface(..).

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

9.18 Numerical functions

DigiFlow provides a variety of numerical functions that can be used to for purposes
ranging from the manipulation of images to numerical solution of equations.

Linear algebra functions include identiy matrix(..), matrix multiply(..),
solve linear(..), solve_svd(..), singular value_decomposition(..),
least_squares(..), fit expression(..), evaluate_ expression(..), with
fit line(..) providing a faster route to the fitting of a straight line. (The function
fit as text(..) provides a convenient method of producing LaTeX-like text from the
output of fit_expression(..) Of fit line(..).)

More specialist fitting procedures are available for one-dimensional data through
fit ellipse(..), fit periodic(..) and evaluate periodic(..), while for two-
dimensional data fit spline surface(..), b _spline_2d(..) and
b spline 2d least squares(..) are available.

Spectral functions such as £ft_row(..), £ft column(..), £ft 2d(..) and ££t 3d(..),
and their inverses inverse fft row(..), inverse fft column(..),
inverse_fft 2d(..), and inverse_fft 3d(..), are complemented by
power_ spectrum row(..), power_ spectrum column(..) and power_ spectrum 2d(..).
Additionally, power_spectrum 1d(..) provides the shell averaging of two-dimensional data
to produce a one-dimensional spectrum. For one-dimensional data, the maximum entropy
method equivalents mem_spectrum row (. .) and mem spectrum column(..) are available.
Similarly, DigiFlow also provides spectral calculation of auto correlation 2d(..),
auto_correlation row(..), auto_correlation _column(..) and
cross_correlation 2d(..), cross_correlation row(..),
cross_correlation_column(..).

Root finding is supported through find_root bisection(..) and
find root_secant(..).

— 228 —

DigiFlow Functions

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

9.19 Differential functions

Functions oriented at differential equations include the calculation of derivatives through
ddx(..), d dy(.), d2 dx2(..), d2 dy2(..), curl(..), div(. .), grad(..),
laplacian(..), and solution of the Poisson equation with solve poisson (Functlons
aimed at supportmg numerical solution of the equations include advect 2d_p51 O
upwind value (..) and shallow water (..). Direct inversion of a gradient field is prowded
through inverse_grad:l.ent(..), Whl|e multlgrld(..) provides a flexible route to
template-based equation solution and is used in the computation of
density from gradient(..).

An example of the wuse of some of these functions can be found in
StreamFunctionVorticity.dfc.

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

9.20 Handling threads

The DigiFlow interpreter has the ability to handle multithreaded code, thus allowing
improvements in performance on multiprocessor machines, and apparent improvements in the
time to first results.

Any piece of code may be started in its own thread using as thread(..), While a
DigiFlow processing feature may be started in a separate thread with
process_as_thread (. .). Both of these functions return a thread handle that may be used in
is running(..) tO determlne if the thread is still running, or wait for end(..) to suspend
execution untll the thread has finished running. The handle of a thread assomated W|th a view
may be determmed using thread for view (.. Executlon of a thread may be paused with
pause_thread(..), restarted with unpause_ thread(, or terminated prematurely with
kill thread(..) or stop_view_thread(..). Delays and synchronisation within a thread is
achieved through sleep_for(..), start_t:Lmer (..) and wait_ for timer(..).

For complex processes (and experienced users), the priority of individual threads may be
adjusted with set_thread priority(..), With the matching get thread priority(..)
recovering the priority of a thread.

The function thread set stopping_time (..) can be used to specify how much time is
expected to elapse between an attempt to stop a thread using kill_thread(..) and it actually
stopping. Amongst other things, this sets the time delay between requesting a window be
closed and it actually closing. If this time is too short, it is more likely that an error is thrown.

External processes may be started and controlled using issue_command . .).

Files containing dfc code may be set to run automatically upon their creation by issuing
autorun_ file(..).

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

9.21 Web browsing

Basic functionality for controlling the Internet Explorer web browser is available through
www_action (..), www_browse (..) and www_exit (..). Note, however, that default security
settings means that the level of functlonallty IS greater when browsing to a http:// address
rather than a file on your own computer.

—229 -

DigiFlow Functions

9.22 ftp functions

Commercial versions of DigiFlow provide the user with a set of ftp functions for
transferring data to and from an ftp server. In particular, ftp_open(..), ftp_close(..)
ftp current directory(..), ftp_change_directory(..), ftp_create_directory(..),
ftp_remove directory(..), ftp_list_files(..), ftp_get file(..)
ftp_put_file(..),ftp_rename_file(..)andftp_delete_file(..L

Related to this are the network functions get ip address(..) and

get mac_address(..).

Refer to the dfc help for further details.

9.23 DirectDraw functions

DigiFlow provides a variety of functions using the Microsoft DirectDraw interface in order
to provide specialised synchronisation between computer display and camera control. These
functions include 1ist monitors (..) to provide the necessary information in multi-monitor
systems, directdraw_create (..) and directdraw_destroy (..) to initialise or destroy the
DirectDraw interface, directdraw view(..) t0 Set an image to a flappable buffer, and
directdraw_animate(..), directdraw_animate_period(..), directdraw_trigger(..)
and directdraw trigger period(..) to switch between multiple buffers and (for the
‘trigger’ variants) trigger camera acquisition. The functions get monitor(..) and
list monitors (..) are required when dealing with multiple monitors on your system.

The following code segment illustrates a simplified situation in a dual monitor system. The
view identified by nhview is located on the monitor where the DirectDraw mechanism is to be
used, Tmo and tm1 are the two images to be displayed, nr1ips are the number of image
changes, and nwait is the number of vertical blanking periods to wait between each image
change.

monitor := get monitor (hView); # Find which monitor
list := list monitors() ;
if (search_string(monitor.name,"1")) {
First monitor
guid := 1list.GUIDO;
} elseif (search_string (monitor.name,"2")) {
guid := 1list.GUID2;
} else {
message ("Selected "+monitor.name+", using default");
guid := "null";

i
Size of display region

nx := monitor.rect.right - monitor.rect.left + 1;
ny := monitor.rect.bottom - monitor.rect.top + 1;
ddraw := directdraw_create (2, hView,guid); # Use two buffers

directdraw_view (ddraw, 0, Im0O, "greyscale") ;
directdraw_view (ddraw,1,Iml,"greyscale") ;

tFlips := directdraw_animate (ddraw,nFlips,nWait) ;
directdraw_destroy (ddraw) ;

9.24 Data acquisition functions

Some users find it convenient to control a data acquisition card from within DigiFlow.
Support is provided here for controlling PD2-MFx cards from United Electronic Industries
(http://www.uei.com). These cards provide high-speed analog input and output and up to
sixteen digital input and output data lines. The design of the cards means that minimal cpu
load is imposed while doing analog input/output operations, thus allowing the computer to
focus on other data.

—230—

http://www.uei.com/

DigiFlow Functions

DigiFlow support for one of these cards is achieved first by the call
install function dll("DataAcquisition.dll","UEIDataAcquisition", true); before
using uei open(..) to open the card. At the end of the session, uei close(..) must be
called to tidy up and release resources. Note that DigiFlow can only access only one such card
at a time.

Analog output is provided by the single command uei_analog out(..), Whereas three
commands - uei_analog_in configure(..), uei_analog_range(..) and
uei_analog in(..) —are necessary to provide the analog in functionality.

TTL-level digital input can be read with uei digital in(..),
uei_digital _in clear events(..), uei_digital in configure(..),
uei_digital in_status(..) and uei_digital in wait(..). Similarly, digital output is
made available with uei_digital out(.. and ueJ._dJ.gJ.tal_out_array (..).

Some models of the PD2-MFx card are provided with a three-channel Intel Universal
Counter Timer chip. This can be configured in many different ways using the command set

uei_counter_clear_events(..), uei_counter_ configure(..), uei_counter_gate(..),
uei_counter_mode(..), uei_counter pulse(..), uei_ counter_read(..),
uei_counter_reset(..), wuei_counter_status(..), wuei_counter wait(..) and

uei_counter_ write(..).

The low-level functions uei_get configuration(..) and
uei_set configuration (..) provide some additional functionality.

Built on top of these data acqmsmon and control functions is a set of functions and macros
specifically intended for the control and monitoring of a high-precision rotating table. These
functions are identified through names beginning with turntable . Further details may be
available on request.

9.25 Serial communications

Some laboratory equipment can be controlled and/or data read through a protocol based on
RS232 serial communications. To facilitate this, DigiFlow provides a basic set of functions

for this. In particular, serial_open(..) opens and configures a communication port, while
serial close(..) releases thls resource. Whilst open, serial write(..) and
serial read(..) allow data to be transferred.

9.26 GhostScript functions

Although GhostScript does not form part of DigiFlow, if DigiFlow detects that it is
installed on your system then DigiFlow can make use of GhostScript for converting PostScript
files into raster images for processing (or simply displaying). The ghost script(..)
function provides the simplest and most direct support, giving access to the GhostScript
interpreter and returning resulting image in a rgb formatted array. More detailed control over
the interpreter is provided through ghostscript start(..), ghostscript execute(..),
ghostscript end(..), ghostscript get image(..), ghostscript show_image(..) and
ghostscript get output(..).

9.27 Particle tracking functions

Files produced by the particle tracking system in DigiFlow necessarily have a different
format from those of other features. While the particle tracking menu provides a number of
post-processing options, there will be times when it is desirable to construct post-processing
using dfc code. Support for this is provided through ptv_open(..) and ptv close(..) t0
access the .dft particle tracking files. Once opened, ptv_tracks (..) provides a mechamsm
for enumerating the tracks of individual particles (i.e., assembllng paths from the coordinate

—231 -

DigiFlow Functions

and linking information stored in the .dft files), and ptv velocity(..) calculates the
velocities associated with the tracks. The functions ptv_ tracks compound(..) and
ptv_velocity compound (..) provide some additional information in a different format.
More specific information about individual particles can be determined using
ptv_read particles(..), and a specific particle within this located using
ptv_particle details(..).

9.28 Logging

DigiFlow includes code for helping track down problems, either with DigiFlow code, or
with user dfc files. The following group of functions support this process by logging certain
groups of activities. These functions are intended primarily for the developer to help track
down the cause of any lingering bugs.

Key entry points are log_start(..), log _stop(..), log _message(..),
log_allocated(..), log_memory(..), log_flush(..) and log_flush_every time(..).

Normally these functions will only be used while seeking technical support for DigiFlow.

The logging functions produce output into a file named DigiFlow.log. (Note that when
DigiFlow crashes, it will attempt to write as much diagnostic information as possible to

DigiFlow.log.) For example, if 1og start(..) is used for levels 8, 9 and then, then this file
contains entries such as

543 136295776 92 Allocate : S$SAddItem:New - nTotal

544 136295880 472 Allocate : $AddItem:pIltem - nTotal

545 158924832 5242880 Allocate : CreateImage:RR

546 164233248 5242880 Allocate : CreateValueS$SKind:Value$%AA

547 158924832 5242880 Deallocate: $DiscardImage:RR

547 147345992 92 Allocate : $AddItem:New - layOavg

548 147346096 472 Allocate : $AddItem:pItem - layOavg

549 147346584 128 Allocate : CreateValueS$SKind:Value%List

where the first column gives a sequence number, the second a memory address, the third the
size of the associated structure, the fourth the action and the fifth an indication of where in
DigiFlow the memory was allocated. Here, nTota1 is a scalar variable created by a user dfc
file, and 1ay0avg is an array read from an image. Note that the image itself is created as item
545, then destroyed as 547. The array is created as 546 and stored as 1ay0avg in 547 and 548.

If, subsequently, 10g_allocated(..) is called, then a block like that below will be added

to the log:
FHEHH AR AR
Currently allocated memory —-- START
current allocation =

FHAFA AR A A R A R

521 136310400 92 $AddItem:New - i min
522 136310504 472 S$AddItem:pItem - i min
523 136310992 92 $AddItem:New - 1 max
524 136311096 472 SAddItem:pItem - i max
525 136311584 92 $AddItem:New - J min
526 136311688 472 S$AddItem:pItem - j min
4285 148167192 472 $AddItem:pltem - k
4286 148167680 92 $AddItem:New - iFile
4287 148167784 472 S$AddItem:pltem - iFile
4325 224133152 3672360 CreateValue$Kind:ValueSAA
(iiddddsassddddsdsatatatatadanaRaREARRAREEEEEEE
Currently allocated memory —-- END

current allocation =

B R R R R R
This block lists all memory that was allocated following 1og start(s); (and before
log_stop (8) ;) that has been allocated but not deallocated. Note that the sequence number

—232 -

DigiFlow Functions

(first column) is not necessarily in order, but refers back to the numbers in the previous list. In
this case, most of the entries in the list are the direct result of the dfc file that was running
when it was created.

9.29 Registry functions

DigiFlow itself makes minimal use of the registry, but does provide some access to it
through the functions registry list keys(..), registry get value(..),

registry set value(..) and registry create_key(..).

9.30 Configuration and licence functions

During start-up, dfc code is responsible for some of the configuration of DigiFlow.
Advanced users may enhance this using functions such as add menu item(..),
add_menu_separator(..), get_submenu(..), add_submenu(..), add_image_ reader(..),
add_image writer(..), add movie reader(..), add_image reader macro(..),
install function_dll(..).

Information about the state of DigiFlow licensing is obtained with
is digiflow licensed(..) and digiflow licence type (..), While the DigiFlow splash
screen may be manipulated with show_splash(..) and hide_splash(..).

Some releases of DigiFlow are available compiled with more than one compiler. Specific
information about this is provided through compiler supplier(..) and
compiler version(..). The date on which the main digiflow.exe was compiled is
accessible through digiflow build date(..), With options within this determined using
is_debug(..) and is_openmp(..).

Information about the folder in which it is installed can be determined using either
digiflow _directory(..) Of digiflow_directory url(..), the latter providing details of
the machine on which DigiFlow resides if you are using a mapped network drive. The folder
in which DigiFlow was started can be determined from start directory(..) and
start _directory url(..).

The version of Windows on which DigiFlow is running can be determined using
windows_version(..).

DigiFlow’s use of resources can be monitored through system load(..),
memory status (..) and memory status_show (. .), While an attempt to free some resources
is achieved with memory tidy (..).

9.31 Miscellaneous functions

The equation of state for salt water is accessible through seawater density (. .).
The DigiFlow help system can be directed to a particular section in a web browser using
digiflow _help(..).

9.32 All functions

The table below gives a list of the names all the operators, functions and constants

understood by DigiFlow, including any alternate spellings.
! 0x {}

< 'News - latest
!News - old
Input streams
LaTeX

Output streams
Returning images
Simple plot

NS L+ + ok ok~ 3

]/ /) abs

—233 -

DigiFlow

acos

acos_rad

add_color

add _color_scheme

add_colour

add_colour_scheme

add_image reader

add_image reader_macro

add _image writer

add menu_item

add menu_separator

add movie reader

add_submenu

advect 2d psi

allow break

allow_query

and

animate view

as_thread

asin

asin_rad

ask_directory

ask_directory modeless

ask file

ask _file modeless

ask_image

ask_image modeless

ask_integer

ask_integer modeless

ask_list

ask list modeless

ask _printer

ask_real

ask_real modeless

ask_string

ask_string modeless

ask_yesno

ask_yesno_modeless

atan

atan_rad

auto_correlation_2d

auto_correlation_column

auto_correlation_row

autorun_ file

b_spline_2d

b_spline_2d_least_squares

bayer from rgb

beep

bessel

bit_and

bit clear

bit eor

bit not

bit or

bit rotate

bit_set

bit_shift

bit test

blue from rgb

camera_ cache file name

camera_capabilities

camera_capture file

camera_display now

camera_external_ shutter_sp
eed

camera_ frame number

camera_ frames_ captured

camera_get_settings

camera get_view

camera_ gpout

camera_grab

camera_ grab_column

camera_ grab last

camera_grab_ line

camera_ is_capturing

camera live view

camera low_level
camera open_serial
camera optimal_ black
camera override
camera override_ sync
camera_save_cache
camera_serial
camera_serial online
camera_set black
camera_set display rate
camera_set frame offset
camera_ set frame rate
camera_ set frame straddle
camera_set gain
camera_set mode
camera_set_strobe
camera_set_sync line
camera_show_status
camera_shutter_ speed
camera_ start capture
camera_ start frame straddl
e
camera_ stop_capture
camera_ stop_frame straddle
camera_ switch mode
camera_trigger
camera wait for capture
camera wait for capture re
ady
camera wait for frame
camera wait for preprocess
camera wait for sync
cascade_views
change_directory
char
close_all views
close_console
close_file
close_view
cmy from rgb
cmyk_from rgb
color_scheme
color_scheme_from_ image
colour_scheme
colour_scheme_from_ image
command line_arguments
compile
compile_rp
compiler supplier
compiler version
component_names
computer for file
contour_image
convert to_rp
coord_system_add_point
coord_system_apply_ region
coord_system create
coord_system create_mappin
g_array
coord_system_ destroy
coord_system get_mapping
coord_system get points
coord_system list
coord_system mapping
coord_system_save
coord_system_ set_default
coord_system_ transform arr
ay
coord_system_ translate
coord_system translate pix
el
coord_system units
copy_file
copy_file wait
cos
cos_rad

— 234

Functions

count

crash_digiflow
create_directory
cropped_add
cropped_assign
cropped div

cropped div_reversed
cropped mul
cropped_power
cropped power_ reversed
cropped_sub
cropped_sub_reversed
cross_correlation_2d
cross_correlation column
cross_correlation_row
curl

current directory
cyan_from rgb

d2_dx2

d2_dy2

d dx

d dy

date

degrees_from radians
delete color_scheme
delete colour_scheme
delete file
density from gradient
destroy variable
dfc_as_latex

dialog
digiflow_build date
digiflow directory
digiflow_directory url
digiflow_help
digiflow_licence
digiflow_licence_type
digiflow_site licence
digiflow_version
directdraw_animate
directdraw_animate_ period
directdraw_create
directdraw_destroy
directdraw_trigger
directdraw_trigger period
directdraw_view
directdraw_wait

div

do_not wait
draw_append drawing
draw_arc
draw_begin_image
draw_begin_lineto
draw_begin_marks
draw_begin_vector
draw_bottom axis
draw_circle
draw_clip box
draw_colour_scheme
draw_create_key
draw_defaults
draw_destroy
draw_embed drawing
draw_enable latex
draw_end

draw_fill color
draw_fill colour
draw_font
draw_get_axes
draw_get_font height
draw_get_status
draw_group_begin
draw_group_end
draw_image
draw_image_scale
draw_image_scale_vertical

DigiFlow

draw_install latex macro
draw_key entry
draw_left axis
draw_line
draw_line color
draw_line colour
draw_line style
draw_line width
draw_lineto
draw_mark
draw_mark size
draw_mark_ type
draw_move

draw_no_ fill
draw_on_array
draw_on_emf
draw_on file
draw_on_view
draw_polygon
draw_rectangle
draw_restore_ state
draw_right axis
draw_save_ state
draw_set axes
draw_set base_ scale
draw_set size
draw_skip points
draw_start
draw_text
draw_text color
draw_text colour
draw_top_axis
draw_user_ line style
draw_vector
draw_vector_scale
draw_vector_scale_vertical
draw_x_ axis

draw_y axis
dye_ideal

dye_red fiesta
eigen_system
eigen_values

else

elseif

enable timing

end

end_data

eor

erf

erfc
evaluate_expression
evaluate periodic
execute

exists

exit

exit digiflow

exp

export to_eps
export to_simple_eps
extract

false

fft_2d

fft_3d

fft column

fft row

file details

fill blob_list
fill blobs

filter centile
filter convolution
filter geometric
filter low_pass
filter max
filter max neighbours
filter median
filter min

filter min neighbours

filter periodic_centile

filter periodic_convolutio
n

filter periodic_geometric

filter periodic_low_pass

filter periodic max

filter periodic median

filter periodic min

filter periodic_std dev

filter std dev

find blobs

find contour_ start

find edge

find root bisection

find root_secant

fit as_text

fit ellipse

fit expression

fit image b spline

fit line

fit periodic

fit spline_surface

flip horizontal

flip vertical

floor

flush file

follow optical flow
for

fractal_box count
fractal_box count digimage
from

ftp_change directory
ftp_close

ftp_ create_directory
ftp_ current_directory
ftp_delete_file

ftp get file

ftp list files
ftp_open
ftp put file
ftp_remove_directory
ftp_rename_file
function
function_help
gaussian_noise
get_active_view
get_component
get_configuration
get_dfc path
get_dialog_response
get_file variables
get_global

get_image

get_ip address
get_key
get_local_variables
get_mac_address
get_monitor
get_mouse_box
get_mouse_click
get_mouse_line
get_mouse_position
get mouse_ rect
get_process_details
get_region
get_submenu
get_user_variables
get_variable
get_view_as_image
get_view_class
ghostscript
ghostscript_end
ghostscript_execute
ghostscript get_image
ghostscript get_output

—235—

Functions

ghostscript show_image
ghostscript start
grad

green_from rgb

grey from rgb
hide_splash
histogram

hsi_from rgb
hue_from_ rgb
identity matrix

if

ifelse

in parallel

include

indirect

install_ function dll
int
intensity from rgb
interpolate_ image
inverse_fft 2d
inverse_fft 3d
inverse_ fft column
inverse_ fft row
inverse_gradient
is_array

is_code

is_compound
is_debug
is_digiflow_licenced
is_digiflow_licensed
is_drawing

is_file local
is_integer

is_list

is live view
is_memo

is null

is_numeric

is_openmp
is_parallel

is_real

is_running
is_string

is view
issue_command
jpeg_get comments
kill thread
laplacian
least_squares
left_string

length
list_components
list_file details
list_files
list_files_global
list_global_variables
list_local_variables
list_monitors
list_names
list_system variables
list_user_ variables
1n

log

log_allocated
log_flush

log_flush every time
log_memory
log_message
log_start

log_stop

look_up_ table
lower_case

magenta_ from_ rgb
make_array
make_like

make list

DigiFlow

make_string
map_cartesian_to_polar
map_polar_ to_cartesian
match_intensity create
matrix multiply
max

max_index x
max_index y
max_string length
max_value
maximise_digiflow
maximise_view
maximize digiflow
maximize_ view
mean
mem_spectrum_column
mem_spectrum_row
memory_status
memory_tidy
message
message_modeless
mid_string

min

min_index x
min_index y
min_value
minimise_digiflow
minimise_view
minimize_digiflow
minimize_view

mod
mouse_get_mode
mouse_set_mode
move_file
move_icon
multigrid
n_components
n_size

n_waiting write_image
new_line

new_view
new_view_clean
new_view_floating
nice number

nice number_ string
not

null

open_binary file
open_console
open_file
open_image
open_image_when_ready
or

pack_time
pause_thread

pi

pixel contour
pixel_ coordinate
plot

plot_axes
plot_axis_type
plot_destroy
plot_drawing

plot fit

plot_get state
plot_image
plot_line

plot_new
plot_titles
plot_update_view
plot_vectors
plot_view handle
power_spectrum 1d
power_spectrum 2d
power_spectrum column
power_spectrum_row

print_view
print_view_dialog
process
process_as_thread
process_time
ptv_close

ptv_open
ptv_particle_details
ptv_read particles
ptv_tracks
ptv_tracks_compound
ptv_velocity
ptv_velocity compound
quit

r_count

r_mean

r_sum

radians_from degrees
random_array
random_number
randomise

read_array

read binary

read compound_ image
read console

read data

read file

read_image

read image_archive
read image_details
read_ image_queue
read image_ queue_ create
read image_queue_ destroy
read image_ from view
read_image_when_ready
read_into_array
read_line

read_table

real

red_from rgb
region_create
region_destroy
region_list

registry create key
registry get_value
registry list keys
registry set_value
remove_icon
remove_spaces
remove_trailing_ zeros
render_ 3d

render 3d_isosurface
render points_3d
replace_hashes
replace_values
resample curve
rescale_image
restore_digiflow
restore_view
reverse_polish
rgb_from bayer
rgb_from hsi
rgb_from image
right_string

rms

roll
rotate_anticlockwise
rotate_clockwise
rotate image

round

sample_ values
saturation_ from rgb
save_view

scatter_ to_array
scrunch_string
search_string

—236—

Functions

seawater density

serial close

serial_ open

serial_ read

serial write

set_configuration

set_dfc path

set_dialog_response

set_file end

set_file pointer

set_global

set_variable

shallow water

shift

shift interpolated

show_memory status

sign

sin

sin_rad

singular value decompositi
on

slave_view_3d

sleep for

smooth contour

solve_ linear

solve_ poisson

solve_svd

sort

sort_array

sort_index

sqrt

start directory

start directory url

start_timer

status_bar_message

step

stereo_velocity to_3d

stop_view_thread

stream function

streamline

sum

system load

t_index

t_size

tan

tan_rad

theta_mean

thread for view

thread set_stopping_ time

tile_views

time

time_interval

to

trace

transpose

true

try_ execute

try_include

turntable_angle

turntable average_output

turntable ctrl

turntable current_speed

turntable enable

turntable filter low_pass

turntable filter median

turntable fourier

turntable get variable

turntable heart beat

turntable output

turntable record

turntable set_speed

turntable set variable

turntable_ state

turntable status_bar

turntable stop

turntable_ target_speed

DigiFlow

turntable_update_ base
turntable_update calibrati
on
turntable_update_ waveform
turntable_varying speed
turntable wait
turntable_ where
uei_analog_in
uei_analog_in_configure
uei_analog_in_range
uei_analog_out
uei_analog_start
uei_close
uei_counter_clear_events
uei_counter_configure
uei_counter_gate
uei_counter_mode
uei_counter_pulse
uei_counter_read
uei_counter_reset
uei_counter_status
uei_counter_wait
uei_counter_write
uei_digital_in
uei_digital_in_clear_event
s
uei_digital_in_configure
uei_digital_in_status
uei_digital_in wait
uei_digital_ out
uei_digital out_array
uei_get configuration
uei_open
uei_set_configuration
unpack_time
unpause_thread
upper_case
view
view_3d
view_color
view_colour
view_connect_ thread
view_counter
view_disconnect_thread
view fit all to_zoom
view fit to_ zoom
view_get coord_system
view_get_ time

view_icon
view_live
view_points_3d
view_rgb
view_rotated
view_scalar_colour
view_scalar_range
view_set_coord_system
view_time
view_title
view_toggle_color
view_toggle_colour
view_variables
view_vector_colour
view_vector_remove_mean
view_vector_scale
view_vector_spacing
view_vectors
view_zoom
view_zoom all
view_zoom all to_fit
view_zoom to_fit
wait_for_end
wait_for_ever
wait_for_ file
wait_for_ timer
wait_for write_image_ queue
_empty
where
where_is
while
window_from
windows_version
world_coordinate
wrapped_add
wrapped_assign
wrapped_div
wrapped_div_reversed
wrapped_extract
wrapped mul
wrapped_power
wrapped power_reversed
wrapped_sub
wrapped_sub_reversed
write_ array
write binary
write_ console
write file

—237 —

Functions

write_image
write_image_archive
write_image_queue
write_integer_array
write_rgb_image
write_rgb_ image_queue
write_thesis
www_action
www_browse
www_exit
x_accumulate
x_centroid

x_count

x_index

x_index pixel
x_index world
x_max_index
x_max_value

X_mean

x_min_index

x_min value
x_moment
x_replicate

x_rms

x_size

X_sum
x_transition_index
xor

y_accumulate
y_centroid
y_count

y_index
y_index_pixel
y_index_world
y_max_index

y_max value

y_mean

y_min_ index

y_min value
y_moment
y_replicate

y_rms

y_size

y_sum
y_transition_ index
yellow_ from rgb
z_index

z_size

DigiFlow Macros

10 Macros

The full power of DigiFlow is released through its ability to run macros in the form of
DigiFlow command files (more frequently referred to as dfc files or dfc code) to automate
complex or repetitive tasks. This section supplements the discussion of the basic

10.1 DigiFlow command files

DigiFlow command files are simple text files that contain code that is interpreted and
executed by the DigiFlow interpreter. The language used by this interpreter is a simple
superset of that described already in this section, with the addition of commands to invoke
specific DigiFlow processes by mimicking the functionality of the user-interface and process
chaining ability (see §7).

It is recommended that the default dfc extension be used for all DigiFlow command files.
This will not only ensure that the command files are visible to the Run Code dialog (see
85.1.2), but also that double-clicking on a dfc file in Windows Explorer, or dragging a dfc file
to DigiFlow, will ensure that it is run correctly.

10.1.1 Running processes
The basic command for running a DigiFlow process from dfc code is
process dlg;
where dlg is a compound variable containing the responses for the dialog associated with that
menu item and the name of the process to be run. This is best illustrated by example.
To compute the arithmetic time average of a movie test.dfm and store the result in ave.dfi,
we may construct the following dfc code:

dlg.Input := "test.dfm";
dlg.Output := "ave.pic";
dlg.Kind := "Arithmetic";
dlg.process := "Analyse TimeAverage"

process dlg;
or equivalently using the compound variable constructor < .. >,

dlg := <
Input := "test.dfm";
Output := "ave.pic";
Kind := "Arithmetic";
process := "Analyse TimeAverage";

>,

process dlg;
In this example, the variable a14 is used to store the dialog responses that are required for the
Analyse TimeAverage process (see 85.6.1.1). The dialog responses have been stored in the
form of a compound variable (see §8.2.2).

Typically, a process requires a number of mandatory responses, and may also accept a
variety of optional responses. Here we have defined only the mandatory input, output and
average type responses. If no errors are detected, the interface uses these values to initialise
the control structures for the averaging process, and then starts the averaging.

Although not used in the above examples, the process command has a return value that
contains information about the final state of the process. For most processes, the return value
is a compound value that contains things like the final image computed and the handle(s) of

any views left open by the process. In the above example, if
ret := process dlg;

then the variable ret contains components .noutput, the handle of the view left open,
.imgoutput, a copy of the image created by the time average, and .process, which is a copy

—238—

DigiFlow Macros

of the entry value (here "analyse Timeaverage"). The simplest way of determining the
contents of the return value is to make a call t0 view variables(..) after executing
process. If no assignment is made of the return value then this information is simply
discarded.

By default, processes are run in a separate thread from the interpreter handling the dfc code,
but the execution of the dfc code is suspended until the execution of the process is complete.
This behaviour may be modified by starting the process using

thread_id : = process_as_thread dlg;

(dlg must always contains the .process declaration). When started in this way, control is
returned to the dfc code as soon as the dlg variable has been executed to start the process. The
dfc code is then free to start other processes or make other computations. However, any code
that relies on an output created by the command started in this manner must execute
wait for_end (thread_id); or at least check is_running (thread_id) prior to making use of
this output. See §9.20 for further information on threads. Note if process_as_thread is used,
then the return value available with process is automatically discarded and is not available to
the calling dfc code.

For each of the processes within DigiFlow that may be accessed by this method. The
easiest way of obtaining this list is to run the process interactively, then enter the Dialog
responses facility described in 85.2.9. This gives a list of the values used, including any
relevant optional ones.

10.1.2 Control of input streams

Input streams, such as that represented by d1g. tnput in the previous section, may be either
a single file (which may contain either a single image or a movie of images), a series (with a
varying numeric part represented by one or more hash (#) characters, or a collection of
images. For a macro, a collection is typically specified using wild cards. The wild card for a
single character is either a question mark (=) or percentage symbol (%), whereas an asterisk (*)
or dollar symbol (s) represents an arbitrary number of characters. The reason why there are
two symbols for each type of wild card stems from the way Windows interprets wild cards
immediately when using an open or save file dialog. Note that it is more efficient to utilise the
numeric substitution character (#) than wild cards, and that numeric substitution can cope with
a much larger number of files.

The input streams can be modified in a number of ways, just as they could through
interactive use of DigiFlow. For most streams (those with a Sift button), aspects of the stream
such as the timing and region of interest can be changed. If the image source is a full colour
image, then the Colour component to be processed may be selected. In each case, the
additional control is optional and is achieved by appending further details to the name of the
associated control. For example, to select the green component of the full colour image
MyPic.bmp for d1g. Input, then the lines

dlg.Input := "MyPic.bmp";
dlg.Input Component := "green";

should be included in the dfc code.
The various controls available for input streams are discussed below.

10.1.2.1 Folder for input stream

By default, if the file name specified for the input stream does not contain a path
component, then the stream will be taken from the current folder (directory). If you wish to
specify a different folder without including it in the file name, then rFo1der may be appended
to the input stream name and set to a string value specifying the folder required.

—239—

DigiFlow Macros

10.1.2.2 Archive file for input streams

If available, .dfa archive files can be useful as they both act as a collection point for
sequences of files and store additional information for file formats that cannot store this
internally. Appending options.UseArchive to the input stream specifier allows the logical
true OF false t0 specify whether or not DigiFlow searches for a .dfa file when processing an
input image stream. If true and an archive is found, then the information contained in it is
merged with that found in the image files themselves.
10.1.2.3 Displaying input

Normally it is desirable to show the input streams on the display as the process takes place.
However, in some cases it may be desirable to suppress this. Control of whether or not input is
displayed is achieved by appending options.Display to the corresponding input name. The
resulting logical variable will then display the input if true, oOr suppress it if false. If not
specified, then the input stream will normally be displayed.

10.1.2.4 Colour component

The colour component input is applicable only to source streams providing true colour
images (e.g. 24 bit .bmp files). The control is accessed by appending options.Component t0
the corresponding input name. For example, if This.Experiment is Set to a full colour image,
then This.Experiment Options.Component provides selection of the colour component, as
detailed in the following table. Here, stream represents the base name of the input stream (e.g.
This.Experiment in the above example).

stream Options.Component Description

"RGBY Returns a three-plane full colour image. Note that some
DigiFlow options will only process the first (red) plane when
presented with a full colour image.

"mono™ Return the best monochrome version of the image.

"red" Return the red component of the image in RGB space.

"green” Return the green component of the image in RGB space.

"blue Return the blue component of the image in RGB space.

"hue" Return the hue (colour) of the image, in
Hue/Saturation/Intensity space.

"saturation"” Return the saturation (purity of the colour) of the image, in
Hue/Saturation/Intensity space.

"intensity" Return the intensity of the image, in Hue/Saturation/Intensity
space.

"cyan" Return the cyan component of the image in CMY space.

"magenta” Return the magenta component of the image in CMY space.

"yellow™ Return the yellow component of the image in CMY space.

"black" Return the black component of the image in CMYK space.

"grey" Return the equivalent grey level.

"mean” Return the mean of the three RGB components.

"max"

Return the maximum of the three RGB components.
Return the minimum of the three RGB components.

min

Consult 84.1 for details on the relationship between the returned value and the individual
red, green and blue colour components.

240 -

DigiFlow Macros

10.1.2.5 Timing control

For input streams having a Timings button, the timing details may be set by appending
_Time to the corresponding input name. This new variable is a compound variable that
provides a number of ways of controlling the timings. For example, if d1g. Input controls an
input stream, then dig.Input Time.ToStep controls the last frame to be processed.

The timings may be specified in terms of either frames or seconds. If both are specified, the
frames version takes precedence. Details of both methods of control are given below. Note
that you need specify only those controls you wish to change from their defaults: the default
action is to process every frame of the input stream.

Variable Description

stream Time.FromStep Select the first frame to be processed.

stream Time.ToStep Select the last frame to be processed.

stream Time.StepCount The number of frames to be processed. This has priority over
_Time.ToStep.

stream Time.StepBy The spacing of the frames to be processed.

stream Time.FromTime Select the start time for the sequence. This is rounded to the
nearest frame.

stream Time.ToTime Select the end time for the sequence. This is rounded to the
nearest frame.

stream Time.TimeStep The time step for the sequence. This is rounded to the nearest
frame.

stream Time.TimeStepFile The interval between the frames in the sequence. This is
ignored for file formats that store time information, but is used
for file formats (e.g. sequences of .omp files) that do not store
such information.

10.1.2.6 Selecting regions

It is often desirable to select only a part of an image for processing. This is achieved
through the specification of a region by appending region to the corresponding input name.
This new variable is a compound variable that provides a number of ways of controlling the
region. For example, if d1g.Input controls an input stream, then dig.Input Region.xMin
sets the left-hand side of the region. The table below summarises the available options.

Variable Description

stream Region.Kind Select the type of region. This is a string variable that should be
set to one of:
"a11" Indicates that all the input stream should be used.
"conform” Indicates that a region conforming to that of the
master stream should be used. This option is not available for
streams that are the master. Typically, a given process will have
only one master stream, and this will be the first stream in the
dialog box.
"pixelRect” Indicates that a rectangle (specified in pixel
coordinates) will be used. Values must be specified for the
7Region.xMin,7Region.xMax,7Region.yMinand
ARegion.yMaxvaﬁame&
"Named" Indicates that a named region should be used. The
name must be specified for the RrRegion.Name variable.

stream Region.xMin Must be specified when Rregion.Kind IS "PixelRect". Specifies

—241 -

DigiFlow Macros

the left-hand side of the pixel rectangle defining the region.

stream Region.xMax Must be specified when Region.Kind IS "PixelRect". Specifies
the right-hand side of the pixel rectangle defining the region.

stream Region.yMin Must be specified when Region.Kind IS "PixelRect". Specifies
the bottom of the pixel rectangle defining the region.

stream Region.yMax Must be specified when Rregion.Kind IS “PixelRect”. Specifies
the top of the pixel rectangle defining the region.

stream Region.Name Must be specified when Rregion.Kind iS "named". Specifies the

name of the previously saved region.

10.1.2.7 Matching intensities in input streams

As described in 84.3.3, it can be necessary to adjust the intensities of images on an image-
by-image basis in order to match their intensities to a reference level. This is achieved through
the specification of a Match Intensity by appending MatchIntensity to the corresponding
input name. This new variable is a compound variable that provides a number of ways of
controlling the intensity matching. For example, if dig.1nput controls an input stream, then
dlg.Input MatchIntensity.Name SetS the intensity matching to a previously named
scheme. The table below summarises the available options.

Variable Description

stream MatchIntensity.Kind Optional variable that select the type of intensity
matching. This is a string variable that should be set
to one of:
"None" Indicates that no intensity matching
will be used..
"Local™ Indicates that the settings are defined

locally. Values must be specified for
_MatchIntensity.xMinA,
_MatchIntensity.xMaxA,
_MatchIntensity.yMinA,
_MatchIntensity.yMaxA,
_MatchIntensity.xMinB,
_MatchIntensity.xMaxB,

_MatchIntensity.yMinB,
_MatchIntensity.yMaxB

"Named" Indicates that a named setting should
be used. The name must be specified for the
7MatchIntensity.NwmaVaﬁabm.

If this variable is not specified, but
_MatchlIntensity.xMina IS, then "Loca1" will be
assumed. Similarly, if this variable is not specified,
but MatchIntensity.Name IS, then "Named" is

assumed.
stream MatchIntensity.xMinA The left-hand edge of region A.
stream MatchIntensity.xMaxA The right-hand edge of region A.
stream MatchIntensity.yMinA The bottom edge of region A.
stream MatchIntensity.yMaxA The top edge of region A.
stream MatchIntensity.xMinB The left-hand edge of region B.
stream MatchIntensity.xMaxB The right-hand edge of region B.
stream MatchIntensity.yMinB The bottom edge of region B.

— 242 —

DigiFlow Macros

stream MatchIntensity.yMaxB The top edge of region B.

stream MatchIntensity.TIntensitya If specified, then this gives the reference intensity
for region A. If not specified, then the reference
intensity is determined from the first image to be
processed.

stream MatchIntensity.IntensityB If specified, then this gives the reference intensity
for region B. If not specified, then the reference
intensity is determined from the first image to be
processed.

stream MatchIntensity.Name If specified, then this string gives the name of the
match intensity scheme to use.

10.1.2.8 Waiting for input streams

In some cases, the input stream will not exist when a process is started. DigiFlow allows
the possibility of the process waiting for the input stream to come into existence through some
other mechanism (e.g., being created or copied by an external program or the user) rather than
simply throwing an error. The table below summarises the possible actions.

Variable Description

stream options.waitFor Determines the time DigiFlow will wait for the input stream to
be created, if it does not exist already. A numeric (floating point
or integer) value should be assigned to this variable. A zero or
negative value implies no waiting, while a positive value gives
the timeout period for the stream.

10.1.3 Control of output streams

In a similar way to the ability to modify input stream timing, colour component, etc., some
aspects of the output streams may also be modified. The following subsections detail the
available controls.

10.1.3.1 Folder for output streams

By default, if the file name specified for the output stream does not contain a path
component, then the stream will be taken from the current folder (directory). If you wish to
specify a different folder without including it in the file name, then ro1der may be appended
to the output stream name and set to a string value specifying the folder required.

10.1.3.2 Archive file for output streams

For many users, it is desirable to generate .dfa archive files that both act as a collection
point for sequences of files and store additional information for file formats that cannot store
this internally. Appending options.UseArchive to the output stream specifier allows the
logical true Or false to specify whether or not the .dfa file is generated.

10.1.3.3 Displaying output

Normally it is desirable to show the output streams on the display as the process takes
place. However, in some cases it may be desirable to suppress this. Control of whether or not
output is displayed is achieved by appending options.Display to the corresponding output
name. The resulting logical variable will then display the output if true, or suppress it if
false. If not specified, then the output stream will normally be displayed.

243

DigiFlow Macros

10.1.3.4 Output stream colour

The colour scheme used for an output stream may be set by appending options.colour
to the name of the stream, and specifying a colour scheme, either as the name of the scheme,
or as an array of RGB colour values.

Variable Description

stream options.Colour : Specify a named colour scheme for this output stream.
"single cycle";

stream Options.Colour := Specify the colour scheme as an array of colour values.

my_array ; The array should contain at least 256x3 elements, the first
index corresponding to an 8-bit intensity, and the second to
the colour component in the order Red, Green, Blue. Each
element of the array should be scaled between 0.0 and 1.0.

stream options.Color : Identical to the above description with the UK spelling of

"single cycle"; Colour
stream oOptions.Color := Identical to the above description with the UK spelling of
my_array; colour.

Colour scheme information may also be specified simultaneously for all output streams by
omitting the stream options prefix.

Variable Description
Colour := "single cycle"; gGpecify a named colour scheme for all output streams.
Colour := My_array; Specify the colour scheme as an array of colour values.

The array should contain at least 256x3 elements, the first
index corresponding to an 8-bit intensity, and the second to
the colour component in the order Red, Green, Blue. Each
element of the array should be scaled between 0.0 and 1.0.

Color := "single cycle"; Identical to the above description with the UK spelling of
colour.

Color := Mmy_array; Identical to the above description with the UK spelling of
colour.

If both the stream options.colour and colour variants are used for a given output
stream, then the stream options.colour variant has priority. Similarly, if both the UK and
US spellings of colour are used, then the UK spelling has priority.

For output streams that allow full (true) colour images, whether or not one is saved may be
controlled by setting the logical options.TrueColour.
10.1.3.5 First index

The first index to be used in naming the files in an output sequence may be specified by
appending options.FirstIndex to the name of the stream and specifying an integer value.
The default value is zero.

10.1.3.6 Output stream bit depth

The bit depth used for an output stream may be set (where the file format allows) by
appending options.nBits to the name of the stream, and specifying the bit depth as an
integer.
10.1.3.7 Output stream compression

The compression setting used for an output stream may be set (where the file format
allows) by appending options.Compression to the name of the stream, and specifying an
integer value. A value of zero turns off compression, while positive values give compression
(how many levels of compression are available depend on the image format).

— 244 -

DigiFlow Macros

10.1.3.8 Output stream quality

For output formats using a lossy compression scheme (e.g. .jpg files), it is possible to
specify the quality of the resulting image. There will, of course, be a trade-off between the
quality and the degree of compression. Access to the quality control is provided by appending
_Options.Quality to the name of the stream. This control takes a string value which is
normally one of "Default", "Fast", "Accurate", "Superb", "Good", "Normal", "Average"
or "Low".

10.1.3.9 Output stream resampling

When the .dfi image format is selected, it is possible to rescale the output stream before it is
saved and then reverse this rescaling when the image is subsequently read in. Typically this
option is used to reduce the resolution of the saved image, but maintain its size by
interpolating back to the original size before using the image again. Overall control of this is
provided by appending options.Resample to the name of the output stream and specifying
one of "none", "source" OF "local". The first of these turns off resampling (default),
whereas the second causes any resampling parameters to be inherited from the source image
stream or the process that is creating the images, as appropriate. The "10ca1" option provides
direct control over the resampling through the additional keys described below.

The resolution of the saved image is controlled by appending options.ResampleFactor
to the name of the output stream and specifying a floating point value for the relative
resolution of the saved image. For example, a value of 0.5 will cause the saved image to have
only ¥ of the number of pixels of the original in the file, but through interpolation the missing
pixels are reconstructed when the image is read in again. The method of interpolation may
also be controlled using options.ResampleInterpolation With a value of "none" for no
interpolation (replicating pixels), "1inear™ for bi-linear interpolation and "cubic" for bi-
cubic interpolation.

10.1.3.10 Comments in output streams

For output file formats that support comments, a comment may be specified by appending
_Options.Comments to the name of the output stream and specifying the comment as a
character string.

10.1.3.11 Leaving output streams visible

When DigiFlow is run interactively, the principle output streams are opened and left visible
at the end of a process. This behaviour, however, may not be desirable when running
DigiFlow from a macro.

The macro can select whether or not to leave an output stream open by defining the symbol
(within the controlling compound variable or code segment) pisplayonExit and setting the
value to true Or false, as desired. If DisplayonExit IS not defined, it is assumed to be true.

10.1.3.12 Deleting existing streams
To automatically delete an existing output stream at the point when the first image is
written to the new stream, the stream modifier options.DeleteExisting Should be added
to the output stream name and set to true, viz:
stream Options.DeleteExisting := true;

10.1.4 Chaining responses

As with interactive use of DigiFlow, dfc code may be used to build complex processes by
chaining together simpler processes. The mechanism beneath this is a simple extension of the
basic interface between dfc code and the various menu-driven processes. Whereas the
example given in the previous sections had a single input specified by a file name, here we
shall have a single input specified by a compound variable.

245 -

DigiFlow Macros

For example, if we wish to use the facility for transforming intensity (Tools: Transform:
Intensity, see 85.7.2) as the input to a time average, then we could construct a dfc code:

dlgTrans.Input := "Test.dfm";

dlgTrans.Code := "sqgrt(P)";

dlgTrans.process := "Tools TransformIntensity";
dlgAve.Input := dlgTrans;

dlgAve.Output := "ave.pic";

dlgAve.Kind := "Arithmetic";

dlgAve.process := "Analyse TimeAverage";

process dlgAve;
Here, we first constructed a compound variable for Tools: Transform Intensity, but do not set
a destination for its output. We then assign this compound variable to the input of the
averaging process. Obviously this same code could be written more directly without
constructing the intermediate d1gTrans variable:

dlgAve.Input.Input := "Test.dfm";

dlgAve.Input.Code := "sqgrt(P)";
dlgAve.Input.process := "Tools TransformIntensity";
dlgAve.Output := "ave.pic";

dlgAve.Kind := "Arithmetic";

dlgAve.process := "Analyse TimeAverage";

process dlgAve;

10.1.5 Multiple output streams

If a process, which you wish to use to provide input to a second process, produces more
than one output stream, then it is necessary to select which output stream you require. This is
achieved by specifying .pipe in the compound variable used for the input. The example
below selects the YGradient output from the synthetic schlieren process, and averages this
over time.

dlgAve := <

Input := <

Experiment "Expt.dfm";
Background := "Reference.dfi";
Difference := "Absolute";
CameraToTexture := 4.0;
ExperimentToTexture := 0.3;
ExperimentThickness := 0.2;
Medium := "Water";

CoordSystem := "internal waves";
GradientScale := 0.1;
DisplacementScale := 0.1;
DensityScale := 1.00000;
AutomaticInterrogation := true;
AutomaticValidation := true;
AutomaticMeans := true;

process := "Analyse SyntheticSchlierenPatternMatch";
pipe := "YGradient";

>

Output := "ave.pic";
Kind := "Arithmetic";
process := "Analyse TimeAverage";

>;

246 -

DigiFlow Macros

process Analyse TimeAverage (dlgAve) ;

10.1.6 Accessing dialogs

Sometimes it is convenient to accept user input via one of the standard process dialogs,
then modify this before executing the process. This may be achieved using the dialog
statement either as:

dlg_value := dialog dlg;
or
dlg_value := dialog command;

In the first of these, dlg is a compound variable with one mandatory component, .process, to
specify the process that is being invoked. As with the process command, the .process
component must be a string value. In the second option, command is literal text for the name
of the process. For example, the following two code segments have the same effect:

dlg.process := "Analyse TimeAverage";
dlg := dialog dlg;

and
dlg := dialog Analyse TimeAverage;

In both the above examples the return value (here d1g) is a compound variable that
contains the responses, including details of any nested (chained) dialogs. Note that it does not
contain details of settings you have not made and will not affect the process you have selected.
For example, the time averaging process returns

dlg.process := "Analyse TimeAverage";
dlg.Input := "randr.dfm";

dlg.Input Time.FromStep
dlg.Input Time.ToStep :=
dlg.Input Time.StepBy :=
dlg.Input Time.FromTime
dlg.Input Time.ToTime :=
dlg.Input Time.TimeStep
dlg.Kind := "Arithmetic";
dlg.Output := "Average.pic";

Obviously, the details on the right-hand side will vary, depending on the precise options
selected by the user, and the base variable (here d1g) is determined by the left-hand side of the
assignment expression. There is also some redundancy in this information in that the time
period is specified in both steps and times. In such a case, the step specification has priority.

The following example takes the returned compound variable from the time averaging
process and modifies the time period for the average:

-« O
~ O
~.

oo Il = ol
. ~

(@]

~.

O OO
e Ne o
N
(@)
~e

Retrieve the dialog responses from the user.
dlg := dialog Analyse TimeAverage;

Change time period to only 1 second. Since both step and time
specifiers are present, and we only want time, we must either
ensure they are compatible, or remove the unwanted specifier.
Here we shall completely replace the time specifier.

Could either remove the variable (as here) or assign it

some dummy value, such as dlgInput Time := null;

destroy variable ("dlg.Input Time”);

S R R R R %

Specify the new times
dlg.Input Time.FromTime

= 0;
dlg.Input Time.ToTime := 1.

0.
0:

’

Execute the process.
ret := process dlg;

— 247 -

DigiFlow Macros

If you wish to specify the initial values of the controls within the dialog, then this may be
achieved using the
dlg_value := dialog dlg;
form of the command. Any valid components in dlg will be used to initialise the
corresponding controls within the dialog.
The functions get_dialog_response(..) and set_dialog_response (..) May be used
to retrieve or set (respectively) the current default response for a given dialog.

10.2 Recording user input

Constructing dfc code to control a process from scratch can be time consuming and prone
to error, especially when working with the more complex DigiFlow processes. To simplify
matters, DigiFlow is able to record many aspects of interactive use, and convert these to dfc
code.

Indeed, DigiFlow does this all the time, and records a log of user responses in the file
DIgResponses.log in the directory the process was run from. This file will gradually grow with
time as it accumulates more and more of the users’ interactive activity. This file may be
deleted without any harmful effects.

Moreover, the Edit Dialog Responses menu item (see 85.2.9) provides direct access to the
latest responses for all process dialogs, and provides the ability to fire up the dialog to
determine the dfc responses without initiating the process. Note, however, that the responses
displayed in Edit Dialog Responses is only the minimum set required for the options selected
in the dialog. For example, the various sifting options will not be included in the response
unless they were selected in the dialog. Figure 148 illustrates this point. Note that the
highlighted entry in figure 148b is included to remove any pre-existing output file.

Obaing, Frepanses T —

Avengn DaphaCnk e o 13,

nd = 00000
» 2 1000
)

Tunsbnesss o _Ma
dppndee_lrmedvmege oo Ve
R
Fovayre_ Tosedveiags roud_Mak
w_Trsadyeingn s Vet
Opfnshvie_Tosslyess o Vs
digin

Gawt Aot | dgArwhe Trssdaeings ot
' Afeshvie_Tenadieiae rpud_

1 2] 3 |

™o o ket o

[I Enate | digprubne_ T rsedawiage rpnd_Tewm Tofiep v Cadog l Saviie 31
o [V .

(a) (b)
Figure 148: Example of Edit Dialog Responses for the same process: (a) no sifting options selected,
and (b) sifting both time and space.

248 -

DigiFlow Plotting and drawing

11 Plotting and drawing

Many of the features of DigiFlow produce graphical output. Similarly, it is often desirable
for a dfc file to plot the results of its processing, or indeed for the user to plot data from a wide
variety of external sources. This section describes the features within DigiFlow that support
this process.

Before describing the commands controlling this process, consider the following example.
hD := draw_start(width:=512,height:=512,
description:="Unspecified DigiFlow drawing");
draw_group begin (hD, name:="Velocity");
draw_begin vector (hD,vectorScale:=10.0,autoWidth:=false);
#Data: xFrom,yFrom,xTo,yTo
100.0 100.0 2.0 2.0
300.0 300.0 -1.0 1.0
end_data; #vector
draw_group_end (hD, name:=" (group)");
draw_end (hD) ;
hView := new_yiew(512,512);
view (hView, hD, erase:=true);
draw_destroy (hD) ;

Here, the drawing object, referred to by the handle np, is created by the call to
draw_start (. The draw _group_begin(..) draw_group end(..) pak are opﬂonak
they cause the graphlcs objects between to be grouped in any enhanced metafile created from
this drawing. Data is plotted by specifying it should be drawn as vectors through the
draw_begin_vector (..) command, then the data is enumerated. As many data lines as
desired may be included, the end of the data being indicated by end_data; Completion of the
drawing should be indicated by draw_end(..). The drawing object may then be rendered on
the screen by first using new view(..) to create the view window, then calling
draw_on_view (..) (Or equivalently a variant of the view (. .) command) to do the rendering.
FlnaIIy, the drawmg object may be destroyed using draw destroy(..) to free up the
associated memory.

11.1 Drawing commands

There are two levels of drawing commands in DigiFlow. The main group, all of which start
with draw , provide the most flexible, versatile and powerful approach to creating graphs,
plots, etc. However, in some situations, a simpler interface is required. To this end a second
set of drawing functions is provided in DigiFlow, with names beginning plot , which
effectively act as a simplified interface to the araw_family. This section deals with the draw
family, whereas p1ot_ is dealt with in §11.3.

DigiFlow drawing commands may be subdivided into a number of groups.

Drawing initialisation is provided by draw start(..), which returns a handle for use in
all other drawing commands. Ultimately, after drawing aII elements, draw_end (. .) indicates
the drawing is ready for rendering, after which time draw_destroy (..) may be used to tidy
up the memory that was used. The rendering itself is achieved through one or more of
draw on view(..), draw _on file(..) and draw_on_emf (. Note that there is a variant
of the view (. .) function that is directly equwalent t0 draw_on Vlew(..

The axes for the drawing are set up using draw_set axes(, with the labels and tick
spacing specified with draw x_axis(..) and draw_y axis (Alternate axes, independent
of the coordinate system, may be specified Wlth draw_bottom axis(..),
draw_top_axis(..), draw_left axis(..) and draw_right axis(..). All of these
understand LaTeX-like text formatting with fully licensed copies of DigiFlow; see §11.4 for
details.

249 -

DigiFlow Plotting and drawing

Basic drawing primitives include draw move(..), draw line(..), draw lineto(..),
draw mark (..) and draw vector(..). The block data equivalents of these are
draw_begin line(..), draw_begin lineto(..), draw_begin mark(..) and
draw_begin_vector (..), each block being terminated by end_data. In some cases it may be

desirable to reduce the number of discrete points to be plotted. This can be controlled for
subsequent draw commands using draw_skip points(..).

Additional drawing primatives include draw arc(..), draw circle(..),
draw_rectangle(..) and draw_polygon(..).

The attributes applied to drawing primitives are set by draw line colour(..),
draw_fill colour(..), draw_no_ fill(..), draw_line width(..),
draw_line stye(..), draw _mark type(..) and draw_mark_size(..). Note that colours
can be specified in a number of ways for draw_llne_colour(..) and
draw_f£ill colour (..), including using colour names (e.g. "black" or "red"), specifying

the red, green and blue components, or as an index into the current colour scheme (set by
draw_colour_ scheme (. .)). Further colour names can also be added using add_colour (. .).

Text output is provrded through draw_text (..) in conjunction with draw_font (..) and
draw_text colour(..). In addition, draw_create key(..) and draw_key_entry (..)
provide a convenient method of producing a legend for a plot. All of these understand LaTeX-
like formatting commands. See 811.4 for further details.

It is possible to place an image on the drawing with draw_image (. .), setting the colour
scheme through draw colour scheme(..). An intensity scale for the image (or other
plotting feature) can be generated wrth draw_image_scale(..) for a horizontal scale, or
draw_image scale vertical(..) for one oriented vertrcally A scale can also be provided
for vector elements using draw_vector_ scale(..) and

draw_vector_ scale vertical(..).

Grouping of drawing objects may be achieved with draw group begin(..) and
draw_group _end (. ., while plot attributes may be localised with draw_save state(..)
and draw_restore_state (..). One drawing object may be embedded within another using
draw_embed drawing(..), and the clipping area may be customised with
draw_clip box(..).

Information about a specified drawing handle can be returned to the calling dfc code using
draw_get axes(..),draw_get font height(..) and draw_get status(..).

For a more complete list, and further details on these functions, refer to the dfc function
help facility within DigiFlow.

11.2 The DigiFlow Drawing format

The DigiFlow Drawing format (.dfd) represents a subset of the dfc dfc format that contains
a mixture of data representing DigiFlow results, and commands that allow DigiFlow to read
the data back in to form a plot. Typically, when DigiFlow produces a .dfd file, it will also
embed within it both time information, and documentation that records how the file was
created. This latter information is then available through the Edit: Properties dialog described
in §85.2.5.

A .dfd file contains four types of lines: comment lines, which start with a hash (#)
character; drawing command lines (all valid commands start with draw); data lines
containing numeric values, and macro lines. A macro line is a line that contains other dfc
code. Such lines should only be used to manipulate data for the drawing; they should have no
external or permanent effect on DigiFlow. Finally, a .dfd file can contain onIy a single drawing
object and must not attempt to display it (e.g. it must not call view(..)). A .dfd file may be

—250—

DigiFlow Plotting and drawing

specified at the Open Image dialog (84.1, 5.1.1) or at the Run Code dialog (85.1.2) prompt.
The converse, however, is not true.

DigiFlow can generate .dfd files in a number of ways. This process is automatic if the
output file name is given the .dfd extension (particularly suitable for plots such as those from
Analyse: Time Summarise, 85.6.1.6) or using the draw on file(..) function. To aid
interpretation by the user or user-written programs, .dfd files created by DigiFlow always
include keywords in the calls to the various drawing commands. Similarly, DigiFlow-created
.dfd files do not contain macro lines.

The following illustrates a trivial .dfd file:
hDraw := draw_start(512,512);
draw_set_ axes (hDraw,0,10,0,100);
draw_x axis(hDraw, "$x3");
draw_y axis(hDraw,"SyS");
draw_begin marks (hDraw) ;

0 0

1 1

2 4

3 9

5 25

8 64
end data;

draw_end (hDraw) ;

Note that if the .dfd file contains an error, then the part of the drawing preceding the error will
still be rendered, however no error message will be generated. The .dfd code is run in its own
(isolated) interpreter context and can not access variables in any dfc code that may be causing
the .dfd to be processed.

The output from a .dfd file, as with any drawing command, is rendered as an Enhanced
MetaFile which utilises vector graphics. It is therefore ideal for incorporation in manuscripts
and may readily be converted to PostScript. Figure 149 illustrates the output from the above

trivial .dfd file.
100.01

80.0+

60.0

40.0

20.0+

0.0 + T T T 1
0.0 2.0 4.0 6.0 8.0 10.0

X

Figure 149: Example of the output from the trivial .dfd file given above.

—251 -

DigiFlow Plotting and drawing

11.3 Simple plot

The Simple Plot family of routines, which have names beginning with plot_, provides a
simplified interface for producing basic graphs of data with a minimum of commands. In the
simplest case, a single command is all that is necessary to produce a line plot or a plot

showing individual data points. Consider the following example:

% := x_index (100)/10.0;

y 1= x*(x-2);

plot line (x,y);
The first two lines simply define a quadratic to be plotted, and the final line takes the data in
the x and v arrays and produces a line plot using the default colour and style. Further lines

may be plotted either by making the x and y arrays multidimensional, or by repeated calls to

the plot line(..) function. The following two code segments would produce the same
results:
x := x _index(100,2)/10.0;
yl:,0] = x[:,01*(x[:,0]1-2);
yl:,11 = x[:,1];
plot_line(x,y);
or
x := x index (100)/10.0;
y 1= xX*(x-2);
plot_ 11ne(x V)
y = X;

plot_line(x,y);

The limiting values for the axes are determined automatically as the extremes in the
specified data. However, these may be overridden by calling plot_axes(..) giving the
desired limiting values. Similarly, the default titles for the axes may be overrldden by
plot_titles(..).

If calling any of these plot functions directly from dfc code, then DigiFlow will
automatically display the plot by creating an appropriate view. Subsequent calls to Simple
Plot functions will cause that view to be updated. If, however, the call is made within one of
the menu options, then DigiFlow will display the plot only when appropriate and not update it
for each and every call.

Many of the Simple Plot functions (which are implemented dfc macros to the draw_ series
of functions) have optional parameters to provide greater flexibility. For example, the
plot line(..) function used above includes an optional style parameter that can be used to
select betvveen lines and points, and an optional colour parameter. Each of these may be
supplied either as a single value, or (when multiple sets of data are being plotted
simultaneously) as a list of values.

The Simple Plot family of functions includes:

plot(..) Plots a series of points.

plot line(..) Plots a line.

plot vectors(..) Produce a vector map.

plot_image(..) Add an image to a plot.

plot fit(..) Perform and plot a least squares fit.

plot_axes(..) Explicitly specify the limits for the axes.

plot_axis types(..) Specify the types of axis (linear or
logarithmic).

plot_titles(..) Specify the titles for the axes.

plot new(..) Start a new plot.

plot_view_handle(..) Return the handle for the view window
displaying the plot.

—252 -

DigiFlow Plotting and drawing

plot_drawing(..) Return a handle to the base plot. This does not
include information about the axes.
plot update view(..) Cause the view to be updated.

Most of the Simple Plot family of functions return a handle to the drawing that is being
displayed. This handle may be passed to any of the draw_ family of functions to provide more
advanced control over the appearance of the plot. The reason for this is related to the manner
in which the limits on the axes are automatically determined.

If you wish to add details to a plot using the draw_ family and wish this to be retained after
subsequent calls to the Simple Plot functions, then recover a handle to the base drawing using
plot drawing(..). (Alternatively, passing a null or the integer value zero as the plot handle
to many of the draw_ family will have the same effect.) However, adding any further details to
the plot using one of the simple plot functions will cause this additional information to be
discarded. Note the base drawing does not have the limits for its axes set and so should not be
viewed directly. After modifying the drawing using the handle obtained from

plot drawing(..) Yyou should either call another of the Simple Plot family of functions or
call plot_update view(..).
11.4 Text

With fully licensed copies of DigiFlow, text added to drawings and plots, whether via the
draw_... Or plot ... set of functions, understands simple LaTeX-like formatting
commands within the specified strings. For example, the string "pimensionless height
$\big (\frac{h}/{\alpha”2H 0}\big)$" if specified in draw text (..) would produce the
label

Dimensionless height (azhH)
0

Although DigiFlow does not understand the full range of LaTeX commands and macros, it
can interpret those most likely to be of use in figures and graphs. The file DigiFlow_Latex.dfc
defines the majority of macros, using a set of more primitive macros built in to DigiFlow’s
LaTeX-like interpreter. Consult the dfc documentation on draw_install latex macro(..)
for details of how to define macros. The LaTeX interpretation may be turned off using
draw_enable latex(..).

Text size may be changed within a given string using the LaTeX commands \tiny,
\small, \subscriptsize, \footnotesize, \normalsize, \large, \Large, \LARGE, \huge
and \xuce. However, it is normally more convenient to change the size using draw_font (. .)

when outputting text through draw text (..). On the other hand, draw font (..) does not
change the size of elements such as the labels and scale for the axes. The command
draw_set _base_scales(..) changes the base scale for all text, and can thus be used to

change the scale for axes, etc.
The LaTeX macros understood by DigiFlow are listed below.

11.5 LaTeX macros

B \: \Delta

~ \; \Downarrow
\! \Alpha \Epsilon
\# \BIG \Eta

\$ \BIG \ Gamma

% \Beta \HUGE

\ & \Big \HUGE
\2dots \Chi \Iota

—253 -

DigiFlow

\Kappa

\LARGE

\LARGE

\Lambda

\Large

\Large
\Leftarrow
\Leftrightarrow
\Mu

\Nu

\Rho
\Rightarrow
\S

\Sigma
\Tau
\Theta
\Uparrow
\Upsilon
\Varphi
\Varpi
\X1i

\Zeta

AN\

\/\

_

\aleph
\alpha
\angle
\approx
\backslash
\bar

\bar
\beta

\bf

\bf

\big

\big
\bigsizes
\bullet
\calc
\cdot
\chi
\circ
\copyright
\cos
\cosh
\currentx
\currenty
\dagger
\ddagger
\dddot
\dddot
\ddot
\ddot
\delta
\div

\dot

\dot
\dots

\downarrow
\ell
\emdash
\endash
\epsilon
\equals
\equalsspace
\equiv

\eta

\euro
\exists
\exp
\footnotesize
\footnotesize
\forall
\frac

\frac
\gamma

\ge

\geq

\gg

\gotox
\gotox0
\gotoxy
\gotoxy0
\gotoy
\gotoy0
\hat

\hat

\huge

\huge
\hyphen

\in

\infty

\int

\iota

\it

\it

\kappa
\lambda
\langle
\large
\large
\lbrace
\lbrack

\le

\left

\left
\leftarrow
\leftrightarrow
\leftszbracket
\leqg

\11

\1ln

\log

\mark
\mathbf
\mathbf
\mathit
\mathit
\mathrm
\mathrm
\mathsprime
\minus
\minusspace
\moveto

254 —

Plotting and drawing

\mp

\mu

\nabla

\ne

\neq
\normalsize
\normalsize
\notin

\nu

\nudge

\o

\omega

\oplus

\oslash

\otimes
\overchar
\overcharoffset
\partial
\phantom

\phi

\pi

\plus
\plusspace

\pm

\pop

\popcalc
\pounds

\prime

\print

\prod

\propto

\psi

\push

\pushcalc
\gquad

\quad
\querybottom
\queryglyphbottom
\queryglyphheight
\queryglyphleft
\queryglyphright
\queryglyphtop
\queryglyphwidth
\queryheight
\queryheightline
\queryheighttotal
\queryleft
\queryright
\querytop
\querywidth
\querywidthline
\rangle

\rbrace

\rbrack

\rho

\right

\right
\rightarrow
\rightszbracket
\rm

\rm

\rmove

\rule
\scriptsize
\scriptsize
\sigma

DigiFlow

\sim

\simeq

\sin

\sinh

\size
\sizeto
\small
\small

\sgrt

\sgrt
\subscript
\subscriptIt
\subset
\subseteq

\ sum
\superscript

\superscriptIt

\supset
\supseteq

\surd

\tan

\tanh

\tau
\textbf
\textbf
\textit
\textit
\textnormal
\textnormal
\textrm
\textrm
\therefore
\theta
\tilde
\tilde
\times
\tiny

\tiny

—255—

\underline
\underline
\uparrow
\upsilon
\varphi
\varpi
\vcentre
\wedge
\widthheight
\wp

\xi

\yen

\zeta

\ {

\ '}

\~

DigiFlow Image file formats

12 Image file formats

In this section, some of the key image file formats supported by DigiFlow are described.

Which image file is most appropriate depends in part on the intended use of the final
images, and in part on the amount of disk space available. For all but the simplest processing
operations, use of a ‘lossless’ integer image format (all industry standard formats are integer
based, most using 8-bit representations of the intensity) will introduce losses through the
quantisation of a floating point value into an integer domain. The .dfi format introduced in
DigiFlow (see 812.7) overcomes this problem by storing the images in a floating point format
(either 32 or 64 bit, although it can also store as 8 bit); the cost is a greatly increased storage
requirement.

In environments where DigiFlow is being used alongside Diglmage, use of the older
Diglmage formats (.pic and .mov) is recommended to facilitate exchange of information
between these two applications. Indeed, the Diglmage .mov format (now also known as .dfm)
still plays a central role as the initial format when capturing video from a supported camera
(see 85.1.5.2).

When DigiFlow is used in conjunction with other image processing packages, or with
painting programmes, then use of standard formats such as .bmp and .tif is recommended.
With vector drawing packages, then the enhanced metafile format (.emf) is normally the best
option, although the older style Windows metafile format (.wmf) may also be used. Note that a
Matlab macro is available for reading uncompressed .dfi and .dfd files into Matlab.

For incorporating images or graphics into documents, the best results may be achieved with
encapsulated PostScript (.eps), if your printer supports this. If you do not use a PostScript
printer, then use standard formats such as .bmp, .tif .jpg, .emf or .wmf.

12.1 Windows bitmap files (.bmp)

The .bmp format is central to the design of Windows, and offers a universal but inefficient
standard for simple images. There are a number of variants of .bmp files, and DigiFlow can
read the most common variants (including 24-bit colour files). DigiFlow will normally,
however, only create 8-bit uncompressed files.

See standard Windows documentation for further details.

12.2 TIFF files (.tif)

The Tagged Image Format File (TIFF) is one of the oldest commonly used image formats.
It offers great flexibility, but also great difficulty as there are so many variants.

DigiFlow can read a wide variety of TIFF files using the Freelmage library.

See standard TIFF documentation for further details.

12.3 GIF files (.gif)

For a long time, the .gif format was widely used, providing an effective lossless
compression for a broad variety of images. However, in the late 1990s, Compuserve, who
owned the intellectual property rights for the GIF format, decided to charge a royalty. Since
then, the use of GIF has declined sharply, and many applications that once supported GIF no
longer do so. More recently the original patent on the GIF format expired, and DigiFlow is
again able to offer comprehensive support for GIF.

12.4 Enhanced metafiles (.emf)

Enhanced metafiles (.emf) are a standard Windows format, intended primarily for vector
graphics, but also supporting bit mapped images. Most Windows-based packages support

— 256 —

DigiFlow Image file formats

embedding and/or linking with these files to provide graphical content. DigiFlow can both
read and write .emf files, although they should not normally be used as an image source.

12.5 Windows metafiles (.wmf)

Windows metafiles (.wmf) are a standard Windows format, dating from the days when
Windows was only 16 bits. This format is intended primarily for vector graphics, but also
supports bit mapped images. Most Windows-based packages support embedding and/or
linking with these files to provide graphical content. DigiFlow can both read and write .wmf
files, although they should not normally be used as an image source. In general the newer
Enhanced metafile format (.emf) should be used in preference (see §12.4).

12.6 Encapsulated PostScript (.eps)

Encapsulated PostScript is fundamentally an output format, intended for inclusion in
documents that will be printed using a PostScript printer. DigiFlow does not provide the
ability to read data from .eps files, although may be able to use GhostScript to convert .eps
into a format it can read (see §2.2.2). Encapsulated PostScript typically provides the best
quality output for a printed document and may be imported readily into standard word
processors and text formatting languages such as LaTeX.

12.7 DigiFlow floating point image format (.dfi)

The purpose of this format is to store image and related data without significant loss of
precision. Indeed for most elements of the format, there are both four-byte and eight-byte
floating point representations as an option, in recognition that DigiFlow internally uses an
eight byte floating point representation, but often a four byte representation is sufficient and is
more compact. For compactness, a single-byte image format is also available.

A tagged format is used to distinguish the different data objects within the file, and the four
and eight byte variants simply have different tags. However, for the convenience of the user,
DigiFlow uses a single extension, .dfi, for all of these, with the Options button for the output
stream allowing selection of the desired variant (32 or 64 bits). Additionally, the .dfi format
can store the image data in a single byte integer (8 bit) format.

Overall, the structure of the .dfi files may represented as

header

tag

object data
tag

object data

Each of these elements is described in turn below.

12.7.1 Header
The file header has been kept as simple as possible while still conveying the essential data.

Field Data type Description

idFormat Character (32) Contains the text “Tagged
floating point image
file” (excluding quotes).
This is used by DigiFlow to
identify the file type.

Version Integer (4) Version number. Here must
equal zero.

— 257 —

DigiFlow Image file formats

12.7.2 Tag
Each data object is preceded by a tag that indicates the type of object and the size of the

object.

Field Data type Description

DataType Integer (4) The type of data contained in
the ext object.

nBytes Integer (4) The number of bytes of data
used to represent the object.

Valid tags and the associated data objects are described in the following subsections. Note that
the quoted value is in hexadecimal (base 16), as indicated by the hash (#) in front of the
DataType value.

12.7.3 8 bit image (DataType = #1001)
This data object contains an image using an eight-bit (single byte) integer representation.
Note nBytes = 8 + nx*ny.

Field Data type Description

nx Integer (4) The width of the image, in
pixels.

ny Integer (4) The height of the image, in
pixels.

c(0:nx-1, 0:ny-1) Integer (1) The pixel intensities. The

first index is across from left
to right, and the second is up
from bottom to top. Storage
in the file is ordered

c(0,0), ¢(1,0),...

12.7.4 8 bit multi-plane image (DataType = #11001)
This data object contains a multi-plane image using an eight-bit (single-byte) integer
representation. Note nBytes = 12 + nx*ny*nz.

Field Data type Description

nx Integer (4) The width of the image, in
pixels.

ny Integer (4) The height of the image, in
pixels.

nz Integer (4) The number of pixel planes.

¢(0:nx-1, 0:ny—1,0:nz-1) Integer (1) The pixel intensities. The

first index is across from left
to right, and the second is up
from bottom to top. Storage
in the file is ordered
¢(0,0,0), r(1,0,0),...

12.7.5 Compressed 8 bit image (DataType = #12001)

This data object contains an image using an eight-bit (single byte) integer representation
compressed using ZLib. Note that nBytes varies depending on the efficiency of the
compression, and that nine different levels of compression are available through the output
options setting (see 84.4).

— 258 —

DigiFlow Image file formats

Field Data type Description

nx Integer (4) The width of the image, in
pixels.

ny Integer (4) The height of the image, in
pixels.

nz Integer (4) The number of image planes.

szCompressed Integer (4) The number of bytes of
compressed data.

c(0:szCompressed-1) Integer (1) The compressed pixel data.

When reading an image, this
should be fed to the ZLib
function uncompress {0
recover the original image.
When writing an image, the
ZLib function compress (..)
Ol compress2(..) should be
used.

12.7.6 32 bit image (DataType = #1004)
This data object contains an image using a four-byte floating point representation. Note
nBytes = 8 + 4*nx*ny.

Field Data type Description

nx Integer (4) The width of the image, in
pixels.

ny Integer (4) The height of the image, in
pixels.

r(0:nx—1, 0:ny—1) Real (4) The pixel intensities. The

first index is across from left
to right, and the second is up
from bottom to top. Storage
in the file is ordered

r(0,0), r(1,0),...

12.7.7 32 bit multi-plane image (DataType = #11004)
This data object contains a multi-plane image using a four-byte floating point
representation. Note nBytes = 12 + 4*nx*ny*nz.

Field Data type Description

nx Integer (4) The width of the image, in
pixels.

ny Integer (4) The height of the image, in
pixels.

nz Integer (4) The number of pixel planes.

r(0:nx-1, 0:ny—1,0:nz-1) Real (4) The pixel intensities. The

first index is across from left
to right, and the second is up
from bottom to top. Storage
in the file is ordered

r(0,0,0), r(1,0,0),...

— 259 —

DigiFlow Image file formats

12.7.8 Compressed 32 bit image (DataType = #12004)

This data object contains an image using an four-byte floating point representation,
compressed using ZLib. Note that nBytes varies depending on the efficiency of the
compression, and that nine different levels of compression are available through the output
options setting (see §4.4).

Field Data type Description

nx Integer (4) The width of the image, in
pixels.

ny Integer (4) The height of the image, in
pixels.

nz Integer (4) The number of image planes.

szCompressed Integer (4) The number of bytes of
compressed data.

¢(0:szCompressed-1) Integer (1) The compressed pixel data.

When reading an image, this
should be fed to the ZLib
function uncompress (..) to
recover the original four-byte
floating point image. When
writing an image, the ZLib

function compress(..) or
compress2 (..) should be
used.

12.7.9 64 bit image (DataType = #1008)
This data object contains an image using an eight-byte floating point representation. Note
nBytes = 8 + 8*nx*ny.

Field Data type Description

nx Integer (4) The width of the image, in
pixels.

ny Integer (4) The height of the image, in
pixels.

r(0:nx—1, 0:ny—1) Real (8) The pixel intensities. The

first index is across from left
to right, and the second is up
from bottom to top. Storage
in the file is ordered

r(0,0), r(1,0),...

12.7.10 64 bit multi-plane image (DataType = #11008)
This data object contains a multi-plane image using a eight-byte floating point
representation. Note nBytes = 12 + 8*nx*ny*nz.

Field Data type Description

nx Integer (4) The width of the image, in
pixels.

ny Integer (4) The height of the image, in
pixels.

nz Integer (4) The number of pixel planes.

— 260 —

DigiFlow Image file formats

r(0:nx—1, 0:ny—1,0:nz-1) Real (8) The pixel intensities. The
first index is across from left
to right, and the second is up
from bottom to top. Storage
in the file is ordered

r(0,0,0), r(1,0,0),...

12.7.11 Compressed 64 bit image (DataType = #12008)

This data object contains an image using an eight-byte floating point representation,
compressed using ZLib. Note that nBytes varies depending on the efficiency of the
compression, and that nine different levels of compression are available through the output
options setting (see §4.4).

Field Data type Description

nx Integer (4) The width of the image, in
pixels.

ny Integer (4) The height of the image, in
pixels.

nz Integer (4) The number of image planes.

szCompressed Integer (4) The number of bytes of
compressed data.

¢(0:szCompressed-1) Integer (1) The compressed pixel data.

When reading an image, this
should be fed to the ZLib
function uncompress to
recover the original eight-
byte floating point image.
When writing an image, the
ZLib function compress (. .)
Or compress2 (. .) should be
used.

12.7.12 32 bit range (DataType = #1014)
This data object specifies the range of image values that can be displayed. Note nBytes = 8.
This tag should be located after the image to which it applies.

Field Data type Description

rBlack Real (4) The intensity (value of r) that
will be displayed as “black”.

rWhiteo Real (4) The intensity (value of r) that
will be displayed as “white”.

12.7.13 64 bit range (DataType = #1018)
This data object specifies the range of image values that can be displayed. Note
nBytes = 16. This tag should be located after the image to which it applies.

Field Data type Description

rBlack Real (8) The intensity (value of r) that
will be displayed as “black™.

rWhiteo Real (8) The intensity (value of r) that
will be displayed as “white”.

—261 -

DigiFlow Image file formats

12.7.14 Rescale image (DataType = #1100)
This data object requests that the image is rescaled after being read in. Typically this is
used to render a low resolution image to a given size.

Field Data type Description

nxWant Integer (4) The desired width after
rescaling. Typically this is the
width of the original image
prior to resampling and
saving.

nyWant Integer (4) The desired height after
rescaling. Typically this is the
height of the original image
prior to resampling and
saving.

method Integer (4) Method of rescaling image:
Constant
Bilinear
Bicubic
Natural spline
Cubic b-spline
Quintic b-

gk~ wdNDEF O

spline.

12.7.15 Rescale image rectangle (DataType = #1101)

This data object requests that the image is rescaled after being read in. Typically this is
used to render a low resolution image to a given size. In contrast with DataType #1100, this
data object allows the input image to coincide with a particular rectangle within the resultant
image. This feature is designed primarily to allow PIV velocity fields to be rescaled back to
the original size and location if saved in a compact format with vectors only at the
interrogation points.

Field Data type Description

nxWant Integer (4) The desired width after
rescaling. Typically this is the
width of the original image
prior to resampling and
saving.

nyWant Integer (4) The desired height after
rescaling. Typically this is the
height of the original image
prior to resampling and
saving.

method Integer (4) Method of rescaling image:
Constant
Bilinear
Bicubic
Natural spline
Cubic b-spline
Quintic b-

g~ wpNDE—E O

spline.

— 262 —

DigiFlow

Image file formats

useRectangle

Integer (4)

Indicates if Rectangle is to be
used. If zero (false), then the
net effect of this tag is the
same as for #1100.

Rectangle.xMin

Integer (4)

The left side of the rescaled
source image in the output
image.

Rectangle.yMin

Integer (4)

The bottom of the rescaled
source image in the output
image.

Rectangle.xMax

Integer (4)

The right side of the rescaled
source image in the output
image.

Rectangle.yMax

Integer (4)

The top of the rescaled source
image in the output image.

12.7.16 Colour scheme (DataType = #2000)

This data object contains the colour scheme that the image should be displayed with by
default. Note that nBytes = 768. This tag should be located after the image to which it applies.

Field

Data type

Description

red(0:255)

Integer (1)

Defines the red component of
the colour scheme to be used
to display the image.

green(0:255) Integer (1) Defines the green component
of the colour scheme to be
used to display the image.

blue(0:255) Integer (1) Defines the blue component

of the colour scheme to be
used to display the image.

12.7.17 Colour scheme name (DataType = #2001)

This data object contains the name of a colour scheme. If the name is recognised by
DigiFlow, then the corresponding colour scheme will be used. Note that nBytes is 64.

Field

Data type

Description

name

Character (64)

The name of the colour
scheme to be used.

12.7.18 Colour scheme name variable (DataType = #2002)

This data object contains the name of a colour scheme.
DigiFlow, then the corresponding colour scheme will be used.

length of the name.

If the name is recognised by
Note that nBytes is 4 plus the

Field Data type Description

iLen Integer (4) The length of the name
string.

name Character (ilLen) The name of the colour

scheme to be used.

12.7.19 Description (DataType = #3000)
This data object contains a 512 character description. Note nBytes = 512.

— 263 —

DigiFlow Image file formats
Field Data type Description
Descr Character (512) A description.

12.7.20 User comments (DataType = #3001)
This object contains user comments about the process that created the file.

Field Data type Description

nBytes Integer (4) The length of the description
in bytes (characters).

Descr Character (nBytes) The description.

12.7.21 Creating process (DataType = #3002)
This object contains information about the process that created the file. Typically this is a
copy of the dialog responses for the controlling process.

Field Data type Description

nBytes Integer (4) The length of the description
in bytes (characters).

Descr Character (nBytes) The description.

12.7.22 Creator details (DataType = #3003)
Records details of the creator. Note, nBytes = 304.

Field Data type Description

DigiFlow Character (32) The DigiFlow version.

buildDate Character (16) The build date.

licenceType Character (16) The type of licence.

nameUser Character (32) The name of the user.

nameComputer Character (32) The name of the computer.

nameDomain Character (32) The name of the Windows
domain.

guidUser Character (32) The user GUID.

macAddress(0:3) 4 lots of Character (12) | Mac address of creating
computer.

ipAddress(0:3) 4 lots of Character (16) | |p address of creating
computer.

12.7.23 Image time (DataType = #3018)

This data object contains time information. Note nBytes = 28.

Field Data type Description

iFrame Integer (4) Ordinal position of the frame.

Reserved Integer (4) Reserved.

Time Real (8) The time for the image.

tStep Real (8) The size of the time steps in
the sequence the image
belongs to.

tFirst Real (8) The time for the first frame in

the sequence (i.e. iFrame = 0)

12.7.24 Image coordinates (DataType = #4008)

This data object gives information on the coordinate system if this is not a standard one.

264 -

DigiFlow Image file formats

Field Data type Description

Kind Integer (4) The type of coorindates
stored here:
0 None
1 Approximation to
world
2 Custom

xWorldPerPixel Real (8) Number of world units per
pixel.

yWorldPerPixel Real (8) Number of world units per
pixel.

xOriginWorld Real (8) The world origin of the
image.

yOriginWorld Real (8) The world origin of the
image.

xUnits Character (16) The name of the world units.

yUnits Character (16) The name of the world units.

OriginalName

Character (64)

The name of the coordinate
system on which this was
based. If none, then

“ (none) ”.

12.7.25 Image plane details (DataType = #4108)

This data object gives details of the contents of individual image planes when there is more

than one.

Field

Data type

Description

nPlanes

Integer (4)

The number of planes of data
contained in this field.

Contains0

Integer (4)

Indicates the type of data in
image plane O:
#000 None

#001 Greyscale
#002 Red

#003 Green

#004 Blue

#101 xCoordinate
#102 yCoordinate
#103 zCoordinate
#201 xVector (u)
#202 yVector (v)
#203 zVector (w)

Descr0O

Character (32)

Text description or name for
bit plane.

ParamAO

Real

First parameter

ParamBO

Real

Second parameter

ParamCO0

Real

Third parameter

ParamDO

Real

Fourth parameter

Containsl

As for Contains0, but for

DigiFlow Image file formats

second image plane.

Descrl Character (32) As for Descr0, but for second
image plane.

12.8 DigiFlow Particle tracking format

The format used for DigiFlow .dft particle tracking files shares some elements in common
with .dfi files. Both use the same general tagged structure. However, while .dfi files are aimed
primarily at containing rasterised images, .dft files are designed to store information about
particles located in an image, ant the relationship between these particles and the neighbouring
Images in a time sequence.

Further information on the format of these files is available on request.

12.9 DigiFlow pixel data format (.dfp)

The .dfp format is a simple plain text format intended for direct use by other programs, or
to be imported into spreadsheets, etc. The first line contains the width and height of the image
(in pixels). Optionally, the number of data planes can also be specified Subsequent lines each
contain the pixel indices (i,j) and a floating point representation of the intensity. For a simple

image, with only a single plane of data, the format is therefore
nx ny
i j pix ij
i pix ij
With more than one plane of data, the format is
nx ny nz
i j pix ij0 pix i31 .. pix ijk
i j pix ij0 pix i31 .. pix ijk
This choice of format is motivated by providing a compact, readable output for velocity fields,

rgb full-colour images, etc. For example, with an image containing both velocity and vorticity,

the output format would be
nx ny 3
i 3 u v vort
i 3 u v vort

while for a full colour image it would be
nx ny 3
i j red green blue
i j red green blue

When DigiFlow creates a .dfp file, it contains all the image data, ordered from left to right,
then from bottom to top. However, DigiFlow does not care on the order of the pixel data when
reading a .dfp file, and the file need not contain all valid combinations of the pixel indices.
Note that the first index gives the column number (from 0 at the left to with—1 at the right),
while the second determines the row number (from 0 at the bottom, to height—1 at the top).

12.10 DigiFlow drawing format (.dfd)

The DigiFlow drawing format (.dfp files) can store image as well as vector graphic data.
These files may be read as well as written, although they are not recommended for simple
raster images. For further information, refer to the information on the format of these files in
811.2.

— 266 —

DigiFlow Image file formats

12.11 DigiFlow archive format (.dfa)

The DigiFlow archive file format (.dfa files) do not themselves store images. Rather, they
provide a container for information describing the contents of a sequence of image files, and
provide a way of specifying the sequence.

If a .dfa file is generated for a sequence of images image000.png, image001.png,
image732.png, then the name of the .dfa file will be image###.png.dfa. Note that this name
comprises the manner in which you would specify the sequence to DigiFlow (image###.png)
but with the .dfa appended.

The archive file itself contains dfc code specifying variables that describe the image
sequence. For example, generating the above image###.png sequence using File: Edit Stream

would produce

image###.png.dfa

Begin

DigiFlow Archive File for: image###.png

File := "image###.png";

SelectorKind := 3;

IndexPtr := 5;

nDigits := 2;

FileType := 21;

nx := 512;

ny 512;

nz := 1;

Time.LocateWith := 1;

Time.fFirst := 0;

Time.fLast := 732;

Time.tFirst := 0.0;

Time.tLast 361.00000000000;

Time.tStep := 0.50000000000000;

Comments.UserComments := "No user comments";

Comments.CreatingProcess := {dlgFile EditStream.DirectCopy :=
true;

dlgFile EditStream.DisplayOnExit := true;

dlgFile EditStream.Input := "JPRD45.MOV";

dlgFile EditStream.Input Options.Display := true;

dlgFile EditStream.Input Options.UseArchive := true;

dlgFile EditStream.Input Region.Kind := "AIl";

dlgFile EditStream.Output := "junk##.png";

dlgFile EditStream.Output Options.DeleteExisting := true;

dlgFile EditStream.Output Options.Compression := 0;

dlgFile EditStream.Output Options.TrueColour := false;

dlgFile EditStream.Output Options.Colour := " (default)";

dlgFile EditStream.Output Options.Display := true;

dlgFile EditStream.Output Options.UseArchive := true;

dlgFile EditStream.ReviewCapture := false;

dlgFile EditStream.process := "File EditStream";

process dlgFile EditStream;
i

Creator.DigiFlow := "DigiFlow v3.4.0 (ivf)";
Creator.Licence := "commercial";
Creator.UserName := "sdl03";
Creator.ComputerName := "WETA";
Creator.UserDomain := "WETA";
Creator.UserNumber := "{.}";

Creator.MacAddress0 := "..";

woon

Creator.MacAddressl := "..";

wn

Creator.MacAddress?2 := ;
Creator.MacAddress3 := "";
Creator.IPAddressO "127.0.0.1";
Creator.IPAddressl := "192.168.1.2";

Creator.IPAddress?2 "192.168.56.1";

— 267 —

DigiFlow

Creator.IPAddress3 := "";

Coord.Kind := 0;
Coord.
Coord.
Coord.
Coord.
Coord.
Coord.

Coord.

xUnits
yUnits

xWorldPerPixel
yWorldPerPixel
xOriginWorld :
yOriginWorld :

e nmn,
. 4

OriginalName
Appearance.rBlack :
Appearance.rWhite :
Appearance.LUT.Red:=[

oo

e nmn,
. 4

Appearance.LUT.Green:=]|

Appearance.LUT.Blue:=[
Appearance.ColourScheme.Name
Appearance.DisplayAs
Appearance.TopDown

Resample.Kind :=

0;

oNeoNeNe]

Ne Ne o e

e NN,
4

0.0;

1.00000000000000;

1.0000 1.00007;
0.9608 0.98047;
0.9608 0.98047;
= "(default)";

0.

0.0000 ..

oNe)
~e N

0000 ..
0.0000 ..

= 1;
:=false;

Tue May 29 21:32:57 2012

End
junk##.png.dfa

Image file formats

Note that some of the entries in the .dfa file above have been shortened or removed (and
replaced by an elpsis) to aid clarity. The details stored here include what can be determined

using read_image_details (..

)

If you attempt to open a .dfa file using a function intended to read an image, then the
corresponding image or image stream will be opened (as specified in the ri1e variable), but
key details will be taken from the .dfa file.

12.12 Diglmage raw format (.pic)
This format, developed originally for Diglmage, is the simplest supported by DigiFlow. It

may be both read and written.

Data type

Description

Field
ni

Integer

(2)

Number of rows in the image.

nj

Integer

(2)

Number of columns in the
image.

iPixel(0:nj—1,0:ni-1)

Byte (1)

Array of un-signed image
intensities, ordered across
(first index) then down
(second index) from the top
left.

IOLUT

Integer

optional

The Diglmage output look up
table giving the colour
scheme.

Red(0:255)

Integer

optional

Defines the red component of
the colour scheme to be used
to display the image. This
entry is optional if and only if
nChannels = 1.

Green(0:255)

Integer

optional

Defines the green component
of the colour scheme to be
used to display the image.
This entry is optional if and
only if nChannels = 1.

Blue(0:255)

Integer

optional

Defines the blue component

— 268 —

DigiFlow

Image file formats

of the colour scheme to be
used to display the image.
This entry is optional if and
only if nChannels = 1.

iw0 Integer (2), optional The location of the top of the
window saved in the file.

iwl Integer (2), optional The location of the bottom of
the window saved in the file.

jwo Integer (2), optional The location of the left of the
window saved in the file.

jwi Integer (2), optional The location of the right of

the window saved in the file.

12.13 Diglmage compressed format (.pic)

The compressed version of the Diglmage file format was developed to allow efficient
compression using a hybrid adaptive run-length encoding scheme based on individual bit
planes. The degree of compression achieved depends on the structure of the image. Although
DigiFlow is able to read these files, it does not provide a user interface to allow them to be

created.

Note that the image is stored top-down.

Bytes

Data type

Description

0-1

Integer

(2)

Always zero to distinguish from uncompressed format.

2-3

Integer

(2)

—nBitPlanes, indicating the number of bit planes stored in the
file.

45

Integer

(2)

The height of the image in pixels.

6-7

Integer

(2)

The width of the image in pixels.

5

Integer

(1)

Indicates the type of encoding used in the following bytes:
Bit7 If set, then run-length encode, otherwise bit-image
encoding.

Bit6 If bit7=1, then bit6 set indicates the length of the run
is given by bits 0-4 in conjunction with the following byte. If
bit6 is clear, then the run length is given only by bits 0-4.

If bit7=0, then bit6 set indicates the number of BYTES
specified by a bit-image is given by bits 0-4 and the following
byte; if clear and bit5 is set, then only bits 0-4 are used to give
the number of BYTES in the bit-image. However, if bit5 is
clear, then bits 0-4 are themselves a bit-image.
bit5 If bit7=1, then this bit indicates whether the
corresponding bit plane is set or clear in the run.

If bit7=0, then this bit indicates whether bits 0-4 are
used as (part of) the length of the bit-image, or the bit-image
itself (clear).
bits0-4 Used in giving the length of the run length or bit-
image, or as part of the bit-image (bits 5,6&7 all clear).

Integer

(1)

If bit6 of byte4 is set, then this byte is used in specifying the
length of the run or bit-image.

If bit 6 of byte 4 is clear, then this is the first byte of the
encoding segment (if previous byte was run-length), or part of

— 269 —

DigiFlow Image file formats
the bit-image.

7 This could be part of the bit-image specified by bytes 5 & 6,
or a new key code similar to 5, etc.
Repeat run-length and/or bit-image encoded segments, bit
plane by bit plane, until all image data has been processed.

Integer (2) | jOLUT Optional specification of the logical output look up

table number within Diglmage (not used by DigiFlow).

Red(0:255) Integer (1) | Defines the red component of the colour scheme to be used to
display the image.

Green(0:255) | Integer (1) | Defines the green component of the colour scheme to be used
to display the image.

Blue(0:255) | Integer (1) | Defines the blue component of the colour scheme to be used
to display the image.

iw0 Integer (2) | The top of the source window saved in this file.

iwl Integer (2) | The bottom of the source window saved in this file.

jwo Integer (2) | The left of the source window saved in this file.

jwi Integer (2) | The right of the source window saved in this file.

12.14 Diglmage movie format(.mov or .dfm)

The Diglmage movie format is of central importance for sharing image sequences between
DigiFlow and the earlier Diglmage. It also provides a computationally efficient medium for
storing sequences of 8-bit images of any resolution. The images are stored top-down, and the
file header contains an index of their location within the file.

C= DigImage Movie Genearal Header Information

C= Size Name Description =
C= 8 FileOwner Contains the text "DigImage" =
C= 8 Version Contains the DigImage version =
C= string. =
C= 4 iPtrHistoryHeader Points to the location of the =
C= history header block. =
C= 16 FileType The type of file. Terminated by =
C= <CR>. =
C= 220 Comments Comments, terminated by <FEF>. =
C= Not mapped on to iGeneralHeader. =
C= History Header Information =
C= 4 iPtrPrivateHeader Points to the location of the =
C= header for this file type =
C= 4 iDummy Unused. =
C= 8 CreatedBy The program which created the =
C= file. Normally "DigImage". =
C= 8 Version The version of the program which =
C= created the file. =
C= 16 CreatedUser The name of the user who created =
C= the file =
C= 64 CreatedName The original name of the file =
C= 8 CreatedDate The date the file was created =
C= 8 CreatedTime The time at which the file was =
C= created =
C= 16 ModifiedUser The name of the user who =
C= modified the file =
C= 64 ModifiedName The name of the file when it was =
C= last modified =
C= 8 ModifiedDate The date the file was last =
C= modified =
C= 8 ModifiedTime The time the file was last =
C= modified =
C= 40 UnUsed Additonal information. Not =
C= currently assigned. =
C= Movie Header Information =
C= 2 iFormatType Specifies the format of the =
C= movie: =

270

DigiFlow Image file formats

= 0 Raw bit image =
= 1 Aligned raw bit image.
= The movie frames are =
= aligned with nPixels/8
= byte boundaries, where
= nPixels is the total =
= number of pixels in the
= movie window.

= 2 iFrameRate Number of frames per second in =
= original input =
= 4 iSampleSpacing The nominal spacing (in frames) =
= between images in the movie. =
= 4 iMovieDuration The expected duration of the =
= movie (in original frames) =
= 4 iPtrFrameTable Points to the start of the table =
= containing the frame data =
= 4 nMovieFrames The number of movie frames in =
= the frame table. =
= 2 iw0 The first row stored for the =
= image =
= 2 iwl The last row stored for the image=
= 2 Jw0 The first column stored for the =
= image =
= 2 Jwl The last column stored for the =
= image =
= 2 idi The step between sampled rows =
= 2 3dj The step between sampled columns =
= 4 nSize The size of the image (iwl- =
= iw0+1) * (Jwl-Jw0+1) =
= 4 AspectRatio The aspect ratio of the pixels =
= in the image. =
= 2 nBits The number of bit planes stored =
= 256 10LUTRed Red component of OLUT =
= 256 10LUTGreen Green component of OLUT =
= 256 10LUTBlue Blue component of OLUT =
= 4 nFrameTablelLength The number of bytes in the =
= frame table. =
= 2 RecordAtFieldSpacing Indicates if the recording =

= sample spacing is determined by
= iSampleSpacing or

= dtSampleSpacing (if different).
= 4 dtSampleSpacing Nominal sample spacing (in

= seconds). This is used in

= priority to iSampleSpacing if

= RecordAtFieldSpacing is .FALSE.
= 204 UnUsed Additional information, not

= currently assigned.

C= Frame Table Information

= 4 iFrameNumber0 The first movie frame number =

= 2 iLength The number of frames required =

= to process the movie during =

= acquisition. =

= 2 iDummy Unused =

= OBSOLETE 4 iPtrFramel Points to the first frame. =
= OBSOLETE 4 iPtrDatal Points to the additional data =
= OBSOLETE for the frame (0 if no =
= OBSOLETE additional data). =
= 8 iPtrFrame0 Points to the first frame.

= 4 iFrameNumberl The second movie frame number =

= OBSOLETE 4 iPtrFramel Points to the second frame. =
= OBSOLETE 4 iPtrDatal Points to the additional data =
= OBSOLETE for the frame (0 if no =
= OBSOLETE additional data). =
= 8 iPtrFramel Points to the second frame.

= Note: DigImage limits the size of the frametable to 2048
= entries. In DigiFlow, this is extended to 32768 entries.
C= DigImage will only be able to access the first 2048 entries. =

—271 -

DigiFlow Configuration files

13 Configuration files

As noted in 82, DigiFlow access a number of start-up files in the program directory each
time it is started. The list below illustrates their use and the order in which they are called.
Note that there is information about which file is being executed that is displayed in the status
bar at the bottom of DigiFlow as it is started.

File Usage
DigiFlow_GlobalData.dfc Controls setup of root (global) interpreter
DigiFlow_dfcInstall.dfc Installs dfc functions located in DLLs rather than
kernel
DigiFlow_Constants.dfc Defines constants used by dfc code
DigiFlow_CheckLicence.dfc Controls the checking of the licence for DigiFlow
DigiFlow_Licence.dfc Contains the DigiFlow licence. This file differs for
each installation
DigiFlow_LocalData.dfc Local customised data
DigiFlow_Plotting.dfc Various plotting macros
DigiFlow_SimplePlot.dfc The simple plot (p10t) functions
DigiFlow_Utilities.dfc Utility macros
DigiFlow_Cameras.dfc Details of supported cameras
DigiFlow_Dialogs.dfs Status file restoring default dialog responses from
last time DigiFlow was run in directory
DigiFlow_Configuration.dfc Controls configuration of DigiFlow
DigiFlow_Update.dfc Controls the updating of DigiFlow
DigiFlow_7Z_Install.dfr Responses for extracting DigiFlow from archive
DigiFlow_Registry.dfc Handles DigiFlow registry settings
DigiFlow_dfcCommands.dfc Contains main dfc documentation
DigiFlow_Changes.dfr Contains information about recent changes
DigiFlow_General.dfr Contains dfc information for processes
DigiFlow_Latex.dfc Defines LaTeX-like macros
DigiFlow_Status.dfs Status file restoring settings from last time

DigiFlow was run in directory

Subsequently, the following files may also be used, depending on the processing selected.

DigiFlow_Phrases.dfr

DigiFlow_Recipes.dfc

DigiFlow_SlaveProcess.dfc

Most of these files do not require modification by or knowledge of the user. The following

sections discuss those configuration files that might require user customisation, or at least
those that migh require a user knowledge of their structure. Those files were highlighted in red
in the table above.

13.1 DigiFlow_L.icence.dfc

The DigiFlow_Licence.dfc file, located in the DigiFlow installation directory, contains the
licence for DigiFlow on one or more machines. This file is read and processed when DigiFlow
starts. If the file cannot be found, then DigiFlow will prompt the user to create a
LicenceRequest.dat file. This file should be sent to Dalziel Research Partners in order that they
can generated a licence for your machine.

13.2 DigiFlow_LocalData.dfc

The standard distribution of DigiFlow does not include nor create a DigiFlow_LocalData.dfc
file. Rather, this file is intended to contain user customisations that are not overwritten by

_272-

DigiFlow

Configuration files

updating DigiFlow. (Note that a Site Licence server installation of DigiFlow will create a
DigiFlow_LocalData.dfc on the server.) If the file is not detected, then default values will be used.

Similarly,

default wvalues will

be used

if a specific value

is not specified in

DigiFlow_LocalData.dfc. The file may contain some or all of the following settings:

Variable
VideoCapture.UseCache

VideoCapture.CacheFile

VideoCapture.CameraBuff
er

DigiFlowServer.Server

DigiFlowServer.Path

DigiFlowServer.InstallD
ate

DigiFlowServer
.InstallTime

DigiFlowServer
.InstalledBy

DigiFlowServer
.UpdateDirectory

DigiFlow.Update.Type

DigiFlow.Options.Bayer
.rGain

DigiFlow.Options.Bayer
.gGain

DigiFlow.Options.Bayer

Type Default
Logical true
String "V:\Cache\Capt
ureVideo.dfm"
String "(default)"
String The server
DigiFlow was
installed from.
String \\Server\DigiFlow$
String
String
String
String \\Server\DigiFlow$
String Dependent on
licence type:
"manual"
Free
" ftp "
Commercial
"site"
Site
Real 1.0
Real 1.5
Real 1.0

- 273 -

Comments

Causes DigiFlow to use a fixed
cache file and undergo a
review process each time video
sequences are captured.

The default file and path to be
used for video capture.

Selects the buffering
mechanism for the cache file.
One of " (default) ™",
"buffer", "nobuffer",
"writethrough".Changmg
this may improve the
performance when writing the
capture file on some systems.
The server DigiFlow was
installed from.

The path (network share)
where the server may be found.
The date DigiFlow was
installed on the server.

The time DigiFlow was
installed on the server.

The user-id of the person
installing DigiFlow on the
server.

The path DigiFlow is to check
for updates.

Determines the location from
which updates will be sought.
Must be "manual for free
licences.

The gain applied to the red
channel when a Bayer filter is
used to determine a colour
image from a single plane.
The gain applied to the green
channel when a Bayer filter is
used to determine a colour
image from a single plane.
The gain applied to the blue

file://///Server/DigiFlow$

DigiFlow

.bGain

DigiFlow.Options.Bayer
.Roll

DigiFlow.Options.dfi
.useCompression

DigiFlow.Options
.Display.dpi

DigiFlow.Options
.Display.Scaling

Integer 1
Logical true
Integer 2°
Real 1.0

13.3 DigiFlow_Cameras.dfc

DigiFlow requires details of the cameras it is going to use as in many cases there is no
mechanism for determining key information via the camera interface. These details are
supplied in the DigiFlow_Cameras.dfc file. This file sets the camerainfo compound variable,
that is stored in the global interpreter context, and specifies both hardware details of the
cameras that may be connected, and preferences for their use. The table below summarises the
entries, each of which has the form cameraTnfo.Xxx.yyy, where xxx identifies the camera,
and yyy the specific configuration item. The camera identifier is related to the name of its
BitFlow framegrabber configuration file. It need not be the whole of the file name, but it does
need to be unique within DigiFlow_Cameras.dfc and follow normal d7c syntax (e.g. it can not
contain a hyphen character as this would be interpreted as minus).

Variable
CameraInfo.XXX.CameraFile

CameraInfo.XXX.CameraName

CameraInfo.XXX.nChannels

CameraInfo.XXX.fpsMin

CameraInfo.XXX. fpsMax

CameraInfo.XXX.CanChangeE

CameraInfo.XXX.fpsDisplay

xposure

— 274 -

Configuration files

channel when a Bayer filter is
used to determine a colour
image from a single plane.
Controls the phase of the
colour information within the
single plane of pixels.
Indicates that compression
should be used by default for
dfi files.

Specifies the assumed display
resolution. This overrides the
/dpi:n command line switch.
Specifies the scaling applied to
certain visual elements of the

user interface. This overrides
the scaling implicitly
calculated from the /dpi:n
command line switch.

Type
String

String

Integer

Real
Real

Logical

Real

Comments

Specifies the full name of the
BitFlow configuration file.

A descriptive name for the
camera.

The number of taps or channels
feeding data from the camera to
framegrabber.

The lowest frame rate supported
by the camera.

The highest frame rate supported
by the camera.

Indicates that the exposure can
be changed independently of the
frame rate.

The highest frame rate that
should be used for displaying the
output on screen. Typically this

DigiFlow

CameraInfo.XXX. fpsKind

CameraInfo.XXX.Untangle

CameraInfo.XXX.prefPreviewResolutionFactor

CameraInfo.XXX.prefPreviewProcessing

CameraInfo.XXX.prefFpsDisplay

CameraInfo.XXX.nCaptureBuffers

CameraInfo.XXX.nTotalBuffers

- 275 —

Integer

Logical

Integer

String

Real

Integer

Integer

Configuration files

should be less than or equal to
the smaller of 25 and
CameraInfo.XXX. fpsMax.

The method by which the
number of frames per second
can be changed. Values are 0 for
no change possible, 1 for change
via a CameraL.ink interface, and
2 for changes in the BitFlow
CTab entry (typically for Dalsa
cameras).

Indicates processing is required
to untangle the information from
the camera to generate a valid
display.

The scale factor that should be
applied to the image when
previewing it on screen. For very
high resolution cameras, a value
greater than 1 will reduce the
size of the preview image,
allowing more rapid display and
allowing the image to fit more
comfortably on the screen
(which may have a much lower
resolution). Note that the user
can override this setting in the
dialog used to start the preview.
It is often desirable to have some
form of processing on the
preview image. The default
processing (which may be
overridden by the user in the
dialog starting the preview) is
specified by this string. Typical
examples include “particle
streaks” and “synthetic
schlieren”.

The preferred display frames per
second for the preview. This
may be overridden by the user in
the dialog used to start the
preview.

The number of buffers to which
the video is initially captured.
Typically 2 for an R3
framegrabber, or 8 for an R64-
based card..

The number of buffers to be

DigiFlow

CameralInfo.XXX.nProcessThreads

CameraInfo.XXX.nDisplayThreads

CameraInfo.XXX. fpsToInteger

Cameralnfo.

Cameralnfo.

CameralInfo.

CameralInfo.

CameralInfo.

CameralInfo.

CameralInfo.

CameralInfo.

CameralInfo.

CameralInfo.

CameralInfo.

CameralInfo.

Cameralnfo.

XXX.

XXX.

XXX

XXX.

XXX

XXX.

XXX.

XXX

XXX

XXX.

XXX

XXX.

XXX.

fpsFromInteger

ReserveSpacelInFile

.minReserveFramesInFile

SetGain

.maxGain

defaultGain

ShutterSpeed

.minShutter

.maxShutter

defaultShutter

.AllowSerial

SeriallineFeed

SerialStatusQuery

276

Integer

Integer

Code

Code

Logical

Integer

Code

Integer
Integer

Code

Integer
Integer
Integer
Logical

Logical

String

Configuration files

reserved for the camera.
Typically 8 for an R3
framegrabber, or 16 for an R64-
based card..

The number of threads used to
process the sequence being
captured prior to saving.

The number of threads used to
display the sequence being
captured. Typically 1.

Converts the requested number
of frames per second into an
integer value for internal use.
For many cameras, the
permissible number of frames
per second is restricted to be an
integer fraction of the base frame
rate.

Converts an integer (produced
by £psToInteger) back into a
frame rate.

Causes extra space to be
reserved in the Cache file.

If the cache file must be
extended, then this will be the
minimum additional space
reserved for future growth.
Code used for suitable
CameraLink cameras to set the
gain.

The maximum gain for the
camera.

The default gain value for the
camera.

Code used for suitable
CamerLink cameras to set the
shutter speed.

The minimum shutter speed for
the camera.

The maximum shutter speed for
the camera.

The default shutter speed for the
camera.

Enable serial communication
over CamerLink connection.
Indicates that the CameraLink
serial protocol requires line
feeds as well as carriage returns.
The string that should be sent to

DigiFlow

Cameralnfo.

Cameralnfo.

Cameralnfo.

Cameralnfo.

CameralInfo.
CameraInfo.
CameralInfo.
CameraInfo.
CameralInfo.

Cameralnfo.

XXX.

XXX.

XXX.

XXX.

XXX.

XXX
XXX

XXX.

SerialOnLineResponse

SerialError

SetupCode

PostSetupCode

SetFrameRate

.minFrameRate
.maxFrameRate
XXX.
XXX

defaultFrameRate
delayFrameStart

StrobeStart

CameraInfo.XXX.StrobeStop

CameraInfo.XXX.TriggerEventType

CameraInfo.XXX.TriggerEventLine

- 277 —

String

String

String
or
Code
String
or
Code
String
Integer
Integer
Integer
Integer

Integer

Integer

String

Integer

Configuration files

the CameraLink camera to query
its status.

The first part of the response to
the CameraL.ink status query
that, if received, indicates the
camera is on line.

The response from a
CameraLink camera that
indicates an error condition.

dfc code that is run before
starting the capture process to
set up the camera.

dfc code that is run after starting
the capture process to set up the
camera.

dfc code to alter the frame rate.
The minimum frame rate.

The maximum frame rate.

The default frame rate.

The number of pixels to delay
that separates the start of the
image from the start of the frame
sent by the camera.

This optional setting is used in
conjunction with the BitFlow
framegrabber’s VSTROBE
output signal (available via the
15 pin D connector). Typical
uses of this include controlling a
strobe light, or driving a liquid
crystal shutter. Adjusting this
value changes the phase of the
start of the VSTROBE pulse
relative to the camera acquisition
cycle.

As with
CameralInfo.XXX.StrobeStart,
but sets the timing for the end of
the VSTROBE pulse. Note that
if strobestop Iis less than
Strobestart then VSTROBE is
low only between the stop and
the start.

Indicates the type of event that is
triggered.

The line within the image that
the event is triggered at. Note for
R2 and R3 framegrabbers, this
will typically be 4096 plus the

DigiFlow Configuration files

scan line number.
Causes wrapping of the trigger
event.

CameraInfo.XXX.TriggerEventMaxCount Hﬂeger

13.4 DigiFlow_Dialogs.dfs

This status file is stored in the directory from which DigiFlow is started. It contains and
localises information about the responses used most recently in each of the main DigiFlow
dialogs. The format of the entries is that of dfc calls to each of the DigiFlow facilities, with the
name of the compound variable being descriptive.

The DigiFlow_Dialogs.dfs will only contain dialog entries for facilities that have been run for
DigiFlow started in the directory on this or a previous invocation. The following is an

example of this file. Note that the order of the entries is not fixed.
dlgFile CaptureVideo.Output Options.Colour := " (default)";
dlgFile CaptureVideo.Output Options.Display := 1;
dlgFile CaptureVideo.Output := "CaptureVideo.dfm";
dlgFile CaptureVideo.RegionName := " (all)";
dlgFile CaptureVideo.Gain := 0;
dlgFile CaptureVideo.ShutterSpeed := 0;

dlgFile CaptureVideo.
dlgFile CaptureVideo.
dlgFile CaptureVideo.
dlgFile CaptureVideo.
dlgFile CaptureVideo.
dlgFile CaptureVideo.
dlgFile CaptureVideo.
dlgFile CapturevVideo.
dlgFile CapturevVideo.
dlgFile CaptureVideo.
dlgFile CapturevVideo.
dlgFile CapturevVideo.
dlgFile CaptureVideo.
dlgFile CapturevVideo.

DisplayProcessDialog := 1;

DisplayProcessing := " (none)";
PreProcessFrame := "Default";
Time := 60.0000 ;
DisplayResolutionFactor :=
TimeMode := "Time";
DisplayDuringCapture :=
nSaveBits := 8;
fpsDisplay 24.0000 ;
fpsShutter 30.0000 ;
fpsCapture := 30.0000 ;
AcquireEgShutter := 1;
DisplayOnExit := 1;

process

:= "File CaptureVideo";

LastResponse := "dlgFile EditStream";

openlmage.ChangeToHashes := 1;
openlmage.CompactlList := 1;

runCode.DefaultDir := "s:\users\stuart\img\digiflow\";
dlgFile EditStream.
dlgFile EditStream.
dlgFile EditStream.
dlgFile EditStream.
dlgFile EditStream.
dlgFile EditStream.
dlgFile EditStream.
dlgFile EditStream.
dlgFile EditStream.
dlgFile EditStream.
dlgFile EditStream.
dlgFile EditStream.

Output Options
Output Options
Output Options

.DeleteExisting := 1;
.Resample := "none";

.Comments := "No user comments";
Output Options.Colour := " (default)";

Output Options.Display := 1;

Output := "junk####.dfi";

DirectCopy := 1;

Input Region.Kind := "AIl";

Input Options.Display := 1;

Input := "JPRD45.dfm";

DisplayOnExit := 1;

process := "File EditStream";

dfcConsole.LastOpen :=
"S:\Users\Stuart\Img\DigiFlow\StreamFunctionVorticity.dfc";

dfcConsole.LastSave :=
"S:\Users\Stuart\Img\DigiFlow\FunctionNames.dfc";

In addition to the compound dig.. variables, DigiFlow also stores other user-interface
related information in this file. In particular, rastresponse indicates the last dialog to be

278

DigiFlow Configuration files

activated. This value is used in the Edit Dialog Responses facility described in §5.2.9. The
openImage compound variable records the current settings of the Open Image dialog (see
84.1), in particular how to handle numbered image sequences.

Handling of dfc files is controlled by runcode.pefaultpir, Which stores the current
directory for File: Run Code (see 85.1.2), while dfcconsole stores information about the last
dfc files to be opened or saved.

13.5 DigiFlow_Status.dfs

As with DigiFlow_Dialogs.dfs, the DigiFlow_Status.dfs stores localised status information in the
directory in which DigiFlow was started, restoring that saved previously each time it is
started. However, whereas DigiFlow_Dialogs.dfs concentrates on data associated with the user
interface, DigiFlow_Status.dfs stores information concerning the internal state of DigiFlow such
as colour shemes, coordinate systems and region definitions.

The example below illustrates the structure of this file. Note that this is again a dfc file.
However, for brevity, the contents have been shown truncated; truncations are indicated by an
ellipsis (...).

#5:\Users\Stuart\Img\DigiFlow\DigiFlow Status.dfs
###4##4 Begin
Mon Apr 23 17:57:06 2007
#
#Colour Schemes
add_colour_scheme (scheme:="bipolar",
red:=[0.4980 0.4902 0.4824 0.4745 0.4667 0.4588 0.4510 ..1,
green:=[1.0000 0.9843 0.9686 0.9529 0.9373 0.9216 0.9059 ..1,
blue:=[1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ..1);
add_colour_scheme (scheme:="schlieren",
red:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ..1,
green:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ..],
blue:=[0.0000 0.0118 0.0235 0.0353 0.0471 0.0588 0.0706 ..1);
add _colour_scheme (scheme:="single cycle - double brightness",
red:=[0.5020 0.5176 0.5333 0.5490 0.5647 0.5804 0.5961 ..],
green:=[0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 ..1,
blue:=[0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 ..1);
add_colour_scheme (scheme:="single cycle - aperture",
red:=[0.0000 0.0157 0.0314 0.0471 0.0627 0.0784 0.0941 ..1,
green:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ..1,
blue:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ..1);
add_colour_ scheme (scheme:="single cycle - half brightness",
red:=[0.0000 0.0157 0.0314 0.0471 0.0627 0.0784 0.0941 ..],
green:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ..1,
blue:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ..1);
add _colour_scheme (scheme:=" (default)"
red:=[0.0000 0.0314 0.0510 0.0902 0.1255 0.1569 0.1804 ..],
green:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ..1,
blue:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ..1);
add _colour_scheme (scheme:="single cycle",
red:=[0.0000 0.0314 0.0627 0.0941 0.1255 0.1569 0.1882 ..1,
green:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ..1,
blue:=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ..1);
add _colour_scheme (scheme:="negative",
red:=[1.0000 0.9961 0.9922 0.9882 0.9843 0.9804 0.9765 ..],
green:=[1.0000 0.9961 0.9922 0.9882 0.9843 0.9804 0.9765 ..1,
blue:=[1.0000 0.9961 0.9922 0.9882 0.9843 0.9804 0.9765 ..1);
add_colour_scheme (scheme:="greyscale",
red:=[0.0000 0.0039 0.0078 0.0118 0.0157 0.0196 0.0235 ..1,
green:=[0.0000 0.0039 0.0078 0.0118 0.0157 0.0196 0.0235 ..1,
blue:=[0.0000 0.0039 0.0078 0.0118 0.0157 0.0196 0.0235 ..1);
#

#Coordinate Systems

- 279 —

DigiFlow Configuration files

#Coordinate System: Tank

coord system_ create(name:="Tank",units:="mm") ;

coord_system mapping(name:="Tank",mapping:="Linear: 1;x;y;");

coord system_add point(name:="Tank",xPixel:=155.0,yPixel:=385.0,
xWorld:=0.0,yWorld:=1.0);

coord system_add point(name:="Tank",xPixel:=551.0,yPixel:=104.0,
xWorld:=1.0,yWorld:=0.0);

coord system_add point(name:="Tank",xPixel:=165.0,yPixel:=111.0,
xWorld:=0.0,yWorld:=0.0) ;

#Set default coordinate system

coord_system_ set_default(name:="Tank") ;

#

#Regions

#

#MatchIntensity

set_dfc_path(path:="s:\users\stuart\img\digiflow\;");

#H##4# End

#S:\Users\Stuart\Img\DigiFlow\DigiFlow Status.dfs

In this particular example, there are no regions and no Match Intensity specifications set.
The function set_dfc path(..) Specifies the path along which DigiFlow will search for any
dfc files.

—280—

DigiFlow Extending DigiFlow

14 Extending DigiFlow

DigiFlow is designed so as to allow users to extend its core functionality in a number of
ways. This section gives a brief introduction to the facilities and techniques available.

14.1 Installing extensions
DigiFlow extensions are installed via a dfc interface.
add_image_reader(
add_image_reader(dll)
add_image_reader(dll,routine)
Adds a new image reader.

dll string
The name of the DLL file containing the image reader.
routine optional string (default “ReadlmageDLL")

The name of the function within the DLL that provides the required functionality..

Return value None.

The following example (using Fortran 90 syntax) may be used as the basis of a user-written
reader. In this example, the image is provided as ASCII values in a file, prefixed by the size of
the image. If the function fails, it should return image FileType Unknown; if it succeeds, it

should return tmage FileType DLL:
function ReadImageDLL (Image,File,Options,Descriptor)

IDEC$ ATTRIBUTES DLLEXPORT, REFERENCE :: ReadImageDLL
!DECS$ ATTRIBUTES ALIAS:'ReadImageDLL' :: ReadImageDLL
!=====Modules
use T All
! =====Parameters
integer (4) ReadImageDLL
type (F _Image), intent(inout) :: Image
character (*), intent(in) :: File
type (F _ImageOptions), intent(inout), optional :: Options
type (F ImageDescriptor), intent(inout), optional :: Descriptor
!=====Local variables
integer (4), automatic :: iFile,i,j,io,nx,ny
!=====Code

ReadImageDLL = Image FileType Unknown
call NewFileHandle (iFile)
open (iFile, file=File, status='0ld’, form=' formatted’,err=99)
read (iFile, *,err=99)nx,ny ! Read image size
! Create the image
call CreatelImage (Image,nx=nx,ny=ny,AccessAs=Image AccessAs Real)
! Read in the intensities
do j=0, Image%Height-1
read (iFile, *,err=99) (Image%R2 (i,J),1=0,nx-1)
enddo
! Automatic scaling of intensities
Image$rBlack = minval (Image%R2)
Image$rWhite = maxval (Image%R2)
if (present (Descriptor)) then

Descriptor%$Time%iFrame = 999
Descriptor%Time%tNow = 999.0
Descriptor%$Time%tStep = 0.1
Descriptor%Time%tFirst = 0.0
Descriptor$Comments%UserComments = 'This is a test'
Descriptor%Comments%CreatingProcess = 'Sample'

Endif

ReadImageDLL = Image FileType DLL

99 continue

close (iFile)

call FreeFileHandle (iFile)
return

end Function

—281 -

DigiFlow Miscellaneous publications

15 Miscellaneous publications

This section lists a small subset of the papers that have been published using DigiFlow (or
Diglmage). The subset has been selected as these papers showcases a new feature in or new
application of the technology within DigiFlow. This is by no means a complete list of
publications in which DigiFlow has been used, even by the authors of DigiFlow. For a
complete list of the latter, refer to http://www.damtp.cam.ac.uk/lab/people/sd103/papers/

Dalziel, S.B. 1992 Decay of rotating turbulence: some particle tracking experiments; Appl.
Scien. Res. 49, 217-244. [[pdf]]

Dalziel, S.B. 1993 Rayleigh-Taylor instability: experiments with image analysis; Dyn.
Atmos. Oceans, 20 127-153. [[pdf]]

Boubnov, B.M., Dalziel, S.B. & Linden, P.F. 1994 Source-sink turbulence in a stratified
fluid; J. Fluid Mech. 261, 273-303. [[pdf]]

Linden, P.F., Boubnov, B.M. & Dalziel, S.B. 1995 Source-sink turbulence in a rotating,
stratified fluid; J. Fluid Mech 298, 81-112. [[pdf]]

Hacker®, J., Linden, P.F. & Dalziel, S.B. 1996 Mixing in lock-release gravity currents;
Dyn. Atmos. Oceans 24, 183-195. [[pdf]]

Holford®, J.M. & Dalziel, S.B. 1996 Measurements of layer depth in a two-layer flow;
Appl. Scien. Res. 56, 191-207. [[pdf]]

Cenedese®, C. & Dalziel, S.B. 1998 Concentration and depth fields determined by the light
transmitted through a dyed solution; Proceedings of the 8th International Symposium
on Flow Visualization, ed. G.M. Carlomagno & I. Grant. ISBN 0 9533991 0 9, paper

061. [[pdf]]
Dalziel, S.B., Hughes®, G.O. & Sutherland®, B.R. 1998 Synthetic schlieren; Proceedings

of the 8th International Symposium on Flow Visualization, ed. G.M. Carlomagno & I.
Grant. ISBN 0 9533991 0 9, paper 062. [[pdf]]

Sutherland®, B.R., Dalziel, S.B., Hughes®, G.O. & Linden, P.F. 1999 Visualisation and
Measurement of internal waves by “synthetic schlieren”. Part 1: Vertically oscillating
cylinder; J. Fluid Mech. 390, 93-126. [[pdf]]

Dalziel, S.B., Linden, P.F. & Youngs, D.L. 1999 Self-similarity and internal structure of
turbulence induced by Rayleigh-Taylor instability; J. Fluid Mech. 399, 1-48. [[pdf]]

[[pdf]]J: (21) Sutherland®, B.R., Hughes®, G.O., Dalziel, S.B. & Linden, P.F. 2000
Internal waves revisited; Dyn. Atmos. Oceans. 31, 209-232.

Dalziel, S.B., Hughes®, G.O. & Sutherland®, B.R. 2000 Whole field density measurements
by ‘synthetic schlieren’; Experiments in Fluids 28, 322-335. [[pdf]]

Leppinen®, D.M. & Dalziel, S.B. 2001 A light attenuation technique for void fraction
measurement of microbubbles; Experiments in Fluids 30, 214-220. [[pdf]]

Ross®, A.N., Linden, P.F. & Dalziel, S.B. 2002 A study of three-dimensional gravity
currents on a uniform slope; J. Fluid Mech. 453, 239-261. [[pdf]]

Thomas, L.P., Marino, B.M. & Dalziel, S.B. 2003 Measurement of density distribution in
a fluid layer by light induced fluorescence in non-rectangular cross section channels.
Int. J. Heat & Tech. 21, 143-148. [[pdf]]

—282 -

http://www.damtp.cam.ac.uk/lab/people/sd103/papers/
1992/ApplSciRes_Dalziel_Small.pdf
1993/DAO20_Dalziel1993.pdf
1994/JFM261_BoubnovDalzielLinden.pdf
1995/JFM298_LindenBoubnovDalziel1995.pdf
1996/DAO24_HackerLindenDalziel1996.pdf
1996/AppSciRes56_HolfordDalziel1996_Small.pdf
1998/IntSympFlowVis8_CenedeseDalziel.PDF
1998/IntSympFlowVis8_DalzielHughesSutherland1998.PDF
1999/jfm390.pdf
1999/JFM399.pdf
2000/DAO31_209.pdf
2000/ExpInFluids28.pdf
2001/LeppinenDalziel2001_ExpInFluids30.pdf
2002/JFM453_2002.pdf
2003/ThomasMarinoDalziel_IntJHeatTech21_2003.pdf

DigiFlow Miscellaneous publications

Thomas, L.P., Dalziel, S.B. & Marino, B.M. 2003 The structure of the head of an internal
gravity current determined by Particle Tracking Velocimetry. Expt Fluids. 34, 708-

716. [[pdf]]

Higginson®, R.C., Dalziel, S.B. & Linden, P.F. 2003 The drag on a vertically moving grid
of bars in a linearly stratified fluid. Expt. Fluids. 34, 678-686. [[pdf]]

Munro®, R.J., Dalziel S.B. & Jehan®, H. 2004 A pattern matching technique for measuring
sediment displacement levels. Expt. Fluids. 37, 399-408. [[pdf]]

Shin®, J.0., Dalziel, S.B. & Linden, P.F. 2004 Gravity currents produced by lock
exchange. J. Fluid Mech. 521, 1-34. [[pdf]]

Jacobs, J. & Dalziel, S.B. 2005 Rayleigh-Taylor instability in complex stratifications.
J.Fluid Mech. 542, 251-279. [[pdf]]

Munro®, R.J. & Dalziel S.B. 2005 Attenuation technique for measuring sediment
displacement levels. Expt. Fluids 39, 602-613. [[pdf]]

Sveen®, J.K. & Dalziel, S.B. 2005 A dynamic masking technique for combined
measurements of PIV and Synthetic Schlieren applied to internal gravity waves. Meas.
Sci. Technol. 16, 1954-1960. [[pdf]]

Ross®, A.N., Dalziel, S.B. & Linden, P.F. 2006 Gravity currents on a cone. J. Fluid Mech.
565, 227-253. [[pdf]]

Scase®, M.M. & Dalziel, S.B. 2006 An experimental study of the bulk properties of vortex
rings translating through a stratified fluid. Eur. J. Mech. B/Fluids 25, 302-320. [[pdf]]

Dalziel, S.B., Carr®, M., Sveen®, K.J. & Davies, P.A. 2007 Simultaneous Synthetic
Schlieren and PIV measurements for internal solitary waves. Meas. Sci. Tech. 18, 533-

547. [[pdf]]

Hazewinkel®, J., Breevoort®, P. van, Maas, L.R.M., Doelman, A. & Dalziel, S.B. 2007
Equilibrium spectrum for internal wave attractor in a trapezoidal basin. In Proceedings
of the 5™ International Symposium on Environmental Hydraulics. [[pdf]]

Hazewinkel®, J., Breevoort®, P. van, Dalziel, S.B. & Maas 2008 L.R.M. Observations on
the wave number spectrum and evolution of an internal wave attractor in a two-
dimensional domain. J. Fluid Mech. 598, 81-105. [[pdf]]

Dalziel, S.B., Patterson”, M.D., Caulfield, C.P. & Coomaraswamy, I.A. 2008 Mixing
efficiency in high aspect-ratio Rayleigh-Taylor experiments. Phys. Fluids 20, 065106.
DOI:10.1063/1.2936311. [[pdf]] [[web]]

Munro®, R.J., Bethke®, N. & Dalziel, S.B. 2009 Sediment resuspension and erosion by
vortex rings. Phys. Fluids. 21, 046601. [[pdf]]

InleS, C.F., Dalziel, S.B. & Nifio, Y. 2009 Simultaneous PIV and synthetic schlieren
measurements of an erupting thermal plume. Meas. Sci. Tech. 20, 125402. [[pdf]]

Hazewinkel®, J., Tsimitri®, C., Maas, L.R.M. & Dalziel, S.B. 2010 Observations on the
robustness of internal wave attractors to perturbations. Phys. Fluids 22, 107102,
dol:10.1063/1.3489008. [[pdf]] [[web]]

Hazewinkel®, J., Maas, L.R.M. & Dalziel, S.B. 2011 Tomographic reconstruction of
internal wave patterns in a paraboloid. Exp. Fluids 50, 247-258. DOI:
10.1007/s00348-010-0909-x. [[pdf]] [[web]]

—283 -

2003/ExpInFluids34_708.pdf
2003/ExpInFluids34_678.pdf
2004/ExpInFluids37_2004.pdf
2004/JFM521.pdf
2005/JFM542_JacobsDalziel.pdf
2005/ExpInFluids39.pdf
2005/MeasSciTech16.pdf
2006/JFM565_RossDalzielLinden.pdf
2006/EJoMB_25.pdf
2007/MeasSciTech18_DalzielCarrSveenDavies2007.pdf
2007/ISEH5_Tempe_HazewinkelBreevoortMaasDoelmanDalziel.pdf
2008/JFM598_HazewinkelVanBreevoortDalzielMaas.pdf
2008/PoF20_DalzielPattersonCaulfieldCoomaraswamy.pdf
http://link.aip.org/link/?PHF/20/065106
2009/PoF21_MunroBethkeDalziel.pdf
2009/MST20_IhleDalzielNino.pdf
2010/PhysFluids22_HazewinkelTsimitriMaasDalziel.pdf
http://pof.aip.org/resource/1/phfle6/v22/i10/p107102_s1
2011/ExpFluids_HazewinkelMaasDalziel.pdf
http://www.springerlink.com/content/v82652h83pq6m717/fulltext.pdf

DigiFlow References

Hazewinkel®, J., Grisouard®, N. & Dalziel, S.B. 2011 Comparison of laboratory and
numerically observed scalar fields of an internal wave attractor. Eur. J. Mech/B. 30,
51-56. DOI:10.1016/j.euromechflu.2010.06.007. [[web]]

Dalziel, S.B., Patterson®, M.D., Caulfield, C.P. & Le Brun®, S. 2011 The structure of low
Froude number lee waves over an isolated obstacle. J. Fluid Mech. 689, 3-31.
do0i:10.1017/jfm.2011.384. [[pdf]] [[web]]

Bethke®S, N. & Dalziel, S.B. 2011 Resuspension onset and crater erosion by a vortex ring
interacting with a particle layer. To appear in Phys. Fluids.

See http://www.damtp.cam.ac.uk/lab/people/sd103/papers/ for a comprehensive list (including
many with electronic copies) of papers related to the techniques used by DigiFlow.

References

Dalziel, S.B. 1992 Decay of rotating turbulence: some particle tracking experiments;
Appl. Scien. Res. 49, 217-244.

Dalziel, S.B. 1993 Decay of rotating turbulence: some particle tracking experiments; in
Flow visualization and image analysis; Ed. Nieuwstadt, Kluwer, Dordrecht, 27-
54.

Dalziel, S.B. 1993 Rayleigh-Taylor instability: experiments with image analysis; Dyn.
Atmos. Oceans, 20 127-153.

Dalziel, S.B., Hughes, G.O. & Sutherland, B.R. 2000 Whole field density measurements
by ‘synthetic schlieren’; Experiments in Fluids 28, 322-335.

Monahan, J.J. 1992 Smoothed particle hydrodynamics. Ann. Rev. Astrophys. 30, 543-
574.

Sutherland, B.R., Dalziel, S.B., Hughes, G.O. & Linden, P.F. 1999 Visualisation and
Measurement of internal waves by “synthetic schlieren”. Part 1: Vertically
oscillating cylinder; J. Fluid Mech. 390, 93-126.

284 -

http://dx.doi.org/doi:10.1016/j.euromechflu.2010.06.007
2011/JFM689_DalzielPattersonCaulfieldLeBrun.pdf
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8446737
http://www.damtp.cam.ac.uk/lab/people/sd103/papers/

DigiFlow

Index

3D view, 64

Accessing dialogs, 232
Accumulate images, 171
Aligning images, 169
Analyse

Ensemble mean, 84

Harmonic Analysis, 75

Time average, 71

Time extract, 79

Time series, 77
Analyse_DyeAttenuation, 86
Analyse_EnsembleMean, 84
Analyse_FollowOpticalFlow, 154
Analyse_PIV, 121
Analyse PTVTrack, 131
Analyse_PTVVectors, 150
Analyse_ShowAsStreaks, 118
Analyse_SyntheticSchliereninterpolative,

100
Analyse_SyntheticSchlierenPatternMatch,

105
Analyse_SyntheticSchlierenQualitative, 98
Analyse_TimeAverage, 71
Analyse_TimeExtract, 79
Analyse_TimeSummarise, 81
Appearance, 61
Archive file

input stream, 13, 225

output stream, 228
Array functions, 204
Array plotting functions, 212
Arrays, 185
as_thread(..), 66
Assignment, 185
Autocorrelation, 148
AutoHelp, 12
Average

Ensemble, 84

Time, 71
AVl files, 42

Bit depth of output stream, 229
BitFlow, 7

Bit-wise operations, 210

bmp

—285—

file format, 241
Break points, 200

Cache file, 8
Camera configuration, 7

Camera configuration - BitFlow, 7

Camera control, 210
camera_*, 33
Capture configuration, 8
Capture video, 36
Chaining responses, 230
Close, 46
Close all, 46
Code library, 31
Collection - definition, 13
Colour
output stream, 27
toggle, 64
Colour images, 20
Colour of output stream, 229
Colour scheme, 62
Combine images, 166
Command prompt, 9

Command prompt - commands, 9

Comments in output stream, 230
compile(), 193
Compound variables, 184

Compression of output stream, 229
Concentration power spectrum, 81

Configuration, 258
Configuration files, 257
Configuration functions, 217
Contouring images, 162
Coordinate functions, 210
Coordinate system wizard, 52

Coordinate systems, 50, 51, 52, 174

Coordinates
copy world system, 52
edit world system, 51
new world system, 50
transform to world, 174
world, 49

Copy, 47
as bitmap, 47

Cursor, 60

Data acquisition functions, 215

Index

DigiFlow

Data Translation, 1
Debugging, 196
Deleting existing output stream, 230
Depth of a gravity current, 80
dfa

file format, 251
dfc

run, 33
dfc code, 14
dfc Console, 201
dfc Help, 30
dfcConsole, 55
dfd

file format, 235, 251
dfi

file format, 242
dfm

file format, 255
dfp

file format, 251
dft

file format, 251
Dialog responses, 55, 233
Differential functions, 213
DigiFlow command files, 223
DigiFlow configuration, 3
DigiFlow_Cameras.dfc, 258
DigiFlow_Dialogs.dfs, 3, 262
DigiFlow_Licence.dfc, 257
DigiFlow_LocalData.dfc, 258
DigiFlow_Status.dfs, 3, 263
Diglmage, 1
DirectDraw functions, 214
Displaying output stream, 228
Distance

measure, 60
Drawing, 234
Drawing commands, 234
Drawing file format, 235
Dye attenuation, 86
Dye concentration, 89, 90

Edit
dialog responses, 55
process again, 54
properties, 48
region, 54
world coordinates, 49
Edit dfc code, 55

— 286 —

Index

Edit stream, 40
emf

file format, 241
Encapsulated PostScript, 4, 29, 43
Enlarge

zoom in, 58

zoom out, 58
Ensemble

Average, 84
eps, 29, 43

file format, 242

printer setup, 4
Error handling, 196
Eulerian, 131
execute statement, 192
Exit, 46
exit statement, 192
exit_digiflow, 46
exit_digiflow(), 192
Export AVI, 42
Export to simple EPS, 46
Extending DigiFlow, 265
Extract time series, 79

File handling functions, 206
File menu, 33
File_CaptureVideo(..), 36
File_EditStream, 40
File_ExportAVI, 42
File_MergeStreams, 41
File_ShowLiveVideo, 33
Filtering images, 162
First index, 28
First index for output stream, 229
Flow functions, 210
Folder for output stream, 228
Follow optical flow, 154
for statement, 192
Format

bmp, 241

dfa, 251

dfd, 235, 251

dfi, 242

dfm, 255

dfp, 251

dft, 251

emf, 241

eps, 242

gif, 241

DigiFlow

image files, 241
mov, 255
output stream, 28
pic, 253, 254
tif, 241
wmf, 242
Fourier descriptors, 162
Fractal
box count, 163
Fractal dimension, 83
Frame grabber, 7
ftp functions, 214
Full colour
output stream, 28
function, 193
Functions, 203
all, 218
array, 204
array plotting, 212
basic mathematical, 204
configuration, 217
coordinate, 210
differential, 213
file handling, 206
flow, 210
image processing, 209
information, 205
logging, 216
miscellaneous, 217
numerical, 212

reading and writing images, 207

statistics, 208

string, 204

threads, 213

timing, 208

type manipulation, 205
variables, 206

windows and views, 207

GhostScript functions, 215
gif

file format, 241
Grid PTV velocity, 151

Help, 12
History, 1

if statement, 191
Image

— 287 —

open, 17, 33
properties, 48
save, 21, 33

Image file formats, 241

Image processing functions, 209

Image selectors, 13
Images streams, 13
include(..), 196
Information functions, 205
Input
from file, 196
Input stream
archive file, 13, 225
colour component, 225
control in macro file, 224
displaying, 225
folder for, 224
match intensity, 25
matching intensity, 227
region, 23, 226
selecting times, 226
sifting, 22
timing, 22
waiting for, 228
Installation, 3
Intensity
transform, 158
transform recipe, 157

Key features, 2
Lagrangian, 131

LaTeX, 15, 30, 43
LaTeX macros, 238

Leaving output stream visible, 230

Library, 31

Lists, 188

Live video
particle streaks, 35
synthetic schlieren, 35

Live view, 33

Local data, 258

Logging functions, 216

Macro files, 223

Macros, 14, 223
accessing dialogs, 232
chaining responses, 230

control of input streams, 224

Index

DigiFlow

control of output stream, 228
multiple output streams, 231
make_array(..), 185
make_like(..), 185
make_list(..), 188
Match intensity, 25, 227
Matching algorithm, 133
Mathematical functions, 204
MatLab, 2
Mean
Ensemble, 84
Time, 71
Measure distance, 60
Merge streams, 41
mf
file format, 242
mod, 190
mov
file format, 255
Move image, 61
Multiple output streams, 231

Numerical functions, 212

Obijective function, 133
Open image, 17, 33, 46
Operators, 189
mod, 190
Optical flow, 153
follow, 154
Follow, 154
Options
output stream, 27
Output stream
archive file, 228
bit depth, 229
colour, 27, 229
comments, 230
compression, 229
controlling, 228
deleting existing stream, 230
displaying, 228
file format, 28
first index, 28, 229
folder for, 228
full colour, 28
leaving visible, 230
multiple, 231
options, 27

— 288 —

Index

quality, 230
resampling, 28, 230
user comments, 29

Particle Image Velocimetry (PIV), 121
Particle streaks, 118
live video, 35
Particle tracking functions, 216
Particle Tracking Velocimetry (PTV), 131
Particles
streaks, 118
pic
file format - compressed, 254
file format - raw, 253
PIV data
example of post-processing, 164
Plot, 237
Plotting, 234
PostScript, 215
PostScript driver, 5
Printing, 43
process, 223
Process again, 54
psfrag, 30, 43
PTVAutocorrelation, 148
PTVBasic statistics, 147
PTVGridVelocity, 151

Quality of output stream, 230
Queries, 200
quit statement, 192

Reading and writing images, 207
Recording user input, 233
Redo process, 54
Region, 226

edit, 54

input stream, 23

naming, 24
Registry, 7
Registry functions, 217
Resampling, 28
Resampling output stream, 230
Rescaling an image, 161
Run code, 33
Running processes, 223

Save image, 21, 33
Security, 7

DigiFlow

Selectors, 13
Sequence - definition, 13
Serial communications, 215
Setup video, 39
Show where, 60
Sifting, 14
input stream, 22
Sifting data, 89
Simple plot, 237
Slave process, 34, 172
Slaves, 64
Starting DigiFlow, 9
Statements
exit_digiflow, 46
Statistical functions, 208
Status files, 3
Streaks, 118
String functions, 204
Summarise time series, 81
Synthetic schlieren, 108
live video, 35
process, 100, 105
qualitative, 98
Synthetic Schlieren, 95

Text output, 15
Thread functions, 213
Threads, 14

run code as thread, 66
tif

file format, 241
Time

Average, 71

Mean, 71
Time average, 71
Time extract, 79
Time series, 77
Time summarise, 81
Timing

input stream, 22
Timing functions, 208
Toggle colour, 64
Tools_Combinelmages, 166
Tools_Transformintensity, 158
Tools_TransformRecipe, 157
Tools_TransformToWorld, 174
Tracing execution, 200
Transform

intensity, 158

Index

recipe, 157

to world coordinates, 174
Transportation algorithm, 133
try_execute statement, 192
Type manipulation functions, 205
Type query functions, 185

User comments, 29
User functions
definition, 193
User input, 195
User output, 195

Variable functions, 206
Vector scale, 61
Velocities

PIV, 121

PTV, 131

PTV - autocorrelation, 148

PTV — basic statistics, 147

PTV - grid, 151

PTV - vectors, 150

Show as streaks, 118
Velocity fluctuations, 170
Velocity statistics, 147
Velocity vectors — PTV, 150
Video

capture, 36

live, 33

setup, 39
View

3D, 64

appearance, 61

close, 46

close all, 46

colour scheme, 62

slaves, 64

toggle colour, 64

vector scale, 61

zoom, 58
View variables, 197
view_variables(..), 197

Waiting for input streams, 228
Web browsing, 214

while statement, 191

Wild cards, 20

Window and view functions, 207
World coordinates, 49

—289 —

DigiFlow

Z - objective function, 133
ZLib, 245
Zoom

all full size, 59

all half size, 59

all one third size, 59

Index

all quarter size, 59
custom, 58

Fit window to, 60
full size, 58

in, 58

to window, 59

Zoom out, 58

—290 -

DigiFlow Licence Agreement

16 Licence Agreement

DigiFlow Licence Agreement
Dalziel Research Parnters,
142 Cottenham Road, Histon, Cambridge CB4 9ET, England

Licence:

1. Agreement. Installation of part or all of the software suite known as DigiFlow, or any
system derived from DigiFlow, is deemed to indicate agreement with the terms and conditions
of this licence.

2. Parties. This agreement is between Dalziel Research Partners, the software Developer and
copyright holder, and the person, company or institution installing or using the software, the
Customer.

3. Definition. DigiFlow comprises the DigiFlow executable files, support files,
documentation files, configuration files, and other utilities supplied with the system, and the
source code, object code, libraries and documentation associated with or supplied with the
system.

4. Types of Licence. Two types of licence are available for DigiFlow. A Free Licence has
restricted functionality and more limited support. A Commercial Licence provides access to
all of DigiFlow’s features and has a broader level of support.

5. Right of use. The Developer hereby grants the Customer, a non-transferable and
nonexclusive licence to use DigiFlow on a single microcomputers within the premises of the
Customer. The software may be transferred to a different microcomputer, with the Customer's
premises, only after it has been removed completely from any machine on which it was
installed previously.

6. Licence Key. The Licence Key is the numeric code that controls the use of DigiFlow on a
given computer. The Licence Key is unique to the network adapter(s) on the licensed
computer. The Customer must inform the Developer if they wish to transfer DigiFlow from
one computer to another, or if the network card is changed or removed. The Developer will
then issue a new Licence Key for the new computer.

7. Use off site. DigiFlow, or any software developed using the DigiFlow Development
System, may not be used outside the premises of the Customer without the express prior
written consent from the Developer. The exception to this rule is that use during brief field
studies (lasting no more than four weeks in a twelve month period), for demonstration and
presentation purposes is permitted.

8. Revocation. The Developer reserves the right to revoke the Licence if the Customer fails to
meet any of the terms under which the software is supplied.

9. Copyright. The copyright of DigiFlow, and all its components and manuals, is owned by
the Developer. Copyright of certain third party open source libraries used by DigiFlow
remains with the developers of those libraries. Copies of the software and documentation may
be made for backup purposes. Additionally, copies may be made of the manuals for the
purposes of training and use of DigiFlow provided such copies retain their original copyright
declaration.

10. Reverse engineering. The Customer may not decompile, disassemble or otherwise
reverse engineer any component of DigiFlow. Further, the customer must not attempt to
break, bypass or disable the licence key system controlling the use of DigiFlow.

11. Transfer of Ownership. The Customer may not sell DigiFlow or any code developed
under the Development System without prior consent from the Distributor. The customer may,

—291 -

DigiFlow Licence Agreement

however, distribute images processed by DigiFlow and DigiFlow dfc macro code without
restriction.

12. Other Copies. All the terms of this licence apply equally to the original supplied version
of DigiFlow, to any upgrades or updates to the DigiFlow or subsequent systems derived from
DigiFlow, or documentation which may be supplied from time to time by the Distributor, and
to any copies made of DigiFlow or its updates under the terms of this licence.

Warranty:

13. Limited Warranty. The Developer guarantees holders of Commercial Licences that
DigiFlow will perform substantially in accordance with the accompanying documentation. No
such guarantee exists for holders of Free Licences. The Developer disclaims all other
warranties either express or implied.

14. Period. The period for the stated and any implied warranty is limited to 90 days from
receipt of a Commercial Licence for DigiFlow. Updates or upgrades to DigiFlow outside this
period carry no warranty.

15. Consequential Damages. Neither the Developer nor their suppliers shall not be liable for
any damages whatsoever arising out of the use, misuse or inability to use DigiFlow or any
updates or upgrades to this system.

Other Conditions:

16. Support. User support for holders of Commercial Licences will be provided by the
Developer free of charge for the first year following receipt of the System. This support will
normally consist of a combination of electronic, written and verbal communication. On-site
training is not included. The Developer reserves the right to alter the precise nature and scope
of this support. Support for users with Free Licences is at the discretion of the Developer.

17. Upgrades. The Developer undertakes to make available, free of charge, any upgrades or
updates to DigiFlow released by the Developer during the first year after the receipt of a
Commercial Licence, provided the appropriate licence fee has been paid. This undertaking
does not imply that Developer is obligated to modify DigiFlow in any way, or release any
modifications made to DigiFlow.

18. Expiration. Licence Keys are perpetual for the version of DigiFlow for which they were
issued. The Developer, however, reserves the right to change the licence key mechanism in
future versions of DigiFlow in a way that may render invalid Licence Keys from earlier
versions. In such cases, Holders of Commercial Licences within their upgrade period will be
entitled to a new Licence Key. The Developer also reserves the right to discontinue the issue
of Free Licences.

—292 -

